8. Practice sheet for the lecture:
 Combinatorics (DS I)
 09. June 2015

Due dates: 16.-18. June
http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html
(1)
(a) Prove that a graph G is bipartite if and only if there is no odd cycle in G. An odd cycle is a sequence of vertices and edges $v_{1} e_{1} v_{2} e_{2} \ldots e_{2 k} v_{n} e_{2 k+1}$, such that $e_{i}=\left(v_{i-1}, v_{i}\right)$ and $e_{2 k+1}=\left(v_{2 k+1}, v_{1}\right)$ with $e_{i} \in E$ and $v_{i} \in V$.
(b) Let G be a graph and M be a matching in G. Color all edges e of G blue if $e \in M$ and red otherwise. The vertex v is exposed if all adjacent edges are red, i.e., do not belong to the matching. A path between two vertices is alternating if the colors of its edges are alternating in red and blue.
Show that a matching is maximum if and only if for all pairs of exposed vertices v, w there is no alternating path.
(a) Show that biregular bipartite graphs $(X \cup Y, E)$ always allow for matchings of size $\min \{|X|,|Y|\}$. A biregular graph is a graph where the nodes in X, Y have degree d_{x} and d_{y}, respectively.
(b) Show that a regular (i.e. all vertices have the same degree) bipartite graph can be covered with perfect matchings, i.e. that the set of edges can be partitioned into perfect matchings. Give a lower bound for the number of covers with perfect matchings.
(3) Consider two magicians M_{1}, M_{2} in well separated rooms. A volunteer picks five cards from a standard deck (52 cards) and hands them to $M_{1} . M_{1}$ keeps one of the five cards and puts the other four (in specific order) in an envelope. The envelope is brought to M_{2} who opens it, has a look at the cards, mumbles, and announces the fifth card.
(a) Explain the existence of a strategy for this trick with the aid of Hall's Theorem.
(*) Find a playable strategy (which you can demonstrate with a colleague).
(4) Find an infinite counterexample to the Theorem of Hall, i.e. find a bipartite graph $G=(X, Y ; E)$ with the property that $|N(S)| \geq|S|$ for all $S \subset X$ such that there is no matching of size $|X|$.
(a) Let (P, \leq) be a poset, consisting of n disjoint chains of length $a_{1}, a_{2}, \ldots, a_{n}$. How many linear extensions does P have?
(b) Let (P, \leq) be a poset and $\max ((P, \leq)):=\{x \in P \mid x \leq y \Rightarrow y=x\}$ be the set of its maxima. Let $e((P, \leq))$ be the number of linear extensions of (P, \leq). Prove

$$
e((P, \leq))=\sum_{x \in \max (P)} e\left(\left(P \backslash\{x\}, \leq^{\prime}\right)\right),
$$

where \leq^{\prime} is the restriction of \leq to $P \backslash\{x\}$, i.e. $\leq^{\prime}:=\leq \cap(P \backslash\{x\}) \times(P \backslash\{x\}) \subseteq$ $P \times P$.
(6) Consider the poset P_{n} on the set $\left\{a_{1}, \ldots, a_{\left\lceil\frac{n}{2}\right\rceil}, b_{1}, \ldots, b_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ with the cover relations $a_{i}<a_{i+1}, b_{i}<b_{i+1}$, and $b_{i}>a_{i-1}$ as well as $a_{i}>b_{i-2}$ for all i. Count the linear extensions of P_{n}.

Figure 1: Hasse diagrams of P_{8}, P_{9} and P_{10}

