3. Practice sheet for the lecture: Combinatorics (DS I)

Delivery date: 10. May

http://www.math.tu-berlin.de/~felsner/Lehre/dsI09.html

- (1) Take a walk in \mathbb{Z}^2 , i.e. you start at (0,0) and in each step you either go one unit up, down, left or right. So for example from (2,-3) you can reach (2,-2), (2,4), (1,-3) and (3,-3) with one step. How many different tours can you take, such that you reach again (0,0) after n steps? There are many correct solutions; give a nice one!
- (2) Complete the lecture's proof of the binomial theorem. To do so, consider polynomials $g(x, y), h(x, y) \in \mathbb{C}[x, y]$ with $\deg(g) \leq \deg(h) \leq m$. Here the degree is $\deg(x^i y^j) := i + j$ and $\deg(\sum_{i,k} c_{i,k} x^i y^k) := \max_{i,k:c_{ik} \neq 0} \deg(x^i y^k)$. Show, if there are $x_1, \ldots, x_{m+1} \in \mathbb{C}$, such that $x_i \neq x_j$ for $i \neq j$ and $g(x_i, y) = h(x_i, y) \in \mathbb{C}[y]$ we have g(x, y) = h(x, y). Can you even weaken the requirements?
- (3)
- (a) The *Durfee square* of a partition P is the largest square fitting in the top left corner of P's Ferrers shape. How can you determine the square's size directly from the partition without considering the Ferrers diagram?
- (b) Give a proof, stating that the number of partitions of n into at most k parts is as big as the number of partitions of n + k into exactly k parts.
- (c) Proof, that the number of partitions of n into different and odd parts equals the number of self-conjugated partitions of n.
- (d) Show, that each partition of n has either at least \sqrt{n} parts or the biggest part is $\geq \sqrt{n}$.
- (4) Starting with $n! = \sum_{k=0}^{n} {n \choose k} d(k)$, find a equation of two exponential generating functions to derive a generating function for the number of derangements. Then deduce an explicit way to compute d(n) by comparing coefficients.

- (a) Let $(a)_n$ be a sequence and $b_n = \sum_{i=0}^n a_i$. Express $\sum_{i=0}^{\infty} b_i z^i$ in terms of $\sum_{j=0}^{\infty} a_j z^j$.
- (b) A child walks up a staircase. With each step she moves up one or two stairs. Give a generating function for the number of ways to reach the *n*-th stair. How does the function change, if the child is also able to move up three stairs in one step?