Solutions have to be handed in!

(1) For $n \in \mathbb{N}$, the divisor-poset P_{n} of n is the set of all divisors, ordered by divisibility, i.e.

$$
P_{n}:=\left\{\{x \in \mathbb{N}: x \mid n\},\left\{(x, y) \in \mathbb{N}^{2}: x \mid y \text { and } y \mid n\right\}\right\} .
$$

Proof that P_{n} has a rank-function. Sketch the Hasse-Diagramm of P_{60} and compute its rank-numbers.
(2) How many pairs X, Y of distinct subsets of $[n]$ with $X \subset Y \subseteq[n]$ are there? Give three different approaches to determine the number of pairs based on the three given hints:
(a) Count the pairs inductively.
(b) Give a generating function of the form $\frac{Q(z)}{P(z)}$ with polynomials P and Q.
(c) Use a direct bijection to a set of your choice.
(3) Let \mathcal{A} be an up-set of $[n]$, i.e a set of subsets such that for every $A \in \mathcal{A}$ and every B with $A \subseteq B \subseteq[n]$ we have $B \in \mathcal{A}$. Show, that the average size of the sets in \mathcal{A} is at least $\frac{n}{2}$.
(4) Let M be a finite set and let $\mathbb{P}(M):=\{X \mid X \subseteq M\}$ be the power set of M. A subset $\mathcal{A} \subseteq \mathbb{P}(M)$ is called intersecting, if for all $A, A^{\prime} \in \mathcal{A}$ we have $A \cap A^{\prime} \neq \emptyset$. Show that for each intersecting $\mathcal{A} \subseteq \mathbb{P}([n])$ there is an intersecting set of subsets $\mathcal{B} \subseteq \mathbb{P}([n])$ such that $\mathcal{A} \subseteq \mathcal{B}$ and $|\mathcal{B}|=2^{n-1}$.
(5) Consider $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ such that $\left|x_{i}\right| \geq 1$ for $i=1,2, \ldots, n$ and let $I \subseteq \mathbb{R}$ be an open interval of length 1 . Show that there are at most $\binom{n}{\lfloor n / 2\rfloor}$ vectors $\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$ such that

$$
\sum_{i=1}^{n} v_{i} x_{i} \in I
$$

