11. Practice sheet for the lecture:

Combinatorics (DS I)

Felsner/ Kleist
30. June 2015

Due dates: 07.-09. July
http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html
(1) Let $A_{1}, \ldots, A_{r} \subseteq[n]$. Prove the following inclusion-exclusion formula:

$$
\left|\bigcup_{i=1}^{r} A_{i}\right|=\sum_{I \subseteq[r], I \neq \emptyset}(-1)^{|I|-1}\left|\bigcap_{i \in I} A_{i}\right|
$$

(a) by Möbius inversion.
(b) directly.
(2) How many positive integers less than $n \in \mathbb{N}$ have no factor between 2 and 10? How many are these if $n=1000$?
(3) For a prime power q, consider the poset P of all subspaces of the n-dimensional vector space $V_{n}(q)$ over \mathbb{F}_{q} with the subspace relation.
(a) Compute the Möbius function of P.
(b) Count the number of linear functions from \mathbb{F}_{q}^{n} onto \mathbb{F}_{q}^{k}.
[Observe that $\sum_{i=0}^{k}\left[\begin{array}{c}k \\ i\end{array}\right](-1)^{i} q^{\binom{k}{2}}=0$ follows from 'our' q-binomial theorems.]
(4) Use Möbius inversion to show that for every positive integer n, it holds

$$
\frac{\phi(n)}{n}=\sum_{d \mid n} \frac{\mu(d)}{d}
$$

[Hint: Recall that $\left.\sum_{d \mid n} \phi(d)=n.\right]$
(5) Count the number of triples $\left(p_{0}, p_{1}, p_{2}\right)$, where p_{i} are vertex-disjoint lattice paths of length 6 from $A_{i}=(i, 2-i)$ to $B_{i}=(3+i, 5-i)$.
(6) Apply the Lemma of Lindström-Gessel-Viennot in order to
(a) show that for two matrices $A, B \in \mathbb{K}^{n \times n}: \operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$
(b) re-prove the formula for the Vandermonde determinant.
[Hint: Find appropriate weights for the edges of the 'lattice'-graph indicated below with its unique vertex disjoint paths system.]

