8. Practice sheet for the lecture:

Felsner/ Kleist, Hoffmann
Combinatorics (DS I)
28. May '13

Delivery date: 4. - 5. June
http://www.math.tu-berlin.de/~felsner/Lehre/dsI13.html
(1)
(a) Given a symmetric chain C in \mathcal{B}_{n}, is there a symmetric chain decomposition containing C ?
(b) Show that the number of chains of length $n-2 k$ in a symmetric chain decomposition of \mathcal{B}_{n} is $\binom{n}{k}-\binom{n}{k-1}$.
(a) Give a bijection between pairings of brackets of length $2 n$ and binary trees with n nodes.
(b) Use (1b) and (2a) to derive the Catalan numbers.
(3) Consider the following two orders on the set of permuations S_{n} : Let $\pi_{1}, \pi_{2} \in S_{n}$

- $\pi_{1} \prec \pi_{2}$ if π_{2} can be obtained by a transposition of two elements at adjacent positions $i, i+1$ with $\pi_{1}(i)<\pi_{1}(i+1)$. This is known as weak Bruhat order.
- $\pi_{1} \leq \pi_{2}$ if π_{2} can be obtained from π_{1} by the transposition of two elements at positions i, j with $i<j$ and $\pi_{1}(i)<\pi_{1}(j)$. The transitive closure of these relations is known as the strong Bruhat order.
(a) Are they ranked?
(*) Do they have symmetric chain decompositions?
(4) Let \mathcal{B}_{n}^{\vee} be the truncation of the Boolean lattice where the maximal and minimal element is deleted. Let \mathcal{C} be a symmetric chain decomposition which is canonical (originating from the bracketing process). Let $\overline{\mathcal{C}}$ be its complement, i.e. with a chain $C \in \mathcal{C}$ the set \bar{C} of complements of sets in C is a set in $\overline{\mathcal{C}}$. Show that $\overline{\mathcal{C}}$ is a symmetric chain decomposition. Show that \mathcal{C} and $\overline{\mathcal{C}}$ are orthogonal, i.e. $|C \cap D| \leq 1$ for all $C \in \mathcal{C}$ and $D \in \overline{\mathcal{C}}$.
(5) Let P be a finite poset with height $(P)=m$, where the height of a poset is the number of elements in a longest chain. Show that P can be partitioned into m antichains. (This is known as Anti-Dilworth theorem.)
(6) The following is an incorrect proof of Dilworth's Theorem. Find the mistake:

Induction on $n:=|P| ; n=1$ is obvious. For the induction step $n \rightarrow(n+1)$ let us assume the theorem holds for posets of n elements. Let $m \in P$ be a maxima of P. Apply the hypothesis to $P \backslash\{m\}$ and gain a decomposition into chains C_{1}, \ldots, C_{w} of $P \backslash\{m\}$, with $w=\operatorname{width}(P \backslash\{m\})$. If $w<\operatorname{width}(P)$ then add $C_{w+1}=\{m\}$ as additional chain and we have a chain decomposition of P. If $w=\operatorname{width}(P)$ the set $\left\{\max \left(C_{i}\right) \mid i=1, \ldots, w\right\} \cup\{m\}$ can not be an antichain. Therefore $m \geq \max \left(C_{i}\right)$ for some $i=1, \ldots, w$. Now $C_{i} \cup\{m\}$ is a chain, so $C_{1}, \ldots C_{i-1}, C_{i} \cup\{m\}, C_{i+1}, \ldots C_{w}$ is a chain decomposition of P. Thus in any case we have a chain decomposition of P with width (P) chains.

