4. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Tiwary, Heldt
08. Mai

Delivery date: 17. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI09.html
(1) Show that there is a formal power series $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$, such that $f(x)=\sqrt{1+x}$ and compute the coefficients a_{0}, \ldots, a_{5}.
(2) You have three types of stamps, two different types with a value of 2 cent and one type with a value of 3 cent. Now you have to put stamps with a total value of k cent on an envelope. Let h_{k} be the number of feasible sequences of stamps. Find a closed form for h_{k}.
(3) Let $(f)_{n} \in \mathbb{R}^{\mathbb{N}}$ be a sequence and $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \in \mathbb{R}$ some scalars. Consider the linear rekursion

$$
f_{n}=a_{1} f_{n-1}+a_{2} f_{n-2}+a_{k} f_{n-k} \text { for all } n>k
$$

with initial conditions $f_{1}=b_{1}, f_{2}=b_{2}, \ldots, f_{k}=b_{k}$. As shown in the lecture, we can represent

$$
F(x)=\sum_{i=0}^{\infty} f_{n} x^{n}=\frac{Q(x)}{P(x)}
$$

with polynomials $Q(x), P(x) \in \mathbb{R}[x]$. Compute the coefficients of $Q(x)$ in terms of a_{i} and b_{j}.
(4) In how many ways can you pay n Dollar with $1 \$, 5 \$$ and $10 \$$ notes? Find a generating function and compute the number of ways to pay 50 Dollar.
(5) Proof

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
n-k \\
m-k
\end{array}\right]_{q}
$$

for all $n \geq m \geq k \geq 0$ (Try to give two or three different proofs).
(6) Show

$$
\sum_{i=0}^{n}\left[\begin{array}{c}
i \\
k
\end{array}\right]_{q} \cdot q^{(k+1)(n-i)}=\left[\begin{array}{c}
n+1 \\
k+1
\end{array}\right]_{q}
$$

(Try to give two or three different proofs).

