8. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Kleist 09. June 2015

Due dates: 16.-18. June http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html

- (1) (a) Prove that a graph G is bipartite if and only if there is no odd cycle in G. An odd cycle is a sequence of vertices and edges $v_1e_1v_2e_2\ldots e_{2k}v_ne_{2k+1}$, such that $e_i = (v_{i-1}, v_i)$ and $e_{2k+1} = (v_{2k+1}, v_1)$ with $e_i \in E$ and $v_i \in V$.
 - (b) Let G be a graph and M be a matching in G. Color all edges e of G blue if $e \in M$ and red otherwise. The vertex v is exposed if all adjacent edges are red, i.e., do not belong to the matching. A path between two vertices is alternating if the colors of its edges are alternating in red and blue. Show that a matching is maximum if and only if for all pairs of exposed vertices v, w there is no alternating path.
- (2) (a) Show that biregular bipartite graphs $(X \cup Y, E)$ always allow for matchings of size min $\{|X|, |Y|\}$. A *biregular graph* is a graph where the nodes in X, Y have degree d_x and d_y , respectively.
 - (b) Show that a regular (i.e. all vertices have the same degree) bipartite graph can be covered with perfect matchings, i.e. that the set of edges can be partitioned into perfect matchings. Give a lower bound for the number of covers with perfect matchings.
- (3) Consider two magicians M_1 , M_2 in well separated rooms. A volunteer picks five cards from a standard deck (52 cards) and hands them to M_1 . M_1 keeps one of the five cards and puts the other four (in specific order) in an envelope. The envelope is brought to M_2 who opens it, has a look at the cards, mumbles, and announces the fifth card.
 - (a) Explain the existence of a strategy for this trick with the aid of Hall's Theorem.
 - (*) Find a playable strategy (which you can demonstrate with a colleague).
- (4) Find an infinite counterexample to the Theorem of Hall, i.e. find a bipartite graph G = (X, Y; E) with the property that $|N(S)| \ge |S|$ for all $S \subset X$ such that there is no matching of size |X|.
- (5) (a) Let (P, \leq) be a poset, consisting of n disjoint chains of length a_1, a_2, \ldots, a_n . How many linear extensions does P have?
 - (b) Let (P, \leq) be a poset and $\max((P, \leq)) := \{x \in P \mid x \leq y \Rightarrow y = x\}$ be the set of its maxima. Let $e((P, \leq))$ be the number of linear extensions of (P, \leq) . Prove

$$e((P,\leq)) = \sum_{x \in \max(P)} e((P \setminus \{x\},\leq')),$$

where \leq' is the restriction of \leq to $P \setminus \{x\}$, i.e. $\leq' := \leq \cap (P \setminus \{x\}) \times (P \setminus \{x\}) \subseteq P \times P$.

(6) Consider the poset P_n on the set $\left\{a_1, \ldots, a_{\lceil \frac{n}{2} \rceil}, b_1, \ldots, b_{\lfloor \frac{n}{2} \rfloor}\right\}$ with the cover relations $a_i < a_{i+1}, b_i < b_{i+1}$, and $b_i > a_{i-1}$ as well as $a_i > b_{i-2}$ for all *i*. Count the linear extensions of P_n .

Figure 1: Hasse diagrams of P_8, P_9 and P_{10}