6. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Kleist 19. May 2015

Due dates: 26.-28. May http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html

- (1) Let $P := (M, \leq)$ be a finite poset with *n* elements, i.e. |M| = n. For a given ordering of the elements (m_1, \ldots, m_n) , we can associate with *P* a relation matrix $(a_{ij}) = A \in \{0, 1\}^{n \times n}$, such that $a_{ij} = 1 \Leftrightarrow m_i \leq m_j$.
 - (a) Which conditions on (m_1, \ldots, m_n) ensure, that A is an upper triangle matrix?
 - (b) Show that $\#\{(i,j)|a_{ij}=1\} = \binom{n+1}{2} \Leftrightarrow P$ is a total order.
 - (c) Let k be the size of P's biggest chain. Show that A has the minimal polynomial $\mu_A(x) = (x-1)^k$.
 - (d) Find matrix properties for a $\{0, 1\}$ -matrix B, which imply that B represents a partial order relation?
- (2) A poset $P = (X, \leq)$ is ranked if there exist a function $r: X \to \mathbb{N}$ such that for all $x \in X$, the rank r(x) is the length of all maximal chains ending in x.

For $n \in \mathbb{N}$, the *divisor-poset* P_n is the set of all divisors of n ordered by divisibility:

 $P_n := \{ \{ x \in \mathbb{N} : x \mid n \}, \{ (x, y) \in \mathbb{N}^2 : x \mid y \text{ and } y \mid n \} \}.$

Prove that P_n is ranked. Sketch the Hasse–Diagramm of P_{60} and compute its ranks. Is P_n a lattice?

- (3) Let \mathcal{F} be an up-set of \mathcal{B}_n . Show, that the average size of the sets in \mathcal{F} is at least $\frac{n}{2}$.
- (4) q-analogues
 - (a) How many different maximal chains of nested subspaces of $V_n(q)$ exist?
 - (b) Show the q-analogue of the LYM inequality:

$$\sum_{k=0}^{n} \frac{p_k(\mathcal{A})}{\left[\begin{array}{c}n\\k\end{array}\right]} \le 1$$

- (5) How many pairs (X, Y) of distinct subset of [n] with $X \subset Y \subseteq [n]$ exist?
 - (a) Count the pairs.
 - (b) Give a generating function of the form $\frac{Q(z)}{P(z)}$ with polynomials P and Q.
 - (c) Prove the following equation bijectively:

$$\sum_{k=0}^{n} \binom{n}{k} (2^{k} - 1) = 3^{n} - 2^{n}$$

(6) Show that every finite poset is isomorphic to the containment order on some family of sets.

- (7) Let A, B be up-sets and C, D down-sets of the boolean lattice \mathcal{B}_n .
 - (a) Prove $|A| \cdot |B| \le 2^n \cdot |A \cap B|$ (Hint: Induction on n).
 - (b) Prove $|C| \cdot |D| \le 2^n \cdot |C \cap D|$ (Hint: Apply (a)).
 - (c) Prove $|A| \cdot |C| \ge 2^n \cdot |A \cap C|$ (Hint: Apply (a)).

(This is known as Kleitman's Lemma)