6. Practice sheet for the lecture:

Combinatorics (DS I)

Felsner/ Kleist
19. May 2015

Due dates: 26.-28. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html
(1) Let $P:=(M, \leq)$ be a finite poset with n elements, i.e. $|M|=n$. For a given ordering of the elements $\left(m_{1}, \ldots, m_{n}\right)$, we can associate with P a relation matrix $\left(a_{i j}\right)=A \in\{0,1\}^{n \times n}$, such that $a_{i j}=1 \Leftrightarrow m_{i} \leq m_{j}$.
(a) Which conditions on $\left(m_{1}, \ldots, m_{n}\right)$ ensure, that A is an upper triangle matrix?
(b) Show that $\#\left\{(i, j) \mid a_{i j}=1\right\}=\binom{n+1}{2} \Leftrightarrow P$ is a total order.
(c) Let k be the size of P 's biggest chain. Show that A has the minimal polynomial $\mu_{A}(x)=(x-1)^{k}$.
(d) Find matrix properties for a $\{0,1\}$-matrix B, which imply that B represents a partial order relation?
(2) A poset $P=(X, \leq)$ is ranked if there exist a function $r: X \rightarrow \mathbb{N}$ such that for all $x \in X$, the rank $r(x)$ is the length of all maximal chains ending in x.
For $n \in \mathbb{N}$, the divisor-poset P_{n} is the set of all divisors of n ordered by divisibility:

$$
P_{n}:=\left\{\{x \in \mathbb{N}: x \mid n\},\left\{(x, y) \in \mathbb{N}^{2}: x \mid y \text { and } y \mid n\right\}\right\} .
$$

Prove that P_{n} is ranked. Sketch the Hasse-Diagramm of P_{60} and compute its ranks. Is P_{n} a lattice?
(3) Let \mathcal{F} be an up-set of \mathcal{B}_{n}. Show, that the average size of the sets in \mathcal{F} is at least $\frac{n}{2}$.
(4) q-analogues
(a) How many different maximal chains of nested subspaces of $V_{n}(q)$ exist?
(b) Show the q-analogue of the LYM inequality:

$$
\sum_{k=0}^{n} \frac{p_{k}(\mathcal{A})}{\left[\begin{array}{l}
n \\
k
\end{array}\right]} \leq 1
$$

(5) How many pairs (X, Y) of distinct subset of $[n]$ with $X \subset Y \subseteq[n]$ exist?
(a) Count the pairs.
(b) Give a generating function of the form $\frac{Q(z)}{P(z)}$ with polynomials P and Q.
(c) Prove the following equation bijectively:

$$
\sum_{k=0}^{n}\binom{n}{k}\left(2^{k}-1\right)=3^{n}-2^{n}
$$

(6) Show that every finite poset is isomorphic to the containment order on some family of sets.
(7) Let A, B be up-sets and C, D down-sets of the boolean lattice \mathcal{B}_{n}.
(a) Prove $|A| \cdot|B| \leq 2^{n} \cdot|A \cap B|$ (Hint: Induction on n).
(b) Prove $|C| \cdot|D| \leq 2^{n} \cdot|C \cap D|$ (Hint: Apply (a)).
(c) Prove $|A| \cdot|C| \geq 2^{n} \cdot|A \cap C|$ (Hint: Apply (a)).
(This is known as Kleitman's Lemma)

