4. Practice sheet for the lecture:

Combinatorics (DS I)

Felsner/ Kleist
05. May 2015

Due dates: 12.-14. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html
(1) What can be said about the number of horizontally convex polynominoes of size n ? Consider Example 14.5 of Lint \& Wilson: A Course in Combinatorics, 2nd Edition, pp. 132. Prepare a 5 -minute presentation.
(2) Inform yourself about the so called Lagrange Inversion in the context of generating functions. Prepare a 5 -minute talk about your findings which also answers the following three questions:
(a) What is the Lagrange Inversion?
(b) State the idea of the proof.
(c) Why is this relevant? (Give examples.)
(3) Let a_{k} be the number of words of length k over the alphabet $\{u, l, r\}$ with no substring of the form $l r$ or $r l$. These words can be interpreted as grid paths of length k which go up, left and right, and do not intersect themselves.
(a) Find a linear recurrence for a_{k}.
(b) Give a generating function for a_{k}, computed from the linear recursion.
(c) Find a closed form for a_{k}.
(d) Let $A(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be the generating function for the words. Give a combinatorial proof for the equation

$$
A(z)=\left(1+2 \sum_{k=1}^{\infty} z^{k}\right) \cdot(z \cdot A(z)+1)
$$

and directly deduce a closed form for $A(z)$ without using (a).
(4) For fixed $s \in \mathbb{N}$, find a recursion for the sequence $\left(a_{n}(s)\right)_{n \geq 0}$ where

$$
a_{n}(s)=(1+\sqrt{s})^{n}+(1-\sqrt{s})^{n} .
$$

(5) Consider a tower of size $2 \times 2 \times n$ and bricks of size $2 \times 1 \times 1$. How many different tilings of the tower with bricks (and rotated copies) exist?
[Hint: Consider both, the number of tilings a_{k} of a tower of height k and the number of unfinished tilings b_{k}, where in the top level only 2 cubes (of the 4) are covered by standing bricks.]
(6) In how many ways can you pay n Dollar with $1 \$, 5 \$$ and $10 \$$ notes? Find a generating function and compute the number of ways to pay 50 Dollar.
(7) Catalan numbers
(a) Complete the proof of the lecture for the Catalan numbers, i.e. simplify

$$
c_{n}=\frac{1}{2}(-1)\binom{\frac{1}{2}}{n+1}(-4)^{n+1} .
$$

(b) Use Lagrange Inversion in order to derive the Catalan numbers.
(8) Let $F(z):=\sum \frac{B(n)}{n!} z^{n}$ be the exponential generating function of the Bell numbers $B(n)$. Show that there exist a function $f(x)$ such that

$$
F^{\prime}(x)=f(x) F(x) .
$$

Solve the differential equation and deduce a closed formula for $F(x)$.

