2. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Hoffmann

16. April

Delivery date: 24. April
http://www.math.tu-berlin.de/~felsner/Lehre/dsI13.html
(1) Let $n \in \mathbb{N}$ be odd. Count the number of lattice paths from $(0,0)$ to (n, n), moving only up and right, which avoid all lattice points (i, j), such that $i>$ $\frac{n}{2}>j$ (the figure below shows one of these paths for $n=5$).

(2) Please hand your solution of this exercise in a written form in:
(a) Let $x^{\underline{n}}:=(x)_{n}$ denote the falling factorials and $x^{\bar{n}}:=x \cdot(x+1) \cdots(x+$ $n-1$) the raising factorials. Deduce the following equation from Vandermonde's identity:

$$
(x+y)^{\bar{n}}=\sum_{k=0}^{n}\binom{n}{k} x^{\bar{k}} y^{\overline{n-k}} \quad\left(\operatorname{Hint}:(-x)^{\bar{n}}=(-1)^{n} x^{\underline{n}}\right)
$$

(b) The Stirling numbers of first kind $s(n, k)$ count the number of permutations in S_{n} consisting of k disjoint cycles. Compute all values of $s(n, k)$ for $n \leq 4$ and give a (bijective) proof of the equation $s(n, k)=$ $(n-1) s(n-1, k)+s(n-1, k-1)$.
(c) Prove the identities $x^{\bar{n}}=\sum_{k=0}^{n} s(n, k) x^{k}$ and $x^{\underline{n}}=\sum_{k=0}^{n}(-1)^{n-k} s(n, k) x^{k}$ (Hint: prove the first one inductively and deduce the second from the first).
(3) Let $\left.\binom{n}{k}\right)_{g}$ be the number of multisets with k elements (counted with multiplicity) of an n-element ground set, where each element occurs less than g times. (Hint: Think about a characteristic vector model for multisets.)
(a) Show the Vandermonde identity:

$$
\left(\binom{m+n}{k}\right)_{g}=\sum\left(\binom{m}{l}\right)_{g}\left(\binom{n}{k-l}\right)_{g}
$$

(b) Show that

$$
\left(1+x+\cdots+x^{g-1}\right)^{n}=\sum_{k=0}^{(g-1) n}\left(\binom{n}{k}\right)_{g} x^{k}
$$

(4) Consider for $f: \mathbb{N} \rightarrow \mathbb{C}$ the operators

- $\Delta f(x)=f(x+1)-f(x)$ (Difference)
- $E^{\alpha} f(x)=f(x+\alpha)$ (Translation)
- $I f(x)=f(x)$ (Identity)

The sequence f is an antiderivative of g if $\Delta f=g$. Show that:
(a) $\Delta^{n} f(x)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} E^{k} f(x)$. (Hint: $\left.\Delta=E-I\right)$
(b) $\quad \sum_{k=a}^{b} g(k)=f(b+1)-f(a)$ if f is the antiderivative of g.
(c) $\sum_{k=0}^{m-1}(k)_{n}=\frac{(m)_{n+1}}{n+1}$. (Hint: Use (b))

