11. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 27. June - 1. July
http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html
(1) Please hand in your solution of this exercise: Let $P:=(M, \leq)$ be a finite poset with $|M|=n$. A relation matrix $\left(a_{i j}\right)=A \in\{0,1\}^{n \times n}$ is matrix, such that $a_{i j}=1 \Leftrightarrow m_{i} \leq m_{j}$ for some order $M=\left(m_{1}, m_{2}, \ldots, m_{n}\right)$.
(a) Which conditions on $\left(m_{1}, \ldots, m_{n}\right)$ suffice to ensure, that A is an upper triangle matrix?
(b) Show that $\#\left\{(i, j) \mid a_{i j}=1\right\}=\frac{n^{2}+n}{2} \Leftrightarrow P$ is a total order .
(c) Which conditions on a $\{0,1\}$-matrix B imply that B represents a partial order relation?
(d) Let k be the length of P 's biggest chain. Show that A has the minimal polynomial $\mu_{A}(x)=(x-1)^{k}$.
(2) Consider the following algorithm:

Input: Poset (P, \leq), linear exension L of (P, \leq).
$\tilde{L}:=[]$.
while $P \neq \emptyset$ do:
$x:=\max _{L}\left(\operatorname{Min}_{\leq}(P)\right)$.
$\tilde{L}:=\tilde{L}+x$ and $P=P-x$.
Output: \tilde{L}
Let (P, \leq) be a poset, L a linear extension of (P, \leq) and \tilde{L} the output of the algorithm above w.r.t. (P, \leq) and L.
(a) Show that \tilde{L} is a linear extension of (P, \leq).
(b) Show that $L=\tilde{L}$ if and only if $\operatorname{dim}(P)=1$.
(c) Let L be a non-separating linear extension of P. Show that $\{L, \tilde{L}\}$ is a realizer of (P, \leq).
(d) Give an example of a 2-dimensional poset (P, \leq) and a linear extension L such that $\{L, \tilde{L}\}$ is not a realizer of (P, \leq).
(3) Let (P, \leq) be a tree-shaped poset, i.e. a poset such that for each $x \in P \backslash \min (P)$ there is a parent $y \in P$ with $z \leq y<x$ for all $z \in P$ with $z<x$. What is the dimension of P ?
(4) For $n \in \mathbb{N}$, the divisor-poset P_{n} is the set of all divisors of n, ordered by divisibility, i.e. $P_{n}:=\{\{x \in \mathbb{N}: x \mid n\}, \leq\}$, such that $x \leq y \Leftrightarrow x \mid y$.
(a) Sketch the Hasse diagramms of P_{60} and P_{1001} (Hint: $1001=7 \cdot 11 \cdot 13$).
(b) What ist the dimension of P_{n} (Hint: Use the dimension of $B_{n^{\prime}}$ for a well-chosen n^{\prime})?
(a) Let (P, \leq) be a poset, c_{k} the maximal size of a k-chain of (P, \leq) and \mathcal{A} an anti-chain decomposition of (P, \leq). Prove

$$
c_{k} \leq \sum_{A \in \mathcal{A}} \min \{|A|, k\}
$$

(b) Let $\lambda\left(B_{n}\right)$ be the Ferrer's diagram of the partition of 2^{n} corresponding to B_{n} by the Greene-Kleitman theorem. Find the shape of $\lambda\left(B_{n}\right)$.

