2. Practice sheet for the lecture:

Combinatorics (DS I)
16. April 2019

Due dates: 23.-25. April
http://www.math.tu-berlin.de/~felsner/Lehre/dsI19.html
(1) Let $n \in \mathbb{N}$ be odd. Count the number of grid paths from $(0,0)$ to (n, n) with 'up' and 'right' steps, which avoid all grid points (i, j), such that $i>\frac{n}{2}>j$. The figure shows a path for $n=5$.

(2) Let $x^{n}:=(x)_{n}$ denote the falling factorials and $x^{\bar{n}}:=x \cdot(x+1) \cdots(x+n-1)$ the raising factorials. Deduce the following equation from Vandermonde's identity:

$$
(x+y)^{\bar{n}}=\sum_{k=0}^{n}\binom{n}{k} x^{\bar{k}} y^{\overline{n-k}} \quad\left[\operatorname{Hint}:\binom{-x}{k}=(-1)^{k}\binom{x+k-1}{k}\right]
$$

(3) A permutation $\pi \in S_{n}$ is a transposition if exactly the position of two elements is switched, i.e. in cycle notation there are $n-2$ fixpoints and a cycle of length 2 .
a) Show that each permutation $\pi \in S_{n}$ is a composition of transpositions. We denote the minimum number of transpositions needed to express π by $t(\pi)$.
b) As in the lecture, $c(\pi)$ denotes the number of cycles of π. Show that

$$
t(\pi)+c(\pi)=n
$$

(4) Mutually orthogonal latin squares (MOLS)
(a) Invert the proof of the lecture: Construct $(n-1)$ MOLS from a projective plane of order n.
(b) Let \mathbb{F} be a field of n elements. For all $q \in \mathbb{F} \backslash\{0\}$, define $n \times n$ tables Q_{q} by $Q_{q}(x, y)=q x+y$. Show that the tables of this family are MOLS.
(5) (Colombia 2011) Ivan and Alexander write lists of integers. Ivan writes all the lists of length n with elements $a_{1}, a_{2}, \ldots, a_{n}$ such that $\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right| \leq k$. Alexander writes all the lists with length k with elements $b_{1}, b_{2}, \ldots, b_{k}$ such that $\left|b_{1}\right|+\left|b_{2}\right|+\cdots+\left|b_{k}\right| \leq n$. Prove that Alexander and Ivan wrote the same number of lists.
(6) Prove the proposition from the lecture: For every projective plane there is $n \in \mathbb{N}$ (called the order of the plane), such that

- Every point lies in exactly $n+1$ lines.
- Every line contains exactly $n+1$ points.
- There are exactly $n^{2}+n+1$ points and $n^{2}+n+1$ lines.

