9. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 1. July
http://www.math.tu-berlin.de/~felsner/Lehre/dsI09.html
(1)
(a) List all lattices consisting of five vertices. Which of them are distributive?
(b) For all distributive lattices $L=(X, \leq)$ with $|X|=5$ give a poset P, such that L is the down set lattice of P.
(c) Let (L, \vee, \wedge) be a lattice such that for all $x, y, z \in L$ we have $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$. Show that this already implies $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$.
(2) Let $P=(X, \leq)$ be a poset and \leq^{\prime} a linear extension of P. Further let S be the set of all anti-chains in P. For $A, B \in S$ we say $A \prec B$ if and only if $\max _{\leq^{\prime}}(A \triangle B) \in B$.
(a) Show, that (S, \preceq) is a well defined poset and $\operatorname{dim}((S, \preceq))=1$.
(b) Let C and D be down sets of P. We say $C \preceq^{\prime} D$ if $\max (C) \preceq \max (D)$. Show that \preceq^{\prime} forms a linear extension of P 's down set lattice.
(3) Let $A \subseteq \mathbb{R}_{\geq_{0}}^{n}$ be a finite set and $K=\left\{x \in \mathbb{R}_{\geq_{0}}^{n} \mid\langle x, a\rangle \leq 1 \quad \forall a \in A\right\}$ a polytope. The polotype $K^{*}:=\left\{y \in \mathbb{R}_{\geq 0}^{n} \mid\langle y, x\rangle \leq 1 \quad \forall x \in K\right\}$ is the anti-blocker of K.
(a) Show $\left(K^{*}\right)^{*}=K$ for all polytopes K.
(b) Let G be a graph and P its matching polytope. Characterize the vertices of P^{*}.
(a) Sketch the Hasse diagramms of the incidence posets of
and compute the graph's dimensions.
(b) Compute the graph dimension of H and G, which is the minimal size of a realizer of permutations, such that for all edges (a, b) and vertices c there is a permutation $\pi=(\ldots, a, \ldots, b, \ldots, c, \ldots)$ and a permutation $\pi^{\prime}=(\ldots, c, \ldots, a, \ldots, b, \ldots)$ in the realizer.

