5. Practice sheet for the lecture:

Combinatorics (DS I)

Felsner/ Kleist
11. May 2015

Due dates: 19.-21. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html
(*) We will start with excercises (6)-(8) of sheet 4. They count for this sheet.
(1) The q-binomials fulfill the equation

$$
\sum_{i=0}^{n}\left[\begin{array}{c}
i \\
k
\end{array}\right] \cdot q^{(k+1)(n-i)}=\left[\begin{array}{l}
n+1 \\
k+1
\end{array}\right]
$$

for all $n \geq k \geq 0$. Prove this via the lattice path model for q-binomials. Can you give other proofs?
(2) Show that the q-binomials fulfill the equation

$$
\sum_{k \geq 0}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] z^{k}=\prod_{i=0}^{n} \frac{1}{1-q^{i} z}
$$

(3) Find and prove a q-analgue of the Vandermonde identity.
(4) The q-binomials fulfill the equation

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
k
\end{array}\right]=\left[\begin{array}{l}
n \\
k
\end{array}\right]\left[\begin{array}{c}
n-k \\
m-k
\end{array}\right]
$$

for all $n \geq m \geq k \geq 0$. Prove this via the model on \mathbb{F}_{q} subspaces for q-binomials. Can you give other proofs?
(5) A permutation $\pi \in S_{n}$ is alternating if $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\ldots$ holds. Let $\mathrm{Alt}_{n} \subseteq S_{n}$ be the set of alternating permutations. A permutation σ is reverse alternating if $\sigma_{1}>\sigma_{2}<\sigma_{3}>\sigma_{4}<\ldots$ holds. Let $\mathrm{RAlt}_{n} \subseteq S_{n}$ be the set of reverse alternating permutations.
(a) Prove \mid Alt $_{n}|=|$ RAlt $_{n} \mid$.
(b) Let $E_{n}:=\left|\operatorname{Alt}_{n}\right|$ and prove $2 E_{n+1}=\sum_{k=0}^{n}\binom{n}{k} E_{k} E_{n-k}$ for all $n \geq 1$.
[Hint: Apply (a)]
(c) Let $E_{n}(q):=\sum_{\pi \in \operatorname{RAlt}_{n}} q^{\operatorname{inv}(\pi)}$ and $E_{n}^{\star}(q):=\sum_{\pi \in \operatorname{Alt}_{n}} q^{\operatorname{inv}(\pi)}$. Prove

$$
E_{n}^{\star}(q)=q^{\binom{n}{2}} E_{n}\left(\frac{1}{q}\right) .
$$

(6) Let $F(n)$ be the number of walks in \mathbb{Z}^{2}, moving either one unit up, down, left or right, which start in $(0,0)$ and return to $(0,0)$ aftern n steps. Give a closed form for $F(n)$. There are many correct solutions; give a nice one!
(7) Suppose n persons are queued randomly such that each person is facing left or right. Every hour, all the persons who look into another persons face turn around by 180°. Is there a time when the process stops, i.e., there is no future movement? If so, how many hours does it take at most until the process stops?

