5. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 16. - 20. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html
(1) In how many ways can you pay n Dollar with $1 \$, 5 \$$ and $10 \$$ notes? Find a generating function and compute the number of ways to pay 50 Dollar.
(Hint: find three distinct generating functions, each for one type of notes only, and put them together in the right way)
(2) Please hand in your solution of this exercise in written form: Let a_{k} be the number of words of length k over the alphabet $\{n, w, e\}$ with no w next to an e (i.e. no substring of the form $w e$ or $e w)$. These words can be interpreted as lattice paths of length k which go north, west, or east and never intersect themselves. Find
(a) a recurrence equation of fixed depth for the numbers a_{k}.
(b) a generating function for them, computed from the linear recursion.
(c) a closed form for a_{k}.
(a) Count words of length k over the alphabet $\{n, w, e\}$ with no $w e$ or $e w$ with respect to their last step, i.e. let n_{k} be the number of these words, ending with n, w_{k} the number of words ending with w and e_{k} the number of remaining words. So we have $a_{k}=n_{k}+w_{k}+e_{k}$ (with a_{k} from exercise 2). Find a matrix A such that

$$
\left(\begin{array}{c}
n_{k} \\
w_{k} \\
e_{k}
\end{array}\right)=A \cdot\left(\begin{array}{l}
n_{k-1} \\
w_{k-1} \\
e_{k-1}
\end{array}\right)
$$

and use the characteristic polynomial of A to derive a linear recursion for A^{n} and therefore one for a_{k} (Hint: Look at the derivation of the explicit form for Fibonacci numbers in the lecture; the same techniques are applied there). Can you also directly derive a closed form for a_{k} from A ?
(b) Let $A(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be the generating function for the words. Give a combinatoric proof for the equation

$$
A(z)=\left(1+2 \sum_{k=1}^{\infty} z^{k}\right) \cdot(z \cdot A(z)+1)
$$

and directly deduce a closed form for $A(z)$ without using exercise (1).
(4) Use the recursion for the Bell numbers $B(n+1)=\sum_{k=0}^{n}\binom{n}{k} B(n-k)$ to find a exponential generating function $F(z)=\sum \frac{B(n)}{n!} z^{n}$ for the bell numbers (Hint: Look at $\frac{d}{d z} B(z)$).
(5) Let $k \in \mathbb{N}$ be fixed. Prove, that for each $n \in \mathbb{N}$ there are unique $a_{k}>a_{k-1}>\ldots>a_{t} \geq t \geq 1$ with $a_{i} \in \mathbb{N}$, such that

$$
n=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\ldots+\binom{a_{t}}{t} .
$$

