8. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/Heldt, Knauer
30. May

Delivery date: 6. - 10. June
http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html
(1) Please hand in your solution of this exercise: Take a standard deck of 52 playing cards. Split them into 13 piles S_{i}, each containing 4 cards. Show that for any such splitting you can choose one card $a_{i} \in S_{i}$ from each set, such that the set $\left\{a_{1}, \ldots, a_{13}\right\}$ contains one card of each of the ranks $\{2,3,4, \ldots, 10$, jack, queen, king, ace $\}$.
(2)
(a) A graph $G=(V, E)$ is bipartite iff V can be partitioned into X and Y, such that all edges have one endpoint in X and one in Y. Prove that G is bipartite iff there is no odd cycle in G. An odd cycle is a sequence of vertices and edges $v_{1} e_{1} v_{2} e_{2} \ldots e_{2 k} v_{n} e_{2 k+1}$, such that $e_{i}=\left(v_{i-1}, v_{i}\right)$ and $e_{2 k+1}=\left(v_{2 k+1}, v_{1}\right)$ with $e_{i} \in E$ and $v_{i} \in V$.
(b) Show that every regular, bipartite graph has a perfect matching. A bipartite graph is called regular if every vertex has degree d and a matching is a perfect matching if every vertex is incident to a matching edge. Does every bipartite graph have a perfect matching? Give a lower bound for the number of perfect matchings of a regular bipartite graph.
(c) Show that a regular bipartite graph can be covered with perfect matchings, i.e. that the set of edges can be partitioned into perfect matchings. Give a lower bound for the number of covers with perfect matchings.
(3) Let G be a graph and M be a matching of G. Color all edges e of G blue if $e \in M$ and red otherwise. The vertex v is exposed if all adjacent edges are red (i.e. do not belong to the matching). Furthermore a path between two vertices is alternating colored, if the path's edges are alternating red and blue. Show, that a matching is maximum (i.e. there is no matching, containing more edges) if and only if for all pairs of exposed vertices v, w there is no alternating path.
(4) The following is an incorrect proof of Dilworth's Theorem. Find the mistake:

Induction on $n:=|P| ; n=1$ is obvious. For the induction step $n \rightarrow(n+1)$ let us assume the theorem holds for posets of n elements. Let $m \in P$ be a maxima of P. Apply the hypothesis to $P \backslash\{m\}$ and gain a decomposition into chains C_{1}, \ldots, C_{w} of $P \backslash\{m\}$, with $w=\operatorname{width}(P \backslash\{m\})$. If $w<\operatorname{width}(P)$ then add $C_{w+1}=\{m\}$ as additional chain and we have a chain decomposition of P. If $w=\operatorname{width}(P)$ the set $\left\{\max \left(C_{i}\right) \mid i=1, \ldots, w\right\} \cup\{m\}$ can not be an antichain. Therefore $m \geq \max \left(C_{i}\right)$ for some $i=1, \ldots, w$. Now $C_{i} \cup\{m\}$ is a chain, so $C_{1}, \ldots C_{i-1}, C_{i} \cup\{m\}, C_{i+1}, \ldots C_{w}$ is a chain decomposition of P. Thus in any case we have a chain decomposition of P with width (P) chains.
(5) Consider the graph G in the picture. Let $P:=\left\{x \in \mathbb{R}_{\geq 0}^{4} \mid A \cdot x \leq \mathbb{1}\right\} \subseteq \mathbb{R}^{4}$, where A is the incidence matrix of G. Let $Q \subseteq[0,1]^{4}$ be the convex hull of the characteristic vectors of matchings of G. Visualize and compare P and Q.

the graph G.
What can you say about the relation between these polytopes for general graphs?

