12. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/Heldt, Knauer 28. June

Delivery date: 4. -8. July

http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html

- (1) For which of the parameter sets does a design exist? Either show that there is no design or present one.
 - (a) $t = 4, k = 7, v = 13 \text{ and } \lambda = 2.$
 - (b) $t = 2, k = 7, v = 36 \text{ and } \lambda = 1.$
 - (c) $t = 2, k = 5, v = 125 \text{ and } \lambda = 1.$
 - (d) $t = 1, k = 4, v = 124 \text{ and } \lambda = 1.$
- (2) Let (V, \mathcal{B}) be a $S_{\lambda}(t, k, v)$ design. Let $p \in V$ and $\mathcal{B}^p := \{B : p \notin B \in \mathcal{B}\}$ be the set of blocks, which do not contain p. Show that $(V \setminus \{p\}, \mathcal{B}^p)$ is a design. What are its parameters?
- (3) Let $(V, \mathcal{B}) = S(2, n+1, n^2+n+1)$ be a projective plane and fix $B \in \mathcal{B}$. Show that $(V \setminus B, \{C \setminus B \mid C \in (\mathcal{B} \setminus \{B\})\})$ is a $S(2, n, n^2)$ design.
- (4) Prove Fisher's proposition, which states that every $S_{\lambda}(t, k, v)$ design (V, \mathcal{B}) with $t \geq 2$ fullfills $|V| \leq |\mathcal{B}|$ (Hint: Use the adjacency matrix $A \in \mathbb{R}^{|V| \times |B|}$ with $a_{v,B} = 1$ if $v \in B$ and $a_{v,B} = 0$ otherwise and consider the rank of $A \cdot A^T$).
- (5) Let (V, \mathcal{B}) be a design, $I, J \subseteq V$ with $I \cap J = \emptyset$ and |I| = i, |J| = j such that $i + j \le t$ and k < v. Let $\lambda_{I,J} = \#\{B \in \mathcal{B} \mid I \subseteq B \text{ and } J \cap B = \emptyset\}$.
 - (a) Show that $\lambda_{I,J}$ does only depend on i and j and not on I and J, i.e. $\lambda_{i,j} := \lambda_{I,J}$ is well defined.
 - (b) Compute all λ_{ij} for the $S_6(3,5,10)$ design from the lecture.
 - (c) Prove $\lambda_{i,j} = \lambda_{i+1,j} + \lambda_{i,j+1}$ for i + j < t.
 - (d) Prove $\lambda_{i,j} = \sum_{r=0}^{j} (-1)^r {j \choose r} \lambda_{i+r,0}$.