11. Practice sheet for the lecture:

Combinatorics (DS I)
18. June '13

Delivery date: 25. - 26 . June
http://www.math.tu-berlin.de/~felsner/Lehre/dsI13.html
(1) For which of the parameter sets does a design exist? Either show that there is no design or present one. (This exercise gives 2 points.)
(a) $\quad S_{2}(4,7,13)$
(b) $S(2,7,36)$
(c) $S(2,4,13)$
(d) $S(2,6,16)$
(e) $S(2,5,125)$
(f) $\quad S(1,4,124)$
(2) Let (V, \mathcal{B}) be a $S_{\lambda}(t, k, v)$ design. Let $p \in V$ and $\mathcal{B}^{p}:=\{B: p \notin B \in \mathcal{B}\}$ be the set of blocks, which do not contain p. Show that $\left(V \backslash\{p\}, \mathcal{B}^{p}\right)$ is a design. What are its parameters?
(3) Let $(V, \mathcal{B})=S\left(2, n+1, n^{2}+n+1\right)$ be a projective plane and fix $B \in \mathcal{B}$. Show that $(V \backslash B,\{C \backslash B \mid C \in(\mathcal{B} \backslash\{B\})\})$ is a $S\left(2, n, n^{2}\right)$ design.
(4) Let (V, \mathcal{B}) be a design, $I, J \subseteq V$ with $I \cap J=\emptyset$ and $|I|=i,|J|=j$ such that $i+j \leq t$. Let $\lambda_{I, J}=\#\{B \in \mathcal{B} \mid I \subseteq B$ and $J \cap B=\emptyset\}$.
(a) Show that $\lambda_{I, J}$ does only depend on i and j and not on I and J, i.e. $\lambda_{i, j}:=\lambda_{I, J}$ is well defined.
(b) Compute all $\lambda_{i j}$ for the $S_{6}(3,5,10)$ design from the lecture.
(c) Prove $\lambda_{i, j}=\lambda_{i+1, j}+\lambda_{i, j+1}$ for $i+j<t$.
(d) Prove $\lambda_{i, j}=\sum_{r=0}^{j}(-1)^{r}\binom{j}{r} \lambda_{i+r, 0}$.
(5) Prove Fisher's inequality, which states that every $S_{\lambda}(t, k, v)$ design (V, \mathcal{B}) with $t \geq 2$ and $k<v$ fulfills $|V| \leq|\mathcal{B}|$ (Hint: Use the adjacency matrix $A \in \mathbb{R}^{|V| \times|B|}$ with $a_{v, B}=1$ if $v \in B$ and $a_{v, B}=0$ otherwise and consider the rank of $\left.A \cdot A^{T}\right)$.

