6. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Tiwary, Heldt 20. Mai

Delivery date: 1. June

http://www.math.tu-berlin.de/~felsner/Lehre/dsI09.html

(1) For a Poset $(\{m_1, \ldots, m_k\}, \leq)$ a linear extension is total ordering $m_1 <' m_2 <' \cdots <' m_k$ such that there is no i > j with $m_i \leq m_j$, i.e. the total order <' respects the poset's partial order \leq .

Now consider the poset P_{k+j} on the set $\{a_1, \ldots, a_k, b_1, \ldots, b_j \mid j \in \{k-1, k\}\}$ with the relations $a_i < a_{i+1}, b_i < b_{i+1}$, and $b_i > a_{i-1}$ as well as $a_i > b_{i-2}$ for all i. Count the number linear extensions of P_k .

(2) Let $k \in \mathbb{N}$ be fixed. Prove, that for each $n \in \mathbb{N}$ there are unique $a_k > a_{k-1} > \ldots > a_t \ge t \ge 1$ with $a_i \in \mathbb{N}$, such that

$$n = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_t}{t}.$$

- (3) Suppose the largest chain in a finite poset P contains m elements. Show that P can be partitioned into m antichains.
- (4) Let $P := (M, \leq)$ be a finite poset with |M| = n. A relation matrix $(a_{ij}) = A \in \{0, 1\}^{n \times n}$ is matrix, such that

$$a_{ij} = 1 \Leftrightarrow m_i \leq m_j$$

for some order $M = (m_1, m_2, \dots, m_n)$.

- (a) Which conditions on (m_1, \ldots, m_n) suffice to ensure, that A is an upper triangle matrix?
- (b) Show that

$$\#\{(i,j)|a_{ij}=1\}=\frac{n^2+n}{2}\Leftrightarrow P \text{ is a total order }.$$

- (c) Which conditions on a $\{0,1\}$ -matrix B imply that B represents a partial order relation?
- (d) Let k be the size of P's biggest chain. Show that A has the minimal polynomial $\mu_A(x) = (x-1)^k$.
- (5) Let $k \leq \frac{n}{2}$. Describe a bijection

$$f: \binom{[n]}{k} \longrightarrow \binom{[n]}{n-k}$$

with the property $A \subseteq f(A)$ for all $A \in {[n] \choose k}$.