2. Übung zur Vorlesung: Algorithmische Geometrie (KG II)

Felsner/ Heldt 22. Oktober

Abgabe: 30. Oktober

- (1) Gegeben ist eine n-elementige Punktmenge P in der Ebene und ein weiterer Punkt q mit $q \in \text{conv}(P)$. Zeige das es drei Punkte $p_1, p_2, p_3 \in P$ gibt $q \in \text{conv}(p_1, p_2, p_3)$.
- (2) Sind p_1, p_2 und p_3 kolineare Punkte in der Ebene und p_4 ein weiterer, nicht kolinearer Punkt. Verwende das cco-Prädikat um zu ermitteln, ob p_3 auf der Strecke zwischen p_1 und p_2 liegt. Ist dies auch ohne p_4 und nur mit cco möglich?
- (3) Seien $n \geq 5$ Punkte in der Ebene gegeben. Von diesen werden zufällig vier ausgewählt. Beweise

$$\operatorname{Prob}(p_1 \in \operatorname{conv}(p_2, p_3, p_4)) \le \frac{1}{5},$$

wobei p_1, p_2, p_3, p_4 die vier ausgewählten Punkte sind. (Zeige dazu zunächst, dass jede 5 elementige Punktmenge mindestens ein konvexes Viereck enthält.)

- (4) Beweise die in der Vorlesung angegebene Laufzeit für den Algorithmus von Chan.
- (5) Erstelle Implementierungen der Interfaces Point und KonvexHull in Java. Diese sind unten angegeben und lassen sich auch auf der Vorlesungshomepage finden. Verwende dabei möglichst effiziente Algorithmen.

```
import java.util.*;

public interface Point {
    public boolean cco(Point a, Point b);
}

public interface KonvexHull {
    public void setPoints(List<Point> L);
    public List<Point> getHull();
    public List<Point> getPoints();
    public KonvexHull merge(KonvexHull A);
}
```