11. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/Heldt, Knauer 21. June

Delivery date: 27. June - 1. July http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html

- (1) Please hand in your solution of this exercise: Let $P := (M, \leq)$ be a finite poset with |M| = n. A relation matrix $(a_{ij}) = A \in \{0, 1\}^{n \times n}$ is matrix, such that $a_{ij} = 1 \Leftrightarrow m_i \leq m_j$ for some order $M = (m_1, m_2, \ldots, m_n)$.
 - (a) Which conditions on (m_1, \ldots, m_n) suffice to ensure, that A is an upper triangle matrix?
 - (b) Show that $\#\{(i,j)|a_{ij}=1\} = \frac{n^2+n}{2} \Leftrightarrow P$ is a total order.
 - (c) Which conditions on a $\{0, 1\}$ -matrix B imply that B represents a partial order relation?
 - (d) Let k be the length of P's biggest chain. Show that A has the minimal polynomial $\mu_A(x) = (x-1)^k$.
- (2) Consider the following algorithm:

Input: Poset (P, \leq) , linear exension L of (P, \leq) . $\tilde{L} := [].$ while $P \neq \emptyset$ do: $x := \max_L(\operatorname{Min}_{\leq}(P)).$ $\tilde{L} := \tilde{L} + x$ and P = P - x.Output: \tilde{L}

Let (P, \leq) be a poset, L a linear extension of (P, \leq) and \tilde{L} the output of the algorithm above w.r.t. (P, \leq) and L.

- (a) Show that \tilde{L} is a linear extension of (P, \leq) .
- (b) Show that $L = \tilde{L}$ if and only if dim(P) = 1.
- (c) Let L be a non-separating linear extension of P. Show that $\{L, \tilde{L}\}$ is a realizer of (P, \leq) .
- (d) Give an example of a 2-dimensional poset (P, \leq) and a linear extension L such that $\{L, \tilde{L}\}$ is not a realizer of (P, \leq) .
- (3) Let (P, \leq) be a *tree-shaped poset*, i.e. a poset such that for each $x \in P \setminus \min(P)$ there is a parent $y \in P$ with $z \leq y < x$ for all $z \in P$ with z < x. What is the dimension of P?
- (4) For $n \in \mathbb{N}$, the *divisor-poset* P_n is the set of all divisors of n, ordered by divisibility, i.e. $P_n := \{ \{x \in \mathbb{N} : x \mid n\}, \leq \}$, such that $x \leq y \Leftrightarrow x \mid y$.
 - (a) Sketch the Hasse diagramms of P_{60} and P_{1001} (Hint: $1001 = 7 \cdot 11 \cdot 13$).
 - (b) What ist the dimension of P_n (Hint: Use the dimension of $B_{n'}$ for a well-chosen n')?
- (5)
- (a) Let (P, \leq) be a poset, c_k the maximal size of a k-chain of (P, \leq) and \mathcal{A} an anti-chain decomposition of (P, \leq) . Prove

$$c_k \leq \sum_{A \in \mathcal{A}} \min\{|A|, k\}.$$

(b) Let $\lambda(B_n)$ be the Ferrer's diagram of the partition of 2^n corresponding to B_n by the Greene-Kleitman theorem. Find the shape of $\lambda(B_n)$.