6. Practice sheet for the lecture:

Delivery date: 21. - 22. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI13.html
(1) The $q$-binomials fulfill the equation

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
k
\end{array}\right]=\left[\begin{array}{l}
n \\
k
\end{array}\right]\left[\begin{array}{c}
n-k \\
m-k
\end{array}\right]
$$

for all $n \geq m \geq k \geq 0$. Prove this via the model on $\mathbb{F}_{q}$ subspaces for $q$-binomials. Can you give other proofs?
(2) How many different chains of length $n$ of nested subspaces of $V_{n}(q)$ exist?
(3) Show the $q$-analogue of the LYM inequality:

$$
\sum_{k=0}^{n} \frac{p_{k}(\mathcal{A})}{\left[\begin{array}{l}
n \\
k
\end{array}\right]} \leq 1
$$

(4) How many pairs $(X, Y)$ of distinct subset of $[n]$ with $X \subset Y \subseteq[n]$ exist?
(a) Count the pairs.
(b) Give a generating function of the form $\frac{Q(z)}{P(z)}$ with polynomials $P$ and $Q$.
(c) Prove the following equation bijectively:

$$
\sum_{k=0}^{n}\binom{n}{k}\left(2^{k}-1\right)=3^{n}-2^{n}
$$

(5) Show that every finite poset is isomorphic to the containment order on some family of sets.
(6) Let $\mathcal{B} \subseteq\binom{[n]}{k}$.
(a) Show the lemmata from the lecture:

$$
\begin{gathered}
|\nabla \mathcal{B}| \geq \frac{n-k}{k+1}|\mathcal{B}| \quad \text { for } k<n \text { and } \\
|\triangle \mathcal{B}| \geq \frac{k}{n-k+1}|\mathcal{B}| \quad \text { for } k>0
\end{gathered}
$$

(b) Show Sperner's theorem using (a). Especially notice that $|\mathcal{B}|<|\nabla \mathcal{B}|$ for $k<\frac{n-1}{2}$.

