10. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 20. - 24. June http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html

(1)

- (a) Compute the cycle index of the symmetry group of the solid dodecahedron, acting on the dodecahedron's faces. (Hint: Use flags to identify group elements; solid means, that there are no mirror symmetries)
- (b) Let D_n be the Dihedral group, i.e. the symmetry group of a regular *n*-gon. Compute the cycle index of D_n .

(2)

- (a) Let $S_n \operatorname{act} \operatorname{on} {\binom{[n]}{k}}$ by $\pi(\{c_1, \ldots, c_k\}) := \{\pi(c_1), \ldots, \pi(c_k)\}$ with $\pi \in S_n$ and $\{c_1, \ldots, c_k\} \in {\binom{[n]}{k}}$. For $\sigma \in S_n$ let a_i be the number of cycles of σ of length i and b_j be the number of cycles of σ acting as a permutation on ${\binom{[n]}{k}}$ of length j. Express b_j in terms of $a_i, i = 1, \ldots, n$.
- (b) Let $g_{n,k}$ be the number of non-isomorphic graphs on n vertices with k edges. Let G be the symmetric group on the vertices, which acts on $\binom{[n]}{2}$ by $\pi(\{i, j\}) := \{\pi(i), \pi(j)\}$. Prove

$$\sum_{k=0}^{\binom{n}{2}} g_{n,k} x^k = P_G(1+x, 1+x^2, \dots 1+x^{\binom{n}{2}}).$$

(3) Please hand in your solution of this exercise: Let G be a group acting on the set M and H be a group acting on the set N with $N \cap M = \emptyset$. Let P_G be the cycle index of G with respect to M and P_H be the cycle index of H with respect to N. Consider $G \cdot H := \{g \cdot h \mid g \in G \text{ and } h \in H\}$, where

$$(g \cdot h)(a) := \begin{cases} g(a) & \text{if } a \in M \\ h(a) & \text{if } a \in N \end{cases}$$

Prove that $G \cdot H$ is a group acting on $M \cup N$ and that $P_{G \cdot H} = P_G \cdot P_H$, where $P_{G \cdot H}$ is the cycle index of $G \cdot H$ with respect to $M \cup N$.

- (4) Let G be a group, acting on the set D. Let P_G be the corresponding cycle index. Then $F(t) = \sum_{k=1}^{|D|} f_k t^k := P_G(1+t, 1+t^2, \dots, 1+t^{|D|})$ is a polynomial in t.
 - (a) Give an interpretation for f_k . (Hint: Consider the action of G on $\binom{D}{k}$ and the CFB Lemma)
 - (b) Interpret F(t) in terms of Polya's fundamental Theorem (weighted case).
- (5) Consider an $n \times n$ chess-board for even $n \in \mathbb{N}$. How many configurations (up to the symmetries of D_4) of n rooks (Türme) on the board are there, such that no rook can attack another one? (Hint: Use the CFB Lemma) How many distinct configurations exist, if you are only considering the symmetries of D_4 , which map black fields to black fields?