2. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Schröder 16. April 2019

Due dates: 23.-25. April http://www.math.tu-berlin.de/~felsner/Lehre/dsI19.html

(1) Let $n \in \mathbb{N}$ be odd. Count the number of grid paths from (0,0) to (n,n) with 'up' and 'right' steps, which avoid all grid points (i, j), such that $i > \frac{n}{2} > j$. The figure shows a path for n = 5.

(2) Let $x^{\underline{n}} := (x)_n$ denote the falling factorials and $x^{\overline{n}} := x \cdot (x+1) \cdots (x+n-1)$ the raising factorials. Deduce the following equation from Vandermonde's identity:

$$(x+y)^{\overline{n}} = \sum_{k=0}^{n} \binom{n}{k} x^{\overline{k}} y^{\overline{n-k}} \quad \left[\text{Hint: } \binom{-x}{k} = (-1)^{k} \binom{x+k-1}{k} \right]$$

- (3) A permutation $\pi \in S_n$ is a transposition if exactly the position of two elements is switched, i.e. in cycle notation there are n-2 fixpoints and a cycle of length 2.
 - a) Show that each permutation $\pi \in S_n$ is a composition of transpositions. We denote the minimum number of transpositions needed to express π by $t(\pi)$.
 - b) As in the lecture, $c(\pi)$ denotes the number of cycles of π . Show that

$$t(\pi) + c(\pi) = n$$

- (4) Mutually orthogonal latin squares (MOLS)
 - (a) Invert the proof of the lecture: Construct (n-1) MOLS from a projective plane of order n.
 - (b) Let \mathbb{F} be a field of *n* elements. For all $q \in \mathbb{F} \setminus \{0\}$, define $n \times n$ tables Q_q by $Q_q(x, y) = qx + y$. Show that the tables of this family are MOLS.
- (5) (Colombia 2011) Ivan and Alexander write lists of integers. Ivan writes all the lists of length n with elements a_1, a_2, \ldots, a_n such that $|a_1| + |a_2| + \cdots + |a_n| \le k$. Alexander writes all the lists with length k with elements b_1, b_2, \ldots, b_k such that $|b_1| + |b_2| + \cdots + |b_k| \le n$. Prove that Alexander and Ivan wrote the same number of lists.
- (6) Prove the proposition from the lecture: For every projective plane there is $n \in \mathbb{N}$ (called the order of the plane), such that
 - Every point lies in exactly n + 1 lines.
 - Every line contains exactly n + 1 points.
 - There are exactly $n^2 + n + 1$ points and $n^2 + n + 1$ lines.