7. Practice sheet for the lecture:
 Combinatorics (DS I)
 Felsner/ Kleist
 01. June 2015

Due dates: 09.-11. June
http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html
(1) Please hand in your solution of this exercise in a written form. Let $k \in \mathbb{N}$ be fix. Prove by the colex-ordering of the k subsets, that for each $n \in \mathbb{N}$ there are unique $a_{k}>a_{k-1}>\ldots>a_{t} \geq t \geq 1$ with $a_{i} \in \mathbb{N}$, such that

$$
n=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\ldots+\binom{a_{t}}{t} .
$$

(2) Symmetric chain decompositions of \mathcal{B}_{n}
(a) Given a symmetric chain C in \mathcal{B}_{n}, is there a symmetric chain decomposition containing C ?
(b) Show that the number of chains of length $n-2 k$ in a symmetric chain decomposition of \mathcal{B}_{n} is $\binom{n}{k}-\binom{n}{k-1}$.
(3) Symmetric chain decompositions of \mathcal{B}_{n} and Catalan numbers
(a) Give a bijection between pairings of brackets of length $2 n$ and binary trees with n nodes.
(b) Use (2b) and (3a) to derive the known explicit formula for the Catalan numbers, i.e. $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
(4) Let \mathcal{B}_{n}^{\vee} be the truncation of the Boolean lattice where the maximal and minimal element is deleted. Let \mathcal{C} be a symmetric chain decomposition which is canonical (originating from the bracketing process). Let $\overline{\mathcal{C}}$ be its complement, i.e. for a chain $C \in \mathcal{C}$ the set \bar{C} of complements of sets in C is a set in $\overline{\mathcal{C}}$.
(a) Show that $\overline{\mathcal{C}}$ is a symmetric chain decomposition.
(b) Show that \mathcal{C} and $\overline{\mathcal{C}}$ are orthogonal, i.e. $|C \cap D| \leq 1$ for all $C \in \mathcal{C}$ and $D \in \overline{\mathcal{C}}$.
(5) The following is an incorrect proof of Dilworth's Theorem. Find the mistake:

Induction on $n:=|P| ; n=1$ is obvious. For the induction step $n \rightarrow(n+1)$ let us assume the theorem holds for posets of n elements. By the width of P, we mean the size of a maximum antichain. Let $m \in P$ be a maximum of P. Apply the hypothesis to $P \backslash\{m\}$ and gain a decomposition into chains C_{1}, \ldots, C_{w} of $P \backslash\{m\}$, with $w=\operatorname{width}(P \backslash\{m\})$. If $w<\operatorname{width}(P)$, then by adding $C_{w+1}=\{m\}$ as an additional chain, we gain a chain decomposition of P. If $w=\operatorname{width}(P)$, the set $\left\{\max \left(C_{i}\right) \mid i=1, \ldots, w\right\} \cup\{m\}$ cannot be an antichain. Therefore, $m \geq \max \left(C_{i}\right)$ for some $i=1, \ldots, w$. Now $C_{i} \cup\{m\}$ is a chain, so $C_{1}, \ldots C_{i-1}, C_{i} \cup\{m\}, C_{i+1}, \ldots C_{w}$ is a chain decomposition of P. Thus, in any case, we have a chain decomposition of P with width (P) chains.
(6) Let $P=(X, \leq)$ be a poset. We call a chain decomposition $\left\{C_{i}\right\}_{i}$ of P greedy chain decomposition (GCD) if it has the following property: C_{1} is a maximum chain in P, and for $i>1, C_{i}$ is a maximum chain in P_{i} where P_{i} is the subposet of P induced by $X-\bigcup_{j<i} C_{j}$. Quantify the (maximum) size of a greedy chain decomposition with respect to the size of a minimum chain partition.

