12. Practice sheet for the lecture:

Delivery date: 02. - 03 . July
http://www.math.tu-berlin.de/~felsner/Lehre/dsI13.html
(1) Let $v_{1}, v_{2} \in \mathbb{N}$. Show that if a $\operatorname{STS}\left(v_{1}\right)$ and a $\operatorname{STS}\left(v_{2}\right)$ exist, then there exists a $\operatorname{STS}\left(v_{1} \cdot v_{2}\right)$.
(2) Construct a $S_{3}(3,5,21)$. Take the edges as of the K_{7} as the vertex set and define the blocks appropriately.
(3) Prove the following equation:

$$
\sum_{i=0}^{k}\binom{k}{i} D_{n-i}=\sum_{j=0}^{n-k}(-1)^{j}\binom{n-k}{j}(n-j)!
$$

(4) How many positive integers less than $n \in \mathbb{N}$ have no factor between 2 and 10 ? How many are these if $n=1000$?
(5) Let $P=(\mathbb{N}, \leq)$ be the divisor poset of all natural numbers, i.e. $a \leq b$ if and only if $a \mid b$. Let μ be the Möbius function of P and $r, s \in \mathbb{N}$. Compute $\mu(r, s)$.
You can conclude that for $\frac{r}{s}=a \in \mathbb{N}$ you can define $\mu(a):=\mu(r, s)$ which is the Möbius function from number theory.
(6) Count the number of triples $\left(p_{0}, p_{1}, p_{2}\right)$, where p_{i} are vertex-disjoint lattice paths of length 6 from $A_{i}=(i, 2-i)$ to $B_{i}=(3+i, 5-i)$.

