7. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Kleist 01. June 2015

Due dates: 09.-11. June http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html

(1) Please hand in your solution of this exercise in a written form. Let $k \in \mathbb{N}$ be fix. Prove by the colex-ordering of the k subsets, that for each $n \in \mathbb{N}$ there are unique $a_k > a_{k-1} > \ldots > a_t \ge t \ge 1$ with $a_i \in \mathbb{N}$, such that

$$n = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \ldots + \binom{a_t}{t}.$$

- (2) Symmetric chain decompositions of \mathcal{B}_n
 - (a) Given a symmetric chain C in \mathcal{B}_n , is there a symmetric chain decomposition containing C?
 - (b) Show that the number of chains of length n 2k in a symmetric chain decomposition of \mathcal{B}_n is $\binom{n}{k} \binom{n}{k-1}$.
- (3) Symmetric chain decompositions of \mathcal{B}_n and Catalan numbers
 - (a) Give a bijection between pairings of brackets of length 2n and binary trees with n nodes.
 - (b) Use (2b) and (3a) to derive the known explicit formula for the Catalan numbers, i.e. $C_n = \frac{1}{n+1} {\binom{2n}{n}}$.
- (4) Let \mathcal{B}_n^{\vee} be the truncation of the Boolean lattice where the maximal and minimal element is deleted. Let \mathcal{C} be a symmetric chain decomposition which is canonical (originating from the bracketing process). Let $\overline{\mathcal{C}}$ be its complement, i.e. for a chain $C \in \mathcal{C}$ the set \overline{C} of complements of sets in C is a set in $\overline{\mathcal{C}}$.
 - (a) Show that $\overline{\mathcal{C}}$ is a symmetric chain decomposition.
 - (b) Show that \mathcal{C} and $\overline{\mathcal{C}}$ are *orthogonal*, i.e. $|C \cap D| \leq 1$ for all $C \in \mathcal{C}$ and $D \in \overline{\mathcal{C}}$.
- (5) The following is an incorrect proof of Dilworth's Theorem. Find the mistake: Induction on n := |P|; n = 1 is obvious. For the induction step $n \to (n + 1)$ let us assume the theorem holds for posets of n elements. By the width of P, we mean the size of a maximum antichain. Let $m \in P$ be a maximum of P. Apply the hypothesis to $P \setminus \{m\}$ and gain a decomposition into chains C_1, \ldots, C_w of $P \setminus \{m\}$, with $w = \text{width}(P \setminus \{m\})$. If w < width(P), then by adding $C_{w+1} = \{m\}$ as an additional chain, we gain a chain decomposition of P. If w = width(P), the set $\{\max(C_i) \mid i = 1, \ldots, w\} \cup \{m\}$ cannot be an antichain. Therefore, $m \ge \max(C_i)$ for some $i = 1, \ldots, w$. Now $C_i \cup \{m\}$ is a chain, so $C_1, \ldots, C_{i-1}, C_i \cup \{m\}, C_{i+1}, \ldots, C_w$ is a chain decomposition of P. Thus, in any case, we have a chain decomposition of P with width(P) chains.
- (6) Let P = (X, ≤) be a poset. We call a chain decomposition {C_i}_i of P greedy chain decomposition (GCD) if it has the following property: C₁ is a maximum chain in P, and for i > 1, C_i is a maximum chain in P_i where P_i is the subposet of P induced by X − ⋃_{j<i}C_j. Quantify the (maximum) size of a greedy chain decomposition with respect to the size of a minimum chain partition.