11. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Kleist, Hoffmann 18. June '13

Delivery date: 25. - 26 . June http://www.math.tu-berlin.de/~felsner/Lehre/dsI13.html

- (1) For which of the parameter sets does a design exist? Either show that there is no design or present one. (This exercise gives 2 points.)
 - (a) $S_2(4,7,13)$
 - (b) S(2,7,36)
 - (c) S(2, 4, 13)
 - (d) S(2, 6, 16)
 - (e) S(2, 5, 125)
 - (f) S(1, 4, 124)
- (2) Let (V, \mathcal{B}) be a $S_{\lambda}(t, k, v)$ design. Let $p \in V$ and $\mathcal{B}^p := \{B : p \notin B \in \mathcal{B}\}$ be the set of blocks, which do not contain p. Show that $(V \setminus \{p\}, \mathcal{B}^p)$ is a design. What are its parameters?
- (3) Let $(V, \mathcal{B}) = S(2, n+1, n^2 + n + 1)$ be a projective plane and fix $B \in \mathcal{B}$. Show that $(V \setminus B, \{C \setminus B \mid C \in (\mathcal{B} \setminus \{B\})\})$ is a $S(2, n, n^2)$ design.
- (4) Let (V, \mathcal{B}) be a design, $I, J \subseteq V$ with $I \cap J = \emptyset$ and |I| = i, |J| = j such that $i+j \leq t$. Let $\lambda_{I,J} = \#\{B \in \mathcal{B} \mid I \subseteq B \text{ and } J \cap B = \emptyset\}.$
 - (a) Show that $\lambda_{I,J}$ does only depend on *i* and *j* and not on *I* and *J*, i.e. $\lambda_{i,j} := \lambda_{I,J}$ is well defined.
 - (b) Compute all λ_{ij} for the $S_6(3, 5, 10)$ design from the lecture.
 - (c) Prove $\lambda_{i,j} = \lambda_{i+1,j} + \lambda_{i,j+1}$ for i + j < t.
 - (d) Prove $\lambda_{i,j} = \sum_{r=0}^{j} (-1)^r {j \choose r} \lambda_{i+r,0}$.
- (5) Prove Fisher's inequality, which states that every $S_{\lambda}(t, k, v)$ design (V, \mathcal{B}) with $t \geq 2$ and k < v fulfills $|V| \leq |\mathcal{B}|$ (Hint: Use the adjacency matrix $A \in \mathbb{R}^{|V| \times |\mathcal{B}|}$ with $a_{v,B} = 1$ if $v \in B$ and $a_{v,B} = 0$ otherwise and consider the rank of $A \cdot A^T$).