12. Practice sheet for the lecture:

Combinatorics (DS I)

Felsner/ Kleist
6. July 2015

Due dates: 14.-16. July
http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html
(1) Let $D=\left(\left\{v_{1}, \ldots, v_{n}, s, t\right\}, \vec{E}\right)$ be a directed graph. We are interested in the number of Hamilton paths from s to t. Develop a formula which can be evaluated in $o(n!)$. [Hint: Consider the walks of length $n+1$ from s to t and use Möbius inversion.]
(2) In the lecture we saw a lower bound on the number of perfect matchings of 3-regular bipartite multi-graphs with $2 n$ vertices. Show that this lower bound is essentially best-possible (with the following steps):
(a) Let \mathcal{G} be the set of all 3-regular multi-graphs, where vertices and edges are labelled. How many are there?
(b) Let M be a set of n labelled edges. Count the number of graphs $G \in \mathcal{G}$ which contain M as a perfect matching.
(c) Conclude that the bound is best-possible.
(3) Let F_{n} denote the nth Fibonacci number. Use Kasteleyn signatures to find matrices $M F(n)$ with

$$
\operatorname{det}(M N(n))=F_{n} .
$$

[Recall the model of 1-2-sums for the Fibonacci numbers.]

