4. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 9. - 13. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html
(1)
(a) How many subsets of the set $[n]$ contain at least one odd integer?
(b) How many sequences $\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ with $T_{1} \subset T_{2} \subset \ldots \subset T_{k} \subseteq[n]$ are there?
(2) Please hand your solution of this exercise in a written form in:

A composition of n is an ordered set of numbers $\left(a_{1}, \ldots, a_{k}\right)$ with $a_{i} \in \mathbb{N}$ and $0<a_{i}<n$ such that $a_{1}+\cdots+a_{k}=n$. For example, 4 has the compositions $1+1+1+1,1+1+2$, $1+2+1,2+1+1,2+2,3+1,1+3$ and 4 .
(a) Prove that n has $\binom{n-1}{k-1}$ compositions into exactly k parts/numbers.
(b) Use (a) to show, that n has in total 2^{n-1} compositions.
(c) Let $c(n)$ be the number of compositions of n into an even number of even parts. For $n=8$ the compositions (with above's additional constraints) are $2+2+2+2,4+4$, $6+2$ and $2+6$. Give a closed formula for $c(n)$.
(a) The Durfee square of a partition P is the largest square fitting in the top left corner of P 's Ferrers shape. How can you determine the square's size directly from the partition without considering the Ferrers diagram?
(b) Show that the number of partitions of n into at most k parts equals the number of partitions of n, such that each part is $\leq k$.
(c) Show that the number of partitions of n into at most k parts is as big as the number of partitions of $n+k$ into exactly k parts.
(d) Show that the number of partitions of n into exactly k different odd parts equals the number of self-conjugated partitions of n into k parts.
(e) Show, that each partition of n has either at least \sqrt{n} parts or the biggest part is $\geq \sqrt{n}$.
(4) How many functions $f:[n] \rightarrow[n]$ exist, such that at most two elements are mapped to the same image, i.e. $\left|f^{-1}(a)\right| \leq 2$ for all $a \in[n]$? (Hint: Do not expect to find a nice closed form. A sum is fine)
(a) The Bell number $B(n)=\sum_{k=1}^{n} S(n, k)$ is the number of all partitions of [n]. Give a combinatorial proof for the recursion $B(n+1)=\sum_{k=0}^{n}\binom{n}{k} B(k)$.
(b) Give a combinatorical argument, which proves that the number of partitions of $[n]$, such that no two consecutive numbers appear in the same block, is $B(n-1)$.

