12. Practice sheet for the lecture: Combinatorics (DS I)

Due dates: 14.-16. July http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html

- (1) Let $D = (\{v_1, \ldots, v_n, s, t\}, \vec{E})$ be a directed graph. We are interested in the number of Hamilton paths from s to t. Develop a formula which can be evaluated in o(n!). [Hint: Consider the walks of length n + 1 from s to t and use Möbius inversion.]
- (2) In the lecture we saw a lower bound on the number of perfect matchings of 3-regular bipartite multi-graphs with 2n vertices. Show that this lower bound is essentially best-possible (with the following steps):
 - (a) Let \mathcal{G} be the set of all 3-regular multi-graphs, where vertices and edges are labelled. How many are there?
 - (b) Let M be a set of n labelled edges. Count the number of graphs $G \in \mathcal{G}$ which contain M as a perfect matching.
 - (c) Conclude that the bound is best-possible.
- (3) Let F_n denote the *n*th Fibonacci number. Use Kasteleyn signatures to find matrices MF(n) with

$$\det(MN(n)) = F_n.$$

[Recall the model of 1-2-sums for the Fibonacci numbers.]