Solutions have to be handed in until July the 8th!

(a) Proof that for every graph G, where all vertices have degree at most $k, \chi(G) \leq k+1$ holds.
(b) Show that for any graph $G=(V, E)$, with $\chi(G)>1$ we can find a partition of the vertices $V=V_{1} \cup V_{2}$ (with $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \neq \emptyset \neq V_{2}$) of G leading to graphs $G_{1}=\left(V_{1}, E \cap\left(V_{1} \times V_{1}\right)\right)$ and $G_{2}=\left(V_{2}, E \cap\left(V_{2} \times V_{2}\right)\right)$, such that

$$
\chi\left(G_{2}\right)+\chi\left(G_{1}\right)=\chi(G)
$$

(c) Let $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ be graphs. Show

$$
\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\} \leq \chi\left(G_{1} \star G_{2}\right) \leq \chi\left(G_{1}\right) \cdot \chi\left(G_{2}\right)
$$

where $G_{1} \star G_{2}$ is the strong product of G_{1} and G_{2}. The vertices of the strong product are $V_{1} \times V_{2}$ and two vertices $(x, y),\left(x^{\prime}, y^{\prime}\right)$ are connected if $x=x^{\prime} \operatorname{and}\left(y, y^{\prime}\right) \in E_{2}$ or $y=y^{\prime}$ and $\left(x, x^{\prime}\right) \in E_{1}$ or $\left(x, x^{\prime}\right) \in E_{1}$ and $\left(y, y^{\prime}\right) \in E_{2}$.
Alternatively you can add all loops (i.e. vertices $(x, x))$ to G_{1} and G_{2}, take the normal product and delete all loops in the new graph to describe $G_{1} \star G_{2}$.
(d) Which of the claims hold for $\chi_{b}(G)$ and/or $\chi_{f}(G)$?
(2) There are n children and n toys in a room. Each child wants to play with r specific toys, and for each toy, there are r children who want to play with that toy. Prove that we can organize r playing rounds so that in each of them, each child plays with the toy he wanted to, and no child plays with the same toys twice.
(3) Prove or disprove: Every b-clique is the sum of $b 1$-cliques and vice versa.
(4) Let G be a graph and $\chi_{G}(\lambda, b)$ the number of b-colourings of G with λ colours. Compute $\chi_{G}(\lambda, b)$ for all trees G with n vertices and deduce an upper bound of $\chi_{G^{\prime}}(\lambda, b)$ for all graphs G^{\prime}.
(5) Let $P=(\mathbb{N}, \leq)$ be the divisor poset of all natural numbers, i.e. $a \leq b$ if and only if $a \mid b$. Let μ be the Möbius-function of P and $r, s \in \mathbb{N}$. Compute $\mu(r, s)$ (hint: Möbius functions will be introduced in the lectures on Monday, July the 6 th). You can conclude that for $\frac{s}{r}=a \in \mathbb{N}$ you can define $\mu(a):=\mu(r, s)$ which is the Möbius function from number theory.

