6. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Heldt, Knauer 12. Mai

Delivery date: 23. - 27. May http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html

(1) The q-binomials fulfill the equation

$$\left[egin{array}{c} n \\ m \end{array}
ight] \left[egin{array}{c} m \\ k \end{array}
ight] = \left[egin{array}{c} n \\ k \end{array}
ight] \left[egin{array}{c} n-k \\ m-k \end{array}
ight]$$

for all $n \ge m \ge k \ge 0$. Prove this via the model on \mathbb{F}_q subspaces for q-binomials. Can you give other proofs?

(2) The q-binomials fulfill the equation

$$\sum_{i=0}^{n} \left[\begin{array}{c} i \\ k \end{array} \right] \cdot q^{(k+1)(n-i)} = \left[\begin{array}{c} n+1 \\ k+1 \end{array} \right]$$

for all $n \ge m \ge k \ge 0$. Prove this via the lattice path model for q-binomials. Can you give other proofs?

- (3) Please hand in your solution of this exercise: A permutation $\pi \in S_n$ is alternating if $\pi_1 < \pi_2 > \pi_3 < \pi_4 > \ldots$ holds. Let $\operatorname{Alt}_n \subseteq S_n$ be the set of alternating permutations. A permutation σ is reverse alternating if $\sigma_1 > \sigma_2 < \sigma_3 > \sigma_4 < \ldots$ holds. Let $\operatorname{RAlt}_n \subseteq S_n$ be the set of reverse alternating permutations.
 - (a) Prove $|Alt_n| = |RAlt_n|$.
 - (b) Let $E_n := |Alt_n|$ and prove $2E_{n+1} = \sum_{k=0}^n \binom{n}{k} E_k E_{n-k}$ for all $n \ge 1$ (Hint: Apply (a)).
 - (c) Let $E_n(q) := \sum_{\pi \in \text{RAlt}_n} q^{inv(\pi)}$ and $E_n^{\star}(q) := \sum_{\pi \in \text{Alt}_n} q^{inv(\pi)}$. Prove

$$E_n^\star(q) = q^{\binom{n}{2}} E_n\left(rac{1}{q}
ight).$$

(4) Let $des(\sigma) := |\{i \in [n-1] \mid \sigma_i > \sigma_{i+1}\}|$ be the number of descents of $\sigma \in S_n$ and

$$A_n(x) := \sum_{\sigma \in S_n} x^{\operatorname{des}(\sigma)+1} = \sum_{k=1}^n a_{n,k} x^k.$$

- (a) Compute $A_1(x), \ldots, A_4(x)$.
- (b) Prove $a_{n,k} = a_{n,n-k}$.
- (c) Prove the linear recursion $a_{n,k+1} = (k+1)a_{n-1,k+1} + (n-k)a_{n-1,k}$.
- (d) Use (c) to deduce an (differential) equation for $A_n(x)$.
- (5) A linear extension of a poset ({m₁,...,m_k}, ≤) is a total ordering m₁ <' m₂ <' ··· <' m_k such that there is no i > j with m_i ≤ m_j, i.e. the total order ≤' respects the poset's partial order ≤. Now consider the poset P_n on the set {a₁,...,a_[ⁿ/₂], b₁,..., b_[ⁿ/₂]} with the cover relations a_i < a_{i+1}, b_i < b_{i+1}, and b_i > a_{i-1} as well as a_i > b_{i-2} for all i. Count the linear extensions of P_n (Hint: There are pictures of the Hasse diagrams of P₈, P₉ and P₁₀ on the homepage of this course available at http://www.math.tu-berlin.de/~felsner/Lehre/DSI11/ladder-n.pdf).