9. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 1. July

http://www.math.tu-berlin.de/~felsner/Lehre/dsI09.html

(1)

- (a) List all lattices consisting of five vertices. Which of them are distributive?
- (b) For all distributive lattices $L = (X, \leq)$ with |X| = 5 give a poset P, such that L is the down set lattice of P.
- (c) Let (L, \lor, \land) be a lattice such that for all $x, y, z \in L$ we have $x \lor (y \land z) = (x \lor y) \land (x \lor z)$. Show that this already implies $x \land (y \lor z) = (x \land y) \lor (x \land z)$.
- (2) Let $P = (X, \leq)$ be a poset and \leq' a linear extension of P. Further let S be the set of all anti-chains in P. For $A, B \in S$ we say $A \prec B$ if and only if $\max_{\leq'} (A \bigtriangleup B) \in B$.
 - (a) Show, that (S, \preceq) is a well defined poset and $\dim((S, \preceq)) = 1$.
 - (b) Let C and D be down sets of P. We say $C \preceq' D$ if $\max(C) \preceq \max(D)$. Show that \preceq' forms a linear extension of P's down set lattice.
- (3) Let $A \subseteq \mathbb{R}^n_{\geq 0}$ be a finite set and $K = \{x \in \mathbb{R}^n_{\geq 0} \mid \langle x, a \rangle \leq 1 \quad \forall \ a \in A\}$ a polytope. The polotype $K^* := \{y \in \mathbb{R}^n_{\geq 0} \mid \langle y, x \rangle \leq 1 \quad \forall \ x \in K\}$ is the *anti-blocker* of K.
 - (a) Show $(K^*)^* = K$ for all polytopes K.
 - (b) Let G be a graph and P its matching polytope. Characterize the vertices of P^* .

(a) Sketch the Hasse diagramms of the incidence posets of

and compute the graph's dimensions.

(b) Compute the graph dimension of H and G, which is the minimal size of a realizer of permutations, such that for all edges (a, b) and vertices c there is a permutation $\pi = (\dots, a, \dots, b, \dots, c, \dots)$ and a permutation $\pi' = (\dots, c, \dots, a, \dots, b, \dots)$ in the realizer.