3. Practice sheet for the lecture:

Combinatorics (DS I)
Felsner/ Kleist

Due dates: 05.-07. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html
(1) The Stirling numbers of first kind $s(n, k)$ count the number of permutations in S_{n} consisting of k disjoint cycles.
(a) Compute all values of $s(n, k)$ for $n \leq 4$ and give a (bijective) proof of the recurrence

$$
s(n, k)=(n-1) s(n-1, k)+s(n-1, k-1) .
$$

(b) Let $x^{\underline{n}}$ and $x^{\bar{n}}$ denote the falling and raising factorials. Prove the identities:

$$
\begin{gathered}
x^{\bar{n}}=\sum_{k=0}^{n} s(n, k) x^{k} \\
x^{\underline{n}}=\sum_{k=0}^{n}(-1)^{n-k} s(n, k) x^{k}
\end{gathered}
$$

(Hint: Prove the first one inductively and deduce the second from the first).
(a) Show the following identity by a combinatorial argument:

$$
S(n+1, k+1)=\sum_{i}\binom{n}{i} S(i, k)
$$

(b) The Bell numbers are defined by $B(n):=\sum_{k} S(n, k)$. What do they count? Derive a recurrence for them from the identity given in (a) and interpret it combinatorially.
(c) Give a combinatorical argument, which proves that the number of partitions of $[n]$, such that no two consecutive numbers appear in the same block, is $B(n-1)$.
(a) How many subsets of the set [n] contain at least one odd integer?
(b) For a given $k \in[n]$, how many sequences $\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ are there with

$$
\emptyset \subset T_{1} \subset T_{2} \subset \ldots \subset T_{k} \subseteq[n] ?
$$

(4) Please hand in your solution of this excercise in a written form:

In the parliament of some country there are $2 n+1$ seats filled by 3 parties. How many possible distributions (i, j, k), (i.e. party 1 has i, party 2 has j, and party 3 has k seats) are there, such that no party has an absolute majority? Give a nice combinatorial proof.
(Hint: Look at small numbers and make a good guess.)
(5) Number Partitions
(a) Prove that the number of partitions of n into at most k parts equals the number of partitions of $n+k$ into exactly k parts.
(b) The Durfee square of a partition P is the largest square fitting in the bottom left corner of P 's Ferrers shape. Show that the number of partitions of n into exactly k different odd parts equals the number of self-conjugate partitions of n where the side length of the Durfee square is k.
(6) A composition of n is an ordered set of numbers $\left(a_{1}, \ldots, a_{k}\right)$ with $a_{i} \in \mathbb{N}$ and $0<a_{i} \leq n$ such that $a_{1}+\cdots+a_{k}=n$. For example, $n=4$ has the compositions: $1+1+1+1,1+1+2,1+2+1,2+1+1,2+2,3+1,1+3,4$.
(a) Prove that n has $\binom{n-1}{k-1}$ compositions into exactly k parts/numbers.
(b) Let $c(n)$ be the number of compositions of n into an even number of even parts. For $n=8$, these compositions are: $2+2+2+2,4+4,6+2,2+6$. Give a closed formula for $c(n)$.
(7) Please hand in your solution of this excercise in a written form:

In the lecture we saw a proof of Binet's formula based on generating functions. An alternative approach comes from linear algebra:

$$
\binom{F_{n+1}}{F_{n}}=A\binom{F_{n}}{F_{n-1}} \Longrightarrow\binom{F_{n+1}}{F_{n}}=A^{n}\binom{1}{0} \text { where } A:=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Derive Binet's Formula by diagonalizing the matrix A.

