8. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 4. - 5. June http://www.math.tu-berlin.de/~felsner/Lehre/dsI13.html

(1)

- (a) Given a symmetric chain C in \mathcal{B}_n , is there a symmetric chain decomposition containing C?
- (b) Show that the number of chains of length n 2k in a symmetric chain decomposition of \mathcal{B}_n is $\binom{n}{k} \binom{n}{k-1}$.

(2)

- (a) Give a bijection between pairings of brackets of length 2n and binary trees with n nodes.
- (b) Use (1b) and (2a) to derive the Catalan numbers.
- (3) Consider the following two orders on the set of permutaions S_n : Let $\pi_1, \pi_2 \in S_n$

- $\pi_1 \prec \pi_2$ if π_2 can be obtained by a transposition of two elements at adjacent positions i, i + 1 with $\pi_1(i) < \pi_1(i+1)$. This is known as weak Bruhat order.

- $\pi_1 \leq \pi_2$ if π_2 can be obtained from π_1 by the transposition of two elements at positions i, j with i < j and $\pi_1(i) < \pi_1(j)$. The transitive closure of these relations is known as the strong Bruhat order.

- (a) Are they ranked?
- (*) Do they have symmetric chain decompositions?
- (4) Let \mathcal{B}_n^{\vee} be the truncation of the Boolean lattice where the maximal and minimal element is deleted. Let \mathcal{C} be a symmetric chain decomposition which is canonical (originating from the bracketing process). Let $\overline{\mathcal{C}}$ be its complement, i.e. with a chain $C \in \mathcal{C}$ the set \overline{C} of complements of sets in C is a set in $\overline{\mathcal{C}}$. Show that $\overline{\mathcal{C}}$ is a symmetric chain decomposition. Show that \mathcal{C} and $\overline{\mathcal{C}}$ are *orthogonal*, i.e. $|C \cap D| \leq 1$ for all $C \in \mathcal{C}$ and $D \in \overline{\mathcal{C}}$.
- (5) Let P be a finite poset with height(P) = m, where the *height* of a poset is the number of elements in a longest chain. Show that P can be partitioned into m antichains. (This is known as Anti-Dilworth theorem.)
- (6) The following is an incorrect proof of Dilworth's Theorem. Find the mistake: Induction on n := |P|; n = 1 is obvious. For the induction step $n \to (n + 1)$ let us assume the theorem holds for posets of n elements. Let $m \in P$ be a maxima of P. Apply the hypothesis to $P \setminus \{m\}$ and gain a decomposition into chains C_1, \ldots, C_w of $P \setminus \{m\}$, with $w = \text{width}(P \setminus \{m\})$. If w < width(P) then add $C_{w+1} = \{m\}$ as additional chain and we have a chain decomposition of P. If w = width(P) the set $\{\max(C_i) \mid i = 1, \ldots, w\} \cup \{m\}$ can not be an antichain. Therefore $m \ge \max(C_i)$ for some $i = 1, \ldots, w$. Now $C_i \cup \{m\}$ is a chain, so $C_1, \ldots, C_{i-1}, C_i \cup \{m\}, C_{i+1}, \ldots, C_w$ is a chain decomposition of P. Thus in any case we have a chain decomposition of P with width(P) chains.