4. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Tiwary, Heldt 08. Mai

Delivery date: 17. May

http://www.math.tu-berlin.de/~felsner/Lehre/dsI09.html

- (1) Show that there is a formal power series $f(x) = \sum_{i=0}^{\infty} a_i x^i$, such that $f(x) = \sqrt{1+x}$ and compute the coefficients a_0, \ldots, a_5 .
- (2) You have three types of stamps, two different types with a value of 2 cent and one type with a value of 3 cent. Now you have to put stamps with a total value of k cent on an envelope. Let h_k be the number of feasible sequences of stamps. Find a closed form for h_k .
- (3) Let $(f)_n \in \mathbb{R}^{\mathbb{N}}$ be a sequence and $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{R}$ some scalars. Consider the linear rekursion

$$f_n = a_1 f_{n-1} + a_2 f_{n-2} + a_k f_{n-k}$$
 for all $n > k$

with initial conditions $f_1 = b_1, f_2 = b_2, \dots, f_k = b_k$. As shown in the lecture, we can represent

$$F(x) = \sum_{i=0}^{\infty} f_n x^n = \frac{Q(x)}{P(x)}$$

with polynomials $Q(x), P(x) \in \mathbb{R}[x]$. Compute the coefficients of Q(x) in terms of a_i and b_j .

- (4) In how many ways can you pay n Dollar with 1\$,5\$ and 10\$ notes? Find a generating function and compute the number of ways to pay 50 Dollar.
- (5) Proof

$$\left[\begin{array}{c} n \\ m \end{array}\right]_q \left[\begin{array}{c} m \\ k \end{array}\right]_q = \left[\begin{array}{c} n \\ k \end{array}\right]_q \left[\begin{array}{c} n-k \\ m-k \end{array}\right]_q$$

for all $n \ge m \ge k \ge 0$ (Try to give two or three different proofs).

(6) Show

$$\sum_{i=0}^{n} \left[\begin{array}{c} i \\ k \end{array} \right]_{q} \cdot q^{(k+1)(n-i)} = \left[\begin{array}{c} n+1 \\ k+1 \end{array} \right]_{q}$$

(Try to give two or three different proofs).