3. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 2. - 6. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html
(1) Let $F(n)$ be the number of walks in \mathbb{Z}^{2}, moving either one unit up, down, left or right, which start in $(0,0)$ and return to $(0,0)$ aftern n steps. Give a closed form for $F(n)$. There are many correct solutions; give a nice one!
(2) Complete the lecture's proof of the binomial theorem. To do so, consider polynomials $g(x, y), h(x, y) \in \mathbb{C}[x, y]$ with $\operatorname{deg}(g) \leq \operatorname{deg}(h) \leq m$. Here the degree is $\operatorname{deg}\left(x^{i} y^{j}\right):=i+j$ and $\operatorname{deg}\left(\sum_{i, k} c_{i, k} x^{i} y^{k}\right):=\max _{i, k: c_{i k} \neq 0} \operatorname{deg}\left(x^{i} y^{k}\right)$. Show, if there are $x_{1}, \ldots, x_{m+1} \in \mathbb{C}$, such that $x_{i} \neq x_{j}$ for $i \neq j$ and $g\left(x_{i}, y\right)=h\left(x_{i}, y\right) \in \mathbb{C}[y]$ we have $g(x, y)=h(x, y)$.
Can you even weaken the requirements?
(3)
(a) What is the expected number E_{ℓ} of cycles of length ℓ of permutations $\sigma \in S_{n}$? Use the equation

$$
E_{\ell}=\frac{1}{n!} \sum_{\sigma \in S_{n}} \#(\ell-\text { cycles of } \sigma)
$$

(b) Another (more complicated) way to establish E_{ℓ} is, to start with the probability $P(k, \ell)$, that a permutation $\sigma \in S_{n}$ has exactly k cycles of length ℓ and write E_{ℓ} as

$$
E_{\ell}=\sum_{k-1}^{n} k \cdot P(k, \ell)
$$

Compute

$$
P(k, \ell)=\frac{\mid\left\{\sigma \in S_{n} \mid \sigma \text { has exactly } k \text { cycles of length } \ell\right\} \mid}{n!}
$$

for all k and $\frac{1}{2} n<\ell \leq n$ as well as $\frac{1}{3} n<\ell \leq \frac{1}{2} n$.
(4) Show, that any coloring of the fields of an 3×7 chess-board with colors black and white contain a rectangle, such that all four corners have the same color. Is the same claim true for a 4×6 board?

one coloring of a 3×7 board with a (highlighted) black rectangle
(5) Please hand your solution of this exercise in a written form in: In the parliament of some country there are $2 n+1$ seats filled by 3 parties. How many possible distributions (i, j, k), (i.e. party 1 has i, party 2 has j, and party 3 has k seats) are there, such that no party has an absolute majority?
(Hint: look at small numbers and make a good guess.)

