11. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Schröder 18. June 2019

Due dates: 25./27. June http://www.math.tu-berlin.de/~felsner/Lehre/dsI19.html

- (1) (This exercise gives 2 points.) For which of the parameter sets does a design exist? Either show that there is none or present one. (if λ is omitted, it is 1.)
 - (a) S(2,3,127) (d) S(2,7,36)
 - (b) $S_2(4,7,13)$ (e) $S_{10}(2,5,9)$
 - (c) $S_3(2, 10, 25)$ (f) $S_3(3, 5, 21)$

[Hint to (f): Consider the edge set of K_7 .]

- (2) Let $(\mathcal{P}, \mathcal{B})$ be a $S_{\lambda}(t, k, v)$ design.
 - (a) Let $p \in \mathcal{P}$ and $\mathcal{B}^p := \{B : p \notin B \in \mathcal{B}\}$ be the set of blocks, which do not contain p. Show that $(\mathcal{P} \setminus \{p\}, \mathcal{B}^p)$ is a design. What are its parameters?
 - (b) Consider the *complement* of a $S_{\lambda}(t, k, v)$, i.e., replace each block by its complement. Prove that the complement of a $S_{\lambda}(t, k, v)$ is a design for the same parameter t. Determine its other parameters.
- (3) A design $(\mathcal{P}, \mathcal{B})$ is *resolvable*, if there is a partition of \mathcal{B} , such that each part is a partition of \mathcal{P} .
 - Let $(\mathcal{P}, \mathcal{B}) = S(2, n+1, n^2 + n + 1)$ be a projective plane and fix $B \in \mathcal{B}$. Show that

$$\left(\mathcal{P} \setminus B, \left\{ C \setminus B \mid C \in \mathcal{B} \setminus \{B\} \right\} \right)$$

is a resolvable $S(2, n, n^2)$ design.

- (4) Let (V, \mathcal{B}) be a design, $I, J \subseteq V$ with $I \cap J = \emptyset$ and |I| = i, |J| = j such that $i+j \leq t$. Let $\lambda_{I,J} = \#\{B \in \mathcal{B} \mid I \subseteq B \text{ and } J \cap B = \emptyset\}.$
 - (a) Show that $\lambda_{I,J}$ does only depend on *i* and *j* and not on *I* and *J*, i.e. $\lambda_{i,j} := \lambda_{I,J}$ is well defined.
 - (b) Prove $\lambda_{i,j} = \lambda_{i+1,j} + \lambda_{i,j+1}$ for i + j < t.
 - (c) Prove $\lambda_{i,j} = \sum_{r=0}^{j} (-1)^r {j \choose r} \lambda_{i+r,0}$.
- (5) Let q be a prime power. For every $k, n \in \mathbb{N}, k \leq n$, construct the following design:

$$S_{\lambda}\left(2, \left[\begin{array}{c}k\\1\end{array}\right]_{q_{\cdot}}, \left[\begin{array}{c}n\\1\end{array}\right]_{q_{\cdot}}\right) \text{ with } \lambda = \left[\begin{array}{c}n-2\\k-2\end{array}\right]_{q_{\cdot}}$$