10. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/Heldt, Knauer

10. June

Delivery date: 20. - 24. June
http://www.math.tu-berlin.de/~felsner/Lehre/dsI11.html
(1)
(a) Compute the cycle index of the symmetry group of the solid dodecahedron, acting on the dodecahedron's faces. (Hint: Use flags to identify group elements; solid means, that there are no mirror symmetries)
(b) Let D_{n} be the Dihedral group, i.e. the symmetry group of a regular n-gon. Compute the cycle index of D_{n}.
(2)
(a) Let S_{n} act on $\binom{[n]}{k}$ by $\pi\left(\left\{c_{1}, \ldots, c_{k}\right\}\right):=\left\{\pi\left(c_{1}\right), \ldots, \pi\left(c_{k}\right)\right\}$ with $\pi \in S_{n}$ and $\left\{c_{1}, \ldots, c_{k}\right\} \in$ $\binom{[n]}{k}$. For $\sigma \in S_{n}$ let a_{i} be the number of cycles of σ of length i and b_{j} be the number of cycles of σ acting as a permutation on $\binom{[n]}{k}$ of length j. Express b_{j} in terms of $a_{i}, i=1, \ldots, n$.
(b) Let $g_{n, k}$ be the number of non-isomorphic graphs on n vertices with k edges. Let G be the symmetric group on the vertices, which acts on $\binom{[n]}{2}$ by $\pi(\{i, j\}):=\{\pi(i), \pi(j)\}$. Prove

$$
\sum_{k=0}^{\binom{n}{2}} g_{n, k} x^{k}=P_{G}\left(1+x, 1+x^{2}, \ldots 1+x^{\binom{n}{2}}\right) .
$$

(3) Please hand in your solution of this exercise: Let G be a group acting on the set M and H be a group acting on the set N with $N \cap M=\emptyset$. Let P_{G} be the cycle index of G with respect to M and P_{H} be the cycle index of H with respect to N. Consider $G \cdot H:=\{g \cdot h \mid$ $g \in G$ and $h \in H\}$, where

$$
(g \cdot h)(a):=\left\{\begin{array}{lll}
g(a) & \text { if } & a \in M \\
h(a) & \text { if } & a \in N
\end{array}\right.
$$

Prove that $G \cdot H$ is a group acting on $M \cup N$ and that $P_{G \cdot H}=P_{G} \cdot P_{H}$, where $P_{G \cdot H}$ is the cycle index of $G \cdot H$ with respect to $M \cup N$.
(4) Let G be a group, acting on the set D. Let P_{G} be the corresponding cycle index. Then $F(t)=\sum_{k=1}^{|D|} f_{k} t^{k}:=P_{G}\left(1+t, 1+t^{2}, \ldots, 1+t^{|D|}\right)$ is a polynomial in t.
(a) Give an interpretation for f_{k}. (Hint: Consider the action of G on $\binom{D}{k}$ and the CFB Lemma)
(b) Interpret $F(t)$ in terms of Polya's fundamental Theorem (weighted case).
(5) Consider an $n \times n$ chess-board for even $n \in \mathbb{N}$. How many configurations (up to the symmetries of D_{4}) of n rooks (Türme) on the board are there, such that no rook can attack another one? (Hint: Use the CFB Lemma) How many distinct configurations exist, if you are only considering the symmetries of D_{4}, which map black fields to black fields?

