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(a) by Möbius inversion.

(b) directly.

(2) How many positive integers less than n ∈ N have no factor between 2 and 10? How
many are these if n = 1000?

(3) For a prime power q, consider the poset P of all subspaces of the n-dimensional
vector space Vn(q) over Fq with the subspace relation.

(a) Compute the Möbius function of P .

(b) Count the number of linear functions from Fn
q onto Fk

q .
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2) = 0 follows from ‘our’ q-binomial theorems.]

(4) Use Möbius inversion to show that for every positive integer n, it holds
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[Hint: Recall that
∑

d|n φ(d) = n.]

(5) Count the number of triples (p0, p1, p2), where pi are vertex-disjoint lattice paths of
length 6 from Ai = (i, 2− i) to Bi = (3 + i, 5− i).

(6) Apply the Lemma of Lindström-Gessel-Viennot in order to

(a) show that for two matrices A,B ∈ Kn×n: det(A ·B) = det(A) · det(B)

(b) re-prove the formula for the Vandermonde determinant.
[Hint: Find appropriate weights for the edges of the ’lattice’-graph indicated
below with its unique vertex disjoint paths system.]


