2. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 25. -29.. April
http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html
(1) Let $d(n)$ be the number of derangements of S_{n}. Prove $d(n)=n \cdot d(n-1)+(-1)^{n}$ for all $n \in \mathbb{N}$.
(2)
(a) Prove $f_{n}+f_{n-1}+\sum_{k=0}^{n-2} 2^{n-k-2} f_{k}=2^{n}$ for the Fibonacci numbers f_{n}, using a bijection.
(b) Decompose the generating function of the Fibonacci numbers, such that

$$
\sum_{k=0}^{\infty} f_{k} z^{k}=\frac{1}{1-z-z^{2}}=\frac{A}{1-\alpha z}+\frac{B}{1-\beta z}
$$

with partial fractial decomposition (Partialbruchzerlegung) and find an explizit formula for its coefficients based on geometric progression (Geometrische Reihe).
(3) Let $n \in \mathbb{N}$ be odd. Count the number of lattice paths from $(0,0)$ to (n, n), moving only up and right, which avoid all lattice points (i, j), such that $i>\frac{n}{2}>j$ (the figure below shows one of theses paths for $n=5$).

(4) Please hand your solution of this exercise in a written form in:
(a) Let $x^{\underline{n}}:=(x)_{n}$ denote the falling factorials and $x^{\bar{n}}:=x \cdot(x+1) \cdots(x+n-1)$ the raising factorials. Deduce the following equation from Vandermonde's identity:

$$
(x+y)^{\bar{n}}=\sum_{k=0}^{n}\binom{n}{k} x^{\bar{k}} y^{\overline{n-k}} \quad\left(\operatorname{Hint}:(-x)^{\bar{n}}=(-1)^{n} x^{\underline{n}}\right)
$$

(b) The Stirling numbers of first kind $s(n, k)$ count the number of permutations in S_{n} consisting of k disjoint cycles. Compute all values of $s(n, k)$ for $n \leq 4$ and give a (bijective) proof of the equation $s(n, k)=(n-1) s(n-1, k)+s(n-1, k-1)$.
(c) Show that the identities $x^{\bar{n}}=\sum_{k=0}^{n} s(n, k) x^{k}$ and $x^{\underline{n}}=\sum_{k=0}^{n}(-1)^{n-k} s(n, k) x^{k}$ hold (Hint: prove the first one inductively and deduce the second from the first).

$$
\begin{equation*}
\text { Let } Q_{n}:=\sum_{k=0}^{k=2^{n}}\binom{2^{n}-k}{k}(-1)^{k} \text {. What is } Q_{100000} ? \tag{5}
\end{equation*}
$$

