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(1) Please hand in your solution of this exercise: Take a standard deck of 52 playing cards. Split
them into 13 piles Si, each containing 4 cards. Show that for any such splitting you can
choose one card ai ∈ Si from each set, such that the set {a1, . . . , a13} contains one card of
each of the ranks {2, 3, 4, . . . , 10, jack, queen, king, ace}.

(2)

(a) A graph G = (V,E) is bipartite iff V can be partitioned into X and Y , such that all
edges have one endpoint in X and one in Y . Prove that G is bipartite iff there is no odd
cycle in G. An odd cycle is a sequence of vertices and edges v1e1v2e2 . . . e2kvne2k+1,
such that ei = (vi−1, vi) and e2k+1 = (v2k+1, v1) with ei ∈ E and vi ∈ V .

(b) Show that every regular, bipartite graph has a perfect matching. A bipartite graph
is called regular if every vertex has degree d and a matching is a perfect matching if
every vertex is incident to a matching edge. Does every bipartite graph have a perfect
matching? Give a lower bound for the number of perfect matchings of a regular bipartite
graph.

(c) Show that a regular bipartite graph can be covered with perfect matchings, i.e. that
the set of edges can be partitioned into perfect matchings. Give a lower bound for the
number of covers with perfect matchings.

(3) Let G be a graph and M be a matching of G. Color all edges e of G blue if e ∈ M and
red otherwise. The vertex v is exposed if all adjacent edges are red (i.e. do not belong to
the matching). Furthermore a path between two vertices is alternating colored, if the path’s
edges are alternating red and blue. Show, that a matching is maximum (i.e. there is no
matching, containing more edges) if and only if for all pairs of exposed vertices v, w there is
no alternating path.

(4) The following is an incorrect proof of Dilworth’s Theorem. Find the mistake:
Induction on n := |P |; n = 1 is obvious. For the induction step n → (n + 1) let us assume
the theorem holds for posets of n elements. Let m ∈ P be a maxima of P . Apply the
hypothesis to P \ {m} and gain a decomposition into chains C1, . . . , Cw of P \ {m}, with
w = width(P \ {m}). If w < width(P ) then add Cw+1 = {m} as additional chain and we
have a chain decomposition of P . If w = width(P ) the set {max(Ci) | i = 1, . . . , w} ∪ {m}
can not be an antichain. Therefore m ≥ max(Ci) for some i = 1, . . . , w. Now Ci ∪ {m} is a
chain, so C1, . . . Ci−1, Ci ∪{m}, Ci+1, . . . Cw is a chain decomposition of P . Thus in any case
we have a chain decomposition of P with width(P ) chains.

(5) Consider the graph G in the picture. Let P :=
{
x ∈ R4

≥0 | A · x ≤ 1
}
⊆ R4, where A is the

incidence matrix of G. Let Q ⊆ [0, 1]4 be the convex hull of the characteristic vectors of
matchings of G. Visualize and compare P and Q.

the graph G.

What can you say about the relation between these polytopes for general graphs?


