8. Practice sheet for the lecture: Combinatorics (DS I)

Due dates: 04./06. June http://www.math.tu-berlin.de/~felsner/Lehre/dsI19.html

- (1) Symmetric chain decompositions of \mathcal{B}_n
 - (a) Given a symmetric chain C in \mathcal{B}_n , is there always a symmetric chain decomposition containing C?
 - (b) Show that the number of chains of length n + 1 2k in a symmetric chain decomposition of \mathcal{B}_n is $\binom{n}{k} \binom{n}{k-1}$.
 - (c) Use (1b) to derive the known explicit formula for the Catalan numbers, i.e. $C_n = \frac{1}{n+1} {\binom{2n}{n}}$. (Hint: Valid bracket expressions are counted by Catalan numbers.)
- (2) Let \mathcal{B}_n^{\vee} be the truncation of the Boolean lattice where the maximal and minimal element is deleted. Let \mathcal{C} be a symmetric chain decomposition which is canonical (originating from the bracketing process). Let $\overline{\mathcal{C}}$ be its complement, i.e. for a chain $C \in \mathcal{C}$ the set \overline{C} of complements of sets in C is a set in $\overline{\mathcal{C}}$.
 - (a) Show that $\overline{\mathcal{C}}$ is a symmetric chain decomposition.
 - (b) Show that \mathcal{C} and $\overline{\mathcal{C}}$ are *orthogonal*, i.e. $|C \cap D| \leq 1$ for all $C \in \mathcal{C}$ and $D \in \overline{\mathcal{C}}$.
- (3) Let \mathcal{A} be a family of k-subsets of [n] and \mathcal{B} be a family of l-subsets of [n] such that $l+k \leq n$ and $A \cap B \neq \emptyset$ for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$.
 - (a) Show that $|\mathcal{A}| < \binom{n-1}{k-1}$ or $|\mathcal{B}| \le \binom{n-1}{l-1}$. Hint: Use shadows as in the second proof of the Erdős-Ko-Rado theorem.
 - (b) Deduce the Erdős-Ko-Rado theorem from (a).
- (4) A permutation $\pi \in S_n$ is alternating if $\pi_1 < \pi_2 > \pi_3 < \pi_4 > \dots$ holds. Let $\operatorname{Alt}_n \subseteq S_n$ be the set of alternating permutations. A permutation σ is reverse alternating if $\sigma_1 > \sigma_2 < \sigma_3 > \sigma_4 < \dots$ holds. Let $\operatorname{RAlt}_n \subseteq S_n$ be the set of reverse alternating permutations.
 - (a) Prove $|Alt_n| = |RAlt_n|$.
 - (b) Let $E_n := |\operatorname{Alt}_n|$ and prove $2E_{n+1} = \sum_{k=0}^n \binom{n}{k} E_k E_{n-k}$ for all $n \ge 1$.

(c) Let
$$E_n(q) := \sum_{\pi \in \text{RAlt}_n} q^{\text{inv}(\pi)}$$
 and $E_n^{\star}(q) := \sum_{\pi \in \text{Alt}_n} q^{\text{inv}(\pi)}$. Prove
 $E_n^{\star}(q) = q^{\binom{n}{2}} E_n\left(\frac{1}{q}\right).$

- (5) Counting chains and antichains in \mathcal{B}_n
 - (a) What is the number $C_n^{(k)}$ of chains of size k in the boolean lattice?
 - (b) Prove by bijection that the number of antichains of size 2 is $\frac{1}{2}C_n^{(3)}$.
 - (c) What is the number of antichains of size 3 in the boolean lattice?