9. Practice sheet for the lecture:
Combinatorics (DS I)
Felsner/Heldt, Knauer
7. June

Delivery date: 13. -17. June
http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html
(1) Please hand in your solution of this exercise: How many necklaces of length 12 with beads of 3 colors are there? Count them modulo all symmetries, i.e. rotations and flipping the necklace over.
(2) What is the Cayley graph of a group? Do some literature research to learn about this graph.
(a) Prove that every group (G, \circ) with an even number of elements contains at least one element $g \neq i d$ of order 2, i.e. $g \circ g=i d$.
(b) Let $p \in \mathbb{N}$ be a prime number and G a group with p elements. Prove that G is a cyclic group, i.e. there is an element $a \in G$ such that all elements of G are of the form a^{k} for some $k \in \mathbb{N}$.
(4) Count the number of functions $f:\{0,1\}^{3} \rightarrow\{0,1\}$ modulo permutations of the variables, i.e. g is equivalent to f if there is $\pi \in S_{3}$ such that $g\left(x_{1}, x_{2}, x_{3}\right)=f\left(\pi\left(x_{1}, x_{2}, x_{3}\right)\right)$.
(5) A graph $G=(V, E)$ is isomorphic to a graph $H=\left(V^{\prime}, E^{\prime}\right)$, if a re-labeling of the vertices of G equals H, i.e. if there is a bijection $\Phi: V \rightarrow V^{\prime}$ such that the mapping $\Psi((v, w)):=$ $(\Phi(v), \Phi(w))$ is a bijection from E to E^{\prime}. Furthermore, loops are edges, starting and ending in the same vertex.
(a) Count the number of non-isomorphic graphs (without loops) with four vertices.
(b) Count the number of non-isomorphic graphs with four vertices and when loops are allowed.

