1. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Kleist 13. April 15

Delivery date: 21. April http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html

- (1) How many different words occur as permutation of the letters of ABRAKADABRA?
- (2) The squares of a 4×7 chessboard are colored arbitrarily black and white (i.e. there are different $2^{4\cdot7}$ colorings). Show that there is an $i \times j$ rectangle with $i \ge 2$ and $j \ge 2$ such that all of its corners have the same color. Is the same true for a 4×6 chessboard?
- (3) A sequence of numbers a_1, a_2, \ldots, a_n is called *unimodal*, if there exists an $m \in [n]$, such that $a_i \leq a_{i+1}$ for all i < m and $a_i \geq a_{i+1}$ for all $i \geq m$. Give three different proofs of the unimodality of the sequence $\binom{n}{1}, \binom{n}{2}, \binom{n}{3}, \ldots, \binom{n}{n}$ for all $n \in \mathbb{N}$, based on the three given hints:
 - (a) Use the definition

$$\binom{n}{k} := \frac{n!}{k! \cdot (n-k)!}$$

(b) Consider the recursive definition

$$\binom{n}{k} := \binom{n-1}{k-1} + \binom{n-1}{k} \text{ and } \binom{n}{0} = \binom{n}{n} = 1,$$

based on Pascale's triangle.

- (c) Use the bijection between $\binom{n}{k}$ and the number of subsets of [n], having k elements.
- (4) Permutations
 - (a) Give an alternative proof for the generating function of derangements (6)

$$D(z) := \sum \frac{d(n)}{n!} z^n = \frac{e^{-z}}{1-z}$$

by manipulating $D(z)e^{z}$ and using identity (2a) from the lecture.

(b) Prove of the following identity:

$$d(n) = n \cdot d(n-1) + (-1)^n$$

- (c) How many permutations in S_n are derangements and involutions? (Let X be a set. A function $f: X \to X$ is an *involution* if $f(f(x)) = x \forall x \in X$.)
- (d) What is the expected number of fixed points of a uniform random permutation?
- (5) Mutually orthogonal latin squares (MOLS)
 - (a) Complete the proof of the lecture: Construct (n-1) MOLS from a projective plane of order n.
 - (b) Let \mathbb{F} be a field of *n* elements. For all $q \in \mathbb{F} \setminus \{0\}$, define $n \times n$ tables Q_q by $Q_q(x, y) = qx + y$. Show that the tables of this family are MOLS.