1. Practice sheet for the lecture:

Combinatorics (DS I)

Felsner/ Kleist
13. April 15

Delivery date: 21. April
http://www.math.tu-berlin.de/~felsner/Lehre/dsI15.html
(1) How many different words occur as permutation of the letters of ABRAKADABRA?
(2) The squares of a 4×7 chessboard are colored arbitrarily black and white (i.e. there are different $2^{4 \cdot 7}$ colorings). Show that there is an $i \times j$ rectangle with $i \geq 2$ and $j \geq 2$ such that all of its corners have the same color. Is the same true for a 4×6 chessboard?
(3) A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$ is called unimodal, if there exists an $m \in[n]$, such that $a_{i} \leq a_{i+1}$ for all $i<m$ and $a_{i} \geq a_{i+1}$ for all $i \geq m$. Give three different proofs of the unimodality of the sequence $\binom{n}{1},\binom{n}{2},\binom{n}{3}, \ldots,\binom{n}{n}$ for all $n \in \mathbb{N}$, based on the three given hints:
(a) Use the definition

$$
\binom{n}{k}:=\frac{n!}{k!\cdot(n-k)!} .
$$

(b) Consider the recursive definition

$$
\binom{n}{k}:=\binom{n-1}{k-1}+\binom{n-1}{k} \text { and }\binom{n}{0}=\binom{n}{n}=1,
$$

based on Pascale's triangle.
(c) Use the bijection between $\binom{n}{k}$ and the number of subsets of [n], having k elements.
(4) Permutations
(a) Give an alternative proof for the generating function of derangements (6)

$$
D(z):=\sum \frac{d(n)}{n!} z^{n}=\frac{e^{-z}}{1-z}
$$

by manipulating $D(z) e^{z}$ and using identity (2a) from the lecture.
(b) Prove of the following identity:

$$
d(n)=n \cdot d(n-1)+(-1)^{n}
$$

(c) How many permutations in S_{n} are derangements and involutions?
(Let X be a set. A function $f: X \rightarrow X$ is an involution if $f(f(x))=x \forall x \in X$.)
(d) What is the expected number of fixed points of a uniform random permutation?
(5) Mutually orthogonal latin squares (MOLS)
(a) Complete the proof of the lecture: Construct $(n-1)$ MOLS from a projective plane of order n.
(b) Let \mathbb{F} be a field of n elements. For all $q \in \mathbb{F} \backslash\{0\}$, define $n \times n$ tables Q_{q} by $Q_{q}(x, y)=q x+y$. Show that the tables of this family are MOLS.

