
Technische Universität Berlin

Fakultät II – Mathematik und Naturwissenschaften

Hook Graphs and More: Some Contributions

to Geometric Graph Theory

Masterarbeit

im Studiengang Mathematik

Vorgelegt von

Matrikelnummer

Erstkorrektor

Zweitkorrektor

Abgabetermin

Thomas Stuart Hixon

319892

Prof. Stefan Felsner

Prof. Rolf H. Möhring

Berlin, 25.05.13

Die selbständige und eigenhändige Anfertigung
versichere ich an Eides statt.

Datum/ Ort/ Unterschrift

Abstract

In this work we focus on some problems in geometric graph theory. There are two main
topics that we study. The main body (Chapter 2) of this thesis is about intersection graphs
of geometric objects in the plane. The work in Chapter 2 was initially motivated by the
study of segment graphs. A graph is a segment graph if the vertices can be represented by
straight line segments in the plane, and (v,w) is and edge if and only if the two corresponding
segments intersect. We introduce a class of segment graphs called cyclic segment graphs,
where a graph is a cyclic segment graph if it has a segment representation whose segments all
lie on lines tangent to a parabola and no two segments are parallel. We give various models
of these graphs and show that bipartite cyclic segment graphs are exactly grid intersection
graphs. A consequence of this, due to a result by Kratochvíl [36], is that it is NP-complete
to test whether a graph is a cyclic segment graph. In later sections we discuss a subclass
of cyclic segment graphs, which we call hook graphs. Hook graphs have also been studied
independently by Cantanzaro et al. [9], who introduce hook graphs using a different model
and are motivated by a problem in Biology. A hook graph is a segment graph that has a
representation whose segments all lie tangent to a parabola and no two segments are parallel.
In this thesis we introduce hook graphs using a different model of cyclic segment graphs.
From this other model, we also prove that a graph is a hook graph if and only if it is the
intersection graph of a set of axis aligned rectangles in the plane such that the top left corner
of each rectangle lies on a unique point on the the line {(x, x) : x ∈ R}. We also characterise
hook graphs as being the graphs for which there exists an ordering of the vertices that
satisfies a condition called the cross completion property. We use these various models to
show that interval graphs, outerplanar graphs, and 2-directional orthogonal ray graphs are
all hook graphs. In the final section on this topic, we give polynomial time algorithms to
compute the clique number and the independence number of a hook graph. We also show
that for any hook graph G we have χ(G) = O(log(ω(G))), where χ(G) and ω(G) are the
chromatic number of G and the clique number of G, respectively. This result follows from a
theorem by Chalermsook [10] about rectangle intersection graphs. We conclude the topic by
showing that the independence number is a 2-approximation of the clique covering number
for all hook graphs.

The other topic in my thesis is the focus of Chapter 3. Here, we discuss a colouring
problem that is related to conflict-free colourings of point sets. Namely, let RL be the set of
all axis aligned rectangles in R2 that intersect a fixed horizontal line L. We define χk(RL)
to be the minimum number of colours so that for any point set P , it is possible to find a
colouring of the points so that for each rectangle R ∈ RL with |R⋂

P | ≥ k, there are two
points in P

⋂

R that are coloured differently to each other. We show that the upper bounds
on χk(RL) given by Keszegh [34] are best possible for k = 2, . . . , 5. Together with the results
by Keszegh [34], the only number k for which χ(RL) remains unknown is when k is 6.

Contents

1. Introduction 7

1.1. Some Basic Definitions . 9
1.2. Planar Graphs . 11
1.3. The 4 Perfect Graph Parameters . 13

1.3.1. Algorithms . 15
1.3.2. Perfect Graphs . 17

2. Cyclic Segment Graphs and Diagonal Hook Graphs 19

2.1. Cyclic Segment Graphs . 19
2.1.1. Related Graph Classes . 20
2.1.2. Models and the Recognition Problem 24

2.2. Hook Graphs . 31
2.2.1. Models of Hook Graphs . 31
2.2.2. Contained Graphclasses, Forbidden Subgraphs and Basic Properties . 34

2.3. The Perfect Graph Parameters of Hook Graphs 44
2.3.1. A Polynomial Time Algorithm for Weighted Maximum Clique 45
2.3.2. A Polynomial Time Algorithm for Weighted Maximum Independent Set 49
2.3.3. Approximating the Chromatic Number 53
2.3.4. Approximating the Clique Covering Number 67

3. A Problem Related to Assigning Frequencies 72

3.1. Definitions and Motivation . 72
3.1.1. A Frequency Assignment Problem . 72
3.1.2. Conflict-Free Colourings . 73
3.1.3. Related Results . 78

3.2. Axis-Aligned Rectangles that are Pierced by a Line 79
3.2.1. Bounding χ2(RL) from Below . 81
3.2.2. χk(RL) for k > 2 . 84

4. Summary 88

4.1. Summary and Open Questions for Chapter 2. 88
4.2. Summary and Open Questions for Chapter 3. 90

A. Deutsche Zusammenfassung 91

. Bibliography 93

4

Preface

In this work I study graphs that are induced by simple geometric objects in the plane, such
as rectangles or line segments in the plane. I would like to point out that to my knowledge,
strong connections between the two main topics in this thesis are yet to have been found;
however, in both chapters the proofs of problems often exploit their geometric nature. For
this reason, this thesis has been written so that two main chapters, Chapter 2 and Chapter 3,
can be understood independently of each other. I have decided to include both of these topics
because I have spent much time engaged in them and have encountered interesting problems
in both of them, whose solutions encompass a range of techniques. The basic structure of
this thesis is as follows:

• Chapter 1 introduces some basic fundamental notions in graph theory and explains the
notation that I use in this thesis. I also include a brief introduction and an overview
of the results discussed in Chapters 2 and 3.

• Chapter 2 discusses intersection graphs. In particular, I introduce some subclasses of
segment graphs, which I call hook graphs and cyclic segment graphs. These classes
arose as a result of looking at the underlying line arrangement of segment graphs. I
present different models of these classes and relate them to some other classes that
have already been studied. I also discuss the chromatic number, clique number, in-
dependence number, and clique covering number of hook graphs and cyclic segment
graphs, giving algorithms to compute them explicitly in some cases and approximation
algorithms in other cases.

• Chapter 3 focuses on a colouring problem, which is related to conflict free colourings
of point sets in the plane. In particular, I show that some bounds given in [34] are
tight. Namely, bounds on the chromatic number of the Delauney graph (and some
generalisations of Delauney graphs) of points in the plane with respect to axis aligned
rectangles that all intersect a horizontal line.

5

Acknowledgements

I would like to express my deep gratitude to my supervisor Prof. Stefan Felsner for having
guided and supported me throughout the writing of this thesis. I would also like to thank
Prof. Rolf H. Möhring for taking his time and being interested in my work. I would like
to offer my special thanks to Nieke Aerts and Udo Hoffmann for the great help that they
provided me with during the final stages of writing up my thesis. I am also grateful to all the
members of the Diskrete Mathematik group at the Technische Universität Berlin for many
fruitful discussions, which helped me progress in my understanding of the topics. I wish to
extend my thanks to Dr. George Mertzios for the discussions and support that he provided
me with, which helped and motivated me. Finally, I wish to thank my family and friends
for their encouragement and support during the completion of this thesis.

6

1. Introduction

Graph theory is an important field in mathematics, with applications in a range of fields
including computer science, networking, and biology. This thesis focuses on graphs that are
induced by geometric objects such as line segments and rectangles in the plane.

Given a graph G = (V,E), there are many ways to represent G geometrically. The most
common way to represent graphs is by representing the vertices v ∈ V by points pv in the
plane and edges e = (v,w) by smooth curves Ce whose endpoints are pv and pw. Usually, one
also wants that the curve Ce does not go through other points px, for all vertices x that are
not in e. Such a representation is called a drawing of a graph. Given a drawing of a graph,
one can obtain the vertices and the edges of the graph from the picture, i.e., the drawing
fully describes the graph in question. One often asks whether there is a drawing of a graph
that satisfies additional properties, e.g., so that none of the curves Ce intersect each other
unless they meet in a point pv. A graph that can be drawn with this additional property is
called planar. We discuss planar graphs in more detail in Section 1.2. Investigating classes
of graphs is interesting because in many cases, problems that are difficult to solve for graphs
in general may be easier to solve for certain graph classes, for example, finding a maximum
clique in a planar graph can be done in a time that is polynomial in the number of vertices,
but computing the size of a maximum clique for a graph in general is NP-hard.
In Chapter 2 we focus on classes of graphs that are called intersection graphs. Given a family
F of sets, the graph G is called an intersection graph of F if for each vertex v of G, there is
an element Fv in the set F so that Fv

⋂

Fw 6= ∅ if and only if (v,w) is an edge of G. We only
focus on families F , whose elements can easily be described geometrically. Geometric families
F that have been studied so far include the set of axis-aligned rectangles in the plane, the
set of segments in the plane, and the set of intervals on a line. All these intersection graphs
will be discussed in more detail in Chapter 2. One nice feature of the intersection graphs
mentioned above except segment graphs, is that one can store them using a memory space
that is linear in the number of vertices of the graph. Segment graphs are more complicated
in general as the amount of space needed to store the end points of the segments can
require a memory space that is exponential in the number of vertices (see Kratochvíl and
Matoušek [37]). The structure of segment graphs in general is not well understood. For this
reason, in Section 2.1 we introduce a new subclass of segment graphs called cyclic segment
graphs. Cyclic segment graphs are investigated as a consequence of looking at segment
graphs whose segments lie on a specific line arrangement (up to homeomorphisms of the
plane). More precisely, cyclic segments graphs are defined to be segment graphs whose
segments lie on a set of lines tangent to a parabola. We give various models of this class and
manipulate one of these models to show that bipartite cyclic segment graphs are exactly grid
intersection graphs. A consequence of this result is that the recognition problem for cyclic
segment graphs is NP-hard even if we restrict ourselves to bipartite graphs. In the last two
sections of the Chapter 2, we look at a certain subclass of cyclic segment graphs, which we
call hook graphs. These graphs have also been investigated independently by Cantanzaro et

7

al. [9], who are motivated to study hook graphs by a problem in biology. In Section 2.2 we
discuss various models of hook graphs and show that 2-directional orthogonal ray graphs,
interval graphs and outerplanar graphs all have hook representations. We also note that
hook graphs are a subclass of intersection graphs of axis-aligned rectangles in the plane. In
Section 2.3 we investigate the perfect graph parameters of hook graphs, i.e., the chromatic
number, the clique number, the clique covering number, and the independence number of
hook graphs. We give polynomial time algorithms to find a maximum clique and a maximum
independent set of a hook graph. Applying a result by Chalermsook [10], we also give an
O(ω(G) log(ω(G))) bound on the chromatic number of a graph G, where ω(G) denotes the
clique number of G. Improving the upper bound on the chromatic number of hook graphs
is a particularly interesting question. For rectangle intersection graphs it is an unsolved and
challenging question to find a tight upper bound on the chromatic number by a function of
the clique number. The best known lower bound is linear and the upper bound is quadratic
in ω(G). We also show that the complement of a cycle with more than 6 vertices is not a hook
graph and we give a full description of the possible hook representations that a cycle has.
These results are motivated by the strong perfect graph theorem (Chudnovsky et al. [16]),
which states that a graph is perfect if and only if it has no odd holes and no odd antiholes
(see Section 1.3.2). We conclude the section by showing that all triangle-free hook graphs
are 4-colourable. This shows a difference to rectangle intersection graphs in general as there
exists a triangle-free axis-aligned rectangle intersection graph whose chromatic number is 6
(Asplund and Grünbaum [2]). We also include a proof of a result by Pawlik et al. [49], who
show that for each number n there exists a triangle-free segment graph Gn whose chromatic
number is n.
We conclude Chapter 2 by proving that the independence number of hook graphs is a
2-approximation of the clique covering number of hook graphs. Given a hook representation
of a graph G, we also provide a polynomial time algorithm to compute a clique covering of
size at most 2α(G), where α(G) denotes the independence number of G.
In Chapter 3, we discuss graphs and hypergraphs, whose vertices correspond to a point set
and whose edges are induced by a family of regions. Namely, consider a set P of points in
Rn and a set F of regions in Rn. We can define the graph G(P,F) as follows. The vertex
set of G(P,F) is the point set P . A set e ⊂ P is an edge of G(P,F) if and only if there
exists a region r ∈ F such that e = r

⋂

P . Motivated by a frequency assignment problem,
which we explain in Section 3.1, we are interested in investigating bounds on the chromatic
number of G(P,F) for a fixed family F and for any point set P of n points. In Chapter 3,
we focus on graphs G(P,Rl), where Rl is the set of all axis aligned rectangles that intersect
a fixed horizontal line l. In the case where F is the set of all axis-aligned rectangles in the
plane, there does not exist an upper bound on the chromatic number of G(P,F), that is, for
any number n, one can find a point set P such that G(P,F) ≥ k. Keszegh [34] proved an
upper bound of 6 on the chromatic number of G(P,Rl) for any finite point set P . We show
that this bound is best possible by giving a point set P for which the chromatic number
of G(P,Rl) is 6. Given a point set P in the plane, we also look at the graphs Gk(P,Rl),
which have the same vertex set as the graph G(P,Rl), and a set e of vertices is an edge of
Gk(P,Rl) if and only if it is an edge of G(P,Rl) that contains at least k vertices. We show
that some bounds given by Keszegh [34] on Gk(P,Rl) are best possible. Given the results
in this thesis, the only value of k for which it remains unknown whether the existing bound
on Gk(P,Rl) is best possible is when k is 6.

8

More involved introductions, which include more motivation and history of the problems can
be found within the chapters and sections in which the relevant problems are discussed. In
the remainder of this chapter we introduce some notation and some fundamental concepts
in basic graph theory, which we will use in later chapters.

1.1. Some Basic Definitions

The first thing we need to define is a graph.

Definition 1.1.1 (Graph). A graph G is an ordered pair (V,E) where V is a set and E is
a set of subsets of V of size 2. The elements of V are called vertices, and the elements of
E are called edges. We denote an edge e consisting of 2 vertices u and v by (u, v). Unless
stated otherwise, we let the natural numbers n and m denote |V | and |E|, respectively.

Note that this is actually the definition of a simple graph because we have not allowed
for loops and multiedges. Graphs can be used to model many things in the real world, for
example a railway network, where the vertices are the stations and the edges are pairs of
stations that have a connection between them with no stops in between. In Chapter 3 we
will consider the following generalised definition, where edges may contain more than two
vertices.

Definition 1.1.2 (Hypergraph). A hypergraph is an ordered pair (V, E) where V is the set
of vertices and E ⊂ 2V is the set of (hyper)edges, such that each edge contains at least two
vertices. Here, 2V denotes the power set of V .

In what follows, many of the definitions can be generalised to hypergraphs by replacing
edges by hyperedges in the definitions. Hypergraphs only appear in Chapter 3 of this the-
sis. If the generalisation of a definition is used in Chapter 3 and the generalisation is not
immediate, we will clarify it later. In what follows, we use the following notation:
• [n] = {1, 2, . . . , n} for a natural number n.
• Given a set A and a natural number k ≤ |A|, then we let

(A
k

)

= {B ⊂ A : |B| = k}.

Definition 1.1.3.

• Given two graphs G = (V1, E1) and H = (V2, E2), a function h : V1 → V2 is called an
isomorphism if h is a bijection and (u, v) ∈ E1 ⇐⇒ (h(u), h(v)) ∈ E2. In this case,
G and H are said to be isomorphic.

• A graph H = (W,E1) is called a subgraph of G = (V,E) if W ⊂ V and E1 ⊂ E. Given
a graph H, we say that G contains H if there is subgraph of G that is isomorphic to
H.

• A graph H = (W,E1) is called an induced subgraph of G if W ⊂ V and
E1 = {(u, v) ∈ E : u, v ∈ W}. We denote H by G|W and we sometimes called H the
restriction of G on W .

• The complement of G is defined to be the graph G = (V,E), where E =
(

V
2

)

\ E.

We now mention a few basic examples of graphs.

9

Definition 1.1.4. Given a graph G = (V,E):

• G = (V,E) is called a path if V = {v1, v2, . . . vn} and E = {(vi, vi+1) : i ≤ n − 1}.
Such a path is called a path from v1 to vn (see Figure 1.1). Given a path from v1 to
vn, if we add the edge (v1, vn) then G is called a cycle (see Figure 1.2).

• G is called connected if for all u, v ∈ V the graph G contains a path from u to v.
Intuitively, this means that any vertex can be reached from another by going along
edges.

• G is called a forest if it does not contain a cycle. If in addition, G is connected, then
it is called a tree (see Figure 1.3).

• The complete graph on n vertices is defined by the graph G = ([n],
([n]
2

)

), which we
denote by Kn.

• Maximal connected subgraph are called a connected component of G. The connected
components of G create a partition of the vertex set.

vnv1 v2 vn−1

Figure 1.1.: A path.

v1
v2

v3

vn

vn−1

Figure 1.2.: A cycle. Figure 1.3.: A tree.

Definition 1.1.5 (Complete k-partite graph). Given natural numbers n1, n2, . . . , nk we
denote by Kn1,n2,...,nk

, the graph G = (V,E) that has a partition of the vertices into sets
V1, V2, . . . , Vk such that |Vi| = ni for all i ≤ k and E = {(v,w) : v ∈ Vi, w ∈ Vk and i 6= k}.
The graph Kn1,n2,...,nk

is called a complete k-partite graph; in the case that k = 2, the
graph Kn1,n2 is also called a complete bipartite graph. A graph is called k-partite if it is
isomporphic to a subgraph of a complete k-partite graph.

We conclude this subsection with a useful equation about the relation between the degrees
of the vertices and the total number of edges.

Definition 1.1.6 (Degree, average degree, and maximum degree). Given a vertex v such
that (u, v) ∈ E, we call u a neighbour of v and say that u is adjacent to v. The neigh-
bourhood of v, denoted N(v), is the set of all neighbours of v. The degree of v, denoted
deg(v), is the cardinality of N(v). The maximum degree of G, denoted △(G), is equal to
max{deg(v) : v ∈ V }.

Proposition 1.1.7 (The degree-sum formula). Given a graph G = (V,E), we have

2|E| =
∑

v∈V

deg(v). (1.1)

10

Proof. We show this equation by double counting the number of ordered pairs (v, e) such
that v ∈ V , e ∈ E and v ∈ e. If we count the number of edges incident to each vertex, we get
the term on the right hand side of Equation 1.1.7. Each edge contains 2 vertices, therefore
by summing over all edges, we get the left hand side.

1.2. Planar Graphs

We often see maps of railway networks, where a station v is represented by a point pv, and
an edge e = (v,w) is represented by a curve whose end points are pv and pw. This is called
a drawing of the graph in the plane. Certain properties of such a drawing make it more
understandable for the reader. In this section we introduce good drawings of graphs and
planar graphs together with some of their properties. For a more detailed introduction to
planar graphs we refer the reader to the book by Diestel [19].

Definition 1.2.1. A good drawing (or embedding) of a graph G = (V,E) in R2 is a map
φ : G → R2, where φ maps each vertex to a point in the plane, and each edge to a con-
tinuously differentiable curve that does not self intersect. In addition, we require that two
vertices are not mapped to the same point and an edge e is not drawn through the image of
a vertex that is not in e. Formally

• φ(u) 6= φ(v) ∀v 6= u, and

• given an edge (u, v), then φ((u, v)) ⊂ R2 \ φ(V \ {u, v}), with φ(u) and φ(v) as end
points.

When talking about a drawing we will refer to a curve φ(e) and a point φ(v) by the edge
e and the vertex v, respectively. It is easy to see that every graph has a good drawing in
R2 as we can map the vertices to a set of points that are in general position (no three lie
on a straight line) and we can define φ(e) to be the line segment between pv and pw, where
e = (v,w). Therefore any set of points in general position can give a good drawing of the
graph. In the case of the railway network, we are interested in drawing graphs which are
easier to read, or minimize certain criteria. ’Easier to read’ is a very general statement; in
graph theory, we formalise it in different ways depending on what we think ’easier’ means.
One example of this is to avoid crossings.

Definition 1.2.2 (Planar graph). A graph G is a planar graph if there exist a (good)
drawing of G such that if two curves φ(e) and φ(e′) intersect then they must intersect in
the image of a vertex. Such a drawing is called a planar embedding or a plane graph. Unless
stated otherwise, we assume that an embedding of a planar graph is a planar embedding.

The Jordan Curve Theorem states that if we have a continuously differentiable loop, then
removing it from the plane leaves two path connected regions, one of which is bounded,
the other unbounded. Using the Jordan Curve Theorem, we see that when removing the
planar embedding from the plane, we are left with a collection of bounded regions and one
unbounded region. The bounded regions are called bounded faces and the unbounded region
is called the unbounded face. Given a plane graph G = (V,E) we define the dual of G to be
G∗ = (V ∗, E∗), where V ∗ corresponds to the set of faces of G. The pair (f1, f2) is in E∗ if
and only if there exists an edge e in E such that e lies on the boundaries of f1 and f2. Note

11

that f1 and f2 are not necessarily different faces, and that the dual graph of a simple plane
graph is not necessarily simple.

Remark 1.2.3. Given a planar graph, then 2 different embeddings could have duals which
are not isomorphic. Figure 1.4 shows two embeddings of a graph (shown with black vertices)
together with its dual (shown with white vertices). The dual of the left embedding has 2
vertices that have 5 neighbours, whereas the dual of the right embedding only has one vertex
with 5 neighbours. This shows that in general the dual is only well defined for a given
embedding.

Figure 1.4.: Two planar embeddings of a graph with non isomorphic duals.

Definition 1.2.4. A triangulation T is a maximal (simple) plane graph with at least 3
vertices, i.e., if an edge is added to the edge set then it is no longer planar.

One property of triangulations is that the (edge) boundary of each face is of length 3 and
consists of exactly three different edges. Another property is that every triangulation on
more than three vertices has a simple dual graph whose vertices all have degree equal to 3.

Definition 1.2.5. An outerplanar graph is a planar graph that has an embedding G with
dual G∗ such that the vertex in V ∗ corresponding to the outerface of G is adjacent to all
other vertices in V ∗.

Although the dual of a planar graph may not be unique, the following result implies that
the number of faces in an embedding of a planar graph does not depend on the embedding.

Theorem 1.2.6 (The Euler Formula (see [23]). Let G be a (simple) plane graph, whose set
of vertices, edges, and faces are V , E, and F , respectively. Then, we have

|V | − |E|+ |F | = 2.

The following bounds can be proved by applying the Euler Formula and double counting
the number of pairs (e, f) such that e is an edge that is on the boundary of f .

Remark 1.2.7. For G = (V,E) a plane graph with face set F , the following hold:

• |E| ≤ 3|V | − 6

12

• |F | ≤ 2|V | − 4

• If G contains no cycle of length 3, then |E| ≤ 2|V | − 4

Using these upper bounds, it is not hard to show that K5 and K3,3 are not planar. We can
also conclude that planar graphs are not very dense, i.e., planar graphs do not have many
edges. Kuratowski [40] showed a characterisation of graphs that are not planar. For a proof
that is written in English, we refer the reader to the book by Diestel [19]. To understand
the statement of the theorem, we need the following definition.

Definition 1.2.8. We say we subdivide an edge e = (u, v) when we introduce a new vertex
u′ to the vertex set and replace e by the two edges (u, u′) and (u′, v) (see Figure 1.5). A
subdivision of a graph G is a graph G′ that is obtained by subdiving edges of the graph G,
i.e., there exists a sequence of graphs G = G1, G2, . . . , Gn = G′ such that Gi is obtained by
subdividing an edge in Gi−1.

e vu

An edge e.

vu′u

e subdivided.

Figure 1.5.: The subdivision of an edge.

Theorem 1.2.9 (Kuratowski). A graph G is planar if and only if no induced subgraph of
G is isomorphic to a subdivision of K3,3, and K5.

This theorem implies that being a planar graph can be defined in a purely combinatorial
way. One final result we should mention is the famous Four Colour Theorem, which was an
open problem for over a century. The result was first proved with the aid of a computer in
1976 by Appel and Haken [30]. This proof however, is unable to be checked by hand and was
not accepted by everyone when it was published. In 1997, Robertson et al. [51] published a
proof that is easier to check, but is still computer aided.

Theorem 1.2.10 (The Four Colour Theorem). The chromatic number (see Definition 1.3.1)
of planar graphs is at most 4.

1.3. The 4 Perfect Graph Parameters

Here we discuss the 4 perfect graph parameters whose computation have many practical
applications. Bounds on these parameters, their computational complexity, and possible
approximation algorithms are some of the many interesting problems that are investigated
when considering different graph classes.

Definition 1.3.1 (Good colourings and the chromatic number χ(G)). Given a graph (or
hypergraph) G, a good colouring of G is a map c from the vertices to a finite set C such that
for each edge e there exists two vertices u, v ∈ e with c(u) 6= c(v). An edge that does not
satisfy this condition is called monochromatic. The elements of C are called the colours and
we call c(v) the colour of v. Given a colour ci ∈ C, the set {v ∈ V : c(v) = ci} is called a
colour class. If the cardinality of C is k, then we say that G is k-colourable.

13

• The chromatic number of G, denoted χ(G), is the minimum value of k for which G is
k-colourable.

Remark 1.3.2. If a graph G is k-partite, then χ(G) ≤ k.

The following is an example of a practical application of the chromatic number. Suppose
the head of a company wants to organise some meetings, where all members of the company
should attend one meeting. For a meeting to go well, he would like to avoid that one person
does not like another in the meeting. To this end, we define a conflict graph of a group of
people to be the graph G = (V,E), whose vertices correspond to people, and whose edges
are pairs of people where at least one of them dislikes the other. The chromatic number of
this conflict graph of employees would then correspond to the minimum number of meetings
needed.

Definition 1.3.3 (Clique number ω(G)). Let G = (V,E) be a graph, then:

• A set C ⊂ V is called a clique if G|C is isomorphic to the complete graph K|C|.

• The clique number of G, denoted ω(G), is the size of the largest clique in G (denoted
ω(G)). We call a graph G triangle-free if there is no subgraph of G that is isomorphic
to K3.

Remark 1.3.4. Given a graph G, we have that ω(G) ≤ χ(G). This is because no two
vertices in the same clique can have the same colour in a good colouring of G.

Definition 1.3.5 (Independence number α(G)). A subset of the vertices I is called an
independent set if G|I has no edges. The size of the largest independent set in G is called
the independence number of G, denoted α(G).

The independence number of the conflict graph of employees as defined above, gives the
biggest possible size of a good meeting.

Remark 1.3.6 (α(G) ≥ n
χ(G)). Let φ be a good colouring of a graph G. Then a colour class

of φ is an independent set. Using this, we have that α(G) is at least as big as the largest
colour class of φ, which at least as big as the average size of a colour class of φ. Taking a
good colouring with χ(G) colours, we get α(G) ≥ n

χ(G) .

Definition 1.3.7 (Clique covering number γ(G)). A clique covering of a graph G, is a
partition of the vertex set into cliques. The clique covering number of G, denoted γ(G), is
the minimum size of a clique covering of G.

Remark 1.3.8. A clique in G is an independent set in G, and therefore a clique covering
of G corresponds to a partition of V into colour classes of a good colouring of G. From this
we obtain:

• ω(G) = α(G).

• γ(G) = χ(G).

• γ(G) ≥ α(G), from remark 1.3.4.

14

Remark 1.3.9 (χ(G) ≤ △(G)+1). A good colouring using △(G)+1 colours can be obtained
by colouring the vertices one by one maintaining that no edge is monochromatic. Because
we have △(G) + 1 colours available, we know that for each vertex v there exists one colour
that has not been used in its neighbourhood, which we assign to c(v).

Definition 1.3.10. A graph G is k-degenerate if there exists an ordering of the vertices
v1, v2, . . . , vn such that deg(vi) is less than k+1 in G|Vi , where Vi is the set {v1, v2, . . . , vk}.

Proposition 1.3.11. Every k-degenerate graph is k + 1 colourable.

Proof. Let G be a k-degenerate graph. We colour the vertices in a k-degenerate order. When
colouring a vertex, we use a colour that has not been used on any of its neighbours that have
already been coloured. We can always find a free colour because when we colour a vertex it
is only adjacent to at most k vertices that have already been coloured. Therefore, there is
always a colour available for this vertex. It follows that we have a good colouring of G.

Proposition 1.3.12. A (finite) forest is 1-degenerate.

Proof. Given a forest G, then consider a vertex v1 of G. If v1 is a leaf, i.e., deg(v1) = 1,
then we are done. If v1 is not a leaf, then let v2 be a neighbour of v1. Continuing like this,
consider the vertex vi, for i ≥ 2; if vi is not a leaf, then let vi+1 be a neighbour of vi that
is not vi−1. Because we have a tree, we have that vi 6= vj for i 6= j, otherwise G would
contain a cycle. Therefore as our graph is finite, this process must end and the last vertex
that we have encountered is a leaf. Removing this vertex, we obtain another forest for which
we can find another leaf in the same manner. By reversing the order of the vertices that we
removed, we obtain an order of vertices that satisfies the 1-degeneracy condition.

From the discussion above, we get the following:

Corollary 1.3.13. Trees are 2 colourable.

1.3.1. Algorithms

Given an algorithm, its (run time) complexity is the maximum time that it takes to run
through the algorithm given an input of size n. The complexity is written as a function
of the input size. The function may also be dependent on other parameters. A problem
is said to be solvable in linear (resp. polynomial, or exponential) time, if there exists an
algorithm whose complexity is a linear (resp. polynomial, or exponential) function of n. The
complexity of an algorithm is often written using the Θ notation, which ignores coefficients
and lower order terms, for example, for the function f(n) = 5n4 + 2n2 + 1, one can write
f(n) = Θ(n4).

Let f be a function and let g1(n) and g2(n) be two other functions such that
g1(n) ≤ f(n) ≤ g2(n) for all n. Then we can write f(n) = Ω(g2(n)) and f(n) = O(g2(n)),
where coefficients and lower order terms are also ignored when writing Ω(g2(n)) and O(g2(n)),
for example, if n2 − 5 ≤ f(x) ≤ 3n4 + n3 then f(n) = Ω(n2) and f(n) = O(n4). If in ad-
dition, Θ(g1(n)) = Θ(g2(n)) = g(n), we can conclude that f(n) = Θ(g(n)). This can be
useful if we have a complicated function f(n) or a function that we cannot state explicitly.

15

Definition 1.3.14.

• A decision problem is a problem whose answer is either ’yes’ or ’no’. For a fixed number
k ≥ 3, determining whether a graph is k-colourable is a decision problem.

• A (combinatorial) optimisation problem is a problem where we want the best possible
solution with respect to a given order. Finding the chromatic number of a graph is an
example of an optimisation problem.

• A problem is said to be in NP, if it is a decision problem and there exists a certificate
such that one can check this certificate in polynomial time with respect to the size of
the input in the question. A certificate in this case is a correct solution if the answer
is yes, for example, the question whether a graph is 3-colourable is in NP: If a graph
is 3-colourable, then we can choose the certificate to return a good 3-colouring of the
graph, which can be verified in quadratic time whether it is good.

• Given a problem Q we say that we can reduce it to a problem P if we can find a
polynomial time algorithm to solve problem P that uses an algorithm to solve problem
Q as its only subroutine.

• A problem Q is said to be NP-hard if it is as hard as the hardest problem in NP, that
is, we can reduce all problems Qp in NP to problem Q.

• P is said to be NP-complete if it belongs to NP and is NP-hard.

Note that if we reduce a NP-hard problem to another problem, then this other problem is
also NP-hard. It was shown by Cook [17] that a problem called 3-SAT is NP-complete. Since
then, 3-SAT has been reduced to many other problems, which in turn were often reduced
to other problems. Proofs that show NP-hardness usually find a reduction from a problem
that is known to be NP-hard. An example of such a reduction will be given in Chapter 2,
where we show that the recognition problem for cyclic segment graphs is NP-complete. The
recognition problem for a class C of graphs is defined to be the problem of checking whether
a graph G is a member of C or not. The main motivation for introducing NP-hardness is
that there are many problems in NP for which no polynomial time algorithm has been found
to solve any of them. However, it remains unsolved and is one of the millenium problems
whether P = NP. By definition, it would be enough to find a polynomial time algorithm to
solve one of the NP-complete problems, in order to find a polynomial time algorithm for
each NP-complete problem.

Approximation algorithms Often, we cannot find a polynomial time algorithm to solve a
problem. When dealing with optimisation problems one can try to find another algorithm
which approximates the correct solution. Such an algorithm is called an approximation
algorithm.

Definition 1.3.15 (ρ-approximation). Let f(G) and g(G) be graph parameters, such that
f(G) and g(G) are real numbers. If g(G) ≤ f(G) ≤ ρg(G) for all graphs, then g(G) is called
a ρ-approximation of f(G). Note that ρ can be a function of g(G).

16

As mentioned above, one might not be able to find a fast algorithm to compute f(G).
In this case, minimising ρ for which we can find an approximation algorithm with a fast
complexity could be useful. In Chapter 2, we will show that the independence number α(G)
is a 2-approximation of the clique covering number γ(G) for hook graphs. We also find a
quadratic time algorithm to compute the clique number of hook graphs given a representa-
tion. In general, it is not true that γ(G) is bounded by a function of α(G): Mycielski [44]
showed a construction of triangle-free graphs with arbitrarily high chromatic number. Tak-
ing the complement of those graphs, we obtain graphs with maximal independent set of
size 2 and arbitrarily large clique covering number. In Chapter 2 we give a sketch of a
construction by Pawlik et al. [49] that gives triangle-free segment intersection graphs with
arbitrarily large chromatic number. If G is an intersection graphs of axis alligned rectangles,
Asplund and Grünbaum [2] proved that χ(G) = O((ω)2) and they asked whether a linear
bound exists. The best known bound by Hendler [32] remains quadratic. However, some
improvements have been made by Chalermsook [10] for rectangle representations that have
no containment intersections. As hook graphs have a representation without containment
intersections, we apply the result by Chalermsook [10] to show that the chromatic number
of hook graphs is of size O(ω(G) log(ω(G))).

1.3.2. Perfect Graphs

We conclude this chapter by stating a few results about perfect graphs and discussing some
graph classes that are perfect. For a better understanding of perfect graphs, we refer the
reader to the book by Dienstel [19]. As mentioned above, it can be interesting to study how
the clique number and the chromatic number of graphs in a certain graph class relate to
each other. One can also study the properties of graphs with a chromatic number and a
clique number that relate in a certain way. One class of graphs that is defined in this way is
the class of perfect graphs.

Definition 1.3.16. A graph G is called perfect if for all induced subgraphs G′ of G, we
have χ(G′) = ω(G′).

Perfect graphs were introduced by Berge [6], who also made 2 famous conjectures in 1961.
The first one was proved by Lovasz [41], which states that the complement of perfect graphs
are perfect. After much interest, the second conjecture was proved by Chudnovsky et al. [16],
who published it in 2006. Their proof is based on much research in the structure of Berge
graphs (defined below).

Theorem 1.3.17 (The strong perfect graph theorem). A graph G is perfect if and only if
it does not contain an odd hole or an odd antihole, where:

• An odd hole is an induced subgraph that is isomorphic to C2k+1 for a given k ≥ 2.

• An odd antihole is an induced subgraph that is isomorphic to C2k+1 for a given k ≥ 2.

Graphs that don’t have odd holes or antiholes are called Berge graphs.

From this characterisation by Berge graphs, one can easily deduce that chordal graphs are
perfect.

17

Definition 1.3.18. A graph G is called chordal if there is no number k ≥ 4 for which the
cycle on k vertices Ck is an induced subgraph of G.

The next remark implies that chordal graphs are perfect.

Remark 1.3.19. Chordal graphs do not contain any odd antiholes.

Proof. The graph C5 is isomorphic to C5, therefore it is not contained in a chordal graph. It
is not hard to see that Ck contains an induced C4 for all k ≥ 6, therefore Ck is not chordal
for k ≥ 5. Being chordal is heredetary, therefore we have that chordal graphs contain no
odd antiholes.

Another class of graphs that are perfect are comparibility graphs. In order to define a
comparability graph, we need to define a poset.

Definition 1.3.20 (poset). A partially ordered set (poset) is an ordered pair (P,≤), where
P is a set and ≤ is a binary relation that satisfies the following properties:

• Reflexivity: For all x ∈ P we have x ≤ x.

• Antisymmetry: If x ≤ y and y ≤ x, then we have x = y.

• Transitivity: If x ≤ y ≤ z, then we have x ≤ z.

A binary relation that satisfies these three properties is called a partial order.

Definition 1.3.21. A graph G = (V,E) is called a comparability graph if we can define a
partial order ≤v on the vertex set V , so that for all vertices v1 and v2 with v1 6= v2 we have:

(v1, v2) ∈ E if and only if v1 ≤v v2 or v2 ≤ v1.

It is not too difficult to see that a comparability graph G cannot contain an odd hole or
an odd antihole. The key tool that one can use to prove this is as follows:
If (v1, v3) and (v2, v3) are both edges of G, but (v1, v2) is not an edge of G, then from
transitivity we have v1 ≤ v3 if and only if v2 ≤ v3.

There are many other classes of graphs that are perfect; however, we only decided to
include these classes here because they will be mentioned later in this thesis.

18

2. Cyclic Segment Graphs and Diagonal

Hook Graphs

In this chapter we investigate problems on certain classes of geometric intersection graphs.
More specifically, we introduce two new classes of intersection graphs, which we call cyclic
segment graphs and hook graphs. We study some of their properties and discuss relations to
other classes of intersection graphs that appear in the literature. We include various models
of the two graph classes, which we use to tackle many of the problems that we discuss.

In Section 2.1 we introduce cyclic segment graphs and discuss related graph classes that
initially motivated us to study cyclic segment graphs. We give various models of cyclic
segment graphs and use these models to show that bipartite hook graphs are exactly grid
intersection graphs. A consequence of this is that the recognition problem for cyclic segment
graphs is NP-complete. In Section 2.2 we look at a subclass of cyclic segment graphs, which
we call hook graphs. We characterise hook graphs as being graphs for which there exists an
ordering of the vertices that satisfies a property that we call the ‘cross completion property’.
We also show that outerplanar graphs, 2-directional orthogonal ray graphs, and interval
graphs all have hook representations. In Section 2.3 we give polynomial time algorithms
to compute a maximum-weight clique and a maximum-weight independent set of a hook
graph given a weight function on the vertices. We also give polynomial time approxima-
tion algorithms to compute the clique covering number and the chromatic number of hook
graphs. These approximation algorithms use the fact that hook graphs can be represented
as rectangle intersection graphs in the plane.

2.1. Cyclic Segment Graphs

We begin by giving the definition of an intersection graph.

Definition 2.1.1. Given a family of subsets F of a set X, G is called an intersection graph
of F if there is an injective map f : (V,E)→ F, such that for v,w ∈ V

(v,w) ∈ E ⇐⇒ f(v)
⋂

f(w) 6= ∅.
The first thing to notice is that every graph is an intersection graph. Indeed, given a

graph G = (V,E), we can assign to each vertex v ∈ V , the set F (v) = {(v,w) : (v,w) ∈ E}.
We now show that G is an intersection graph of F = {F (v) : v ∈ V }. This is true because
F (v)

⋂

F (w) 6= ∅ if and only if there is an edge e ∈ E with e ∈ F (v) and e ∈ F (w), which
is true if and only if v ∈ e and w ∈ e, which is equivalent to (v,w) ∈ E.

In this thesis we focus on geometric intersection graphs, where F is a subset of a family F
of geometric objects such as rectangles or disks in the plane. Such intersection graphs are
called intersection graphs of F .

19

Examples of geometric intersection graphs that have been the focus of much research are
when:

• F is the set of intervals on the real line. Intersection graphs of intervals on the real
line are also called interval graphs.

• F is the set of convex sets in the plane.

• F is the set of Jordan curves in the plane. A Jordan curve in the plane is defined to be
the image of a continuously differentiable function f : [0, 1] → R. Intersection graphs
of Jordan curves in the plane are also called string graphs.

• F is the set of line segments in the plane. Intersection graphs of line segments in the
plane are also called segment graphs.

The specific choice of a set F ⊂ F for a graph G is called a representation of G. A property
P of a graph is called hereditary if given any graph G with property P , then all induced
subgraphs of G also have property P . Being an intersection graph of a family F is hereditary.
Indeed, given an intersection graph G = (V,E) of a family F and a subset of the vertices
H, then any representation F of G restricted to the elements of F that correspond to the
vertices of H is a representation of G|H .

2.1.1. Related Graph Classes

In this subsection, we discuss some results about the geometric intersection graphs mentioned
above. We conclude this subsection with an open question that initially motivated us to
investigate cyclic segment graphs.

Remark 2.1.2.

1. G is an interval graph =⇒ 2. G is a segment graph =⇒ 3. G is the intersection of
convex sets in the plane =⇒ 4. G is a string graph.

Proof.
(1) =⇒ (2) This is immediate as intervals on the real line can be seen as segments in R2.
(2) =⇒ (3) This is also immediate because a segment is a convex set.
(3) =⇒ (4) This can be seen by filling each convex set with a string, so that if two of the
convex obects intersect then so do their corresponding strings (see Figure 2.1).

Figure 2.1.: Obtaining strings from convex regions in the plane.

20

The study of geometric intersection graphs began with the study of interval graphs, which
were introduced by Benzer [4] in an article about genetic data analysis. Besides having
real life applications in biology, interval graphs also have many applications in scheduling
problems and printed circuit board designs. Since their introduction, there has been a lot
of research about interval graphs and their structure is quite well understood. It is not
difficult to see that interval graphs are chordal, therefore they are perfect graphs (see Sub-
section 1.3.2). Gilmore and Hoffman [26] showed that one can characterise interval graphs
as chordal graphs whose complements are transitively orientable. They also showed that
interval graphs are exactly those graphs whose maximal cliques can ordered so that for each
vertex v, all the cliques that contain v are consecutive in the ordering. The latter has led
to an O(|V |+ |E|) time algorithm by Booth and Lucker [7], who defined PQ-trees to solve
the recognition question of whether a graph is an interval graph. Since then, other lin-
ear time algorithms that use lexicographic breadth first search and exploit other properties
and characterisations of interval graphs have been constructed (see Corneil et al. [18], and
Habib et al. [29]). One motivation of these more recent algorithms is to simplify the com-
plexity analysis and to avoid the use of PQ-trees, which are not simple to program and
involve many case distinctions. Regarding the perfect graph parameters, there are simple
greedy linear time algorithms that compute a maximum clique, a maximum independent
set, an optimal colouring, and a mimimum clique decomposition of interval graphs given
an interval representations as input. For more about interval graphs we refer the reader
to a book by Golumbic [27]. The study of intersection graphs has now become an broadly
studied area of research. One direction in which interval graphs have been generalised is the
study of segment graphs, string graphs and intersection graphs of other geometric objects
in the plane. In this chapter we focus on subclasses of segment graphs and string graphs.
We introduce some new graph classes, which give more insight into the structure of segment
graphs. Before we introduce them, let us look at a few results from the literature to give an
overview of the topic and motivate our results. We begin by showing that not all graphs are
string graphs.

Proposition 2.1.3 (Ehrlich et al. [20]). Full subdivisions of non planar graphs are not string
graphs, where the full subdivision of a graph G is the graph obtained when subdividing every
edge of G once.

v

e

w

G

ve

w

v

G•

ce

cx

Representation

ce

cw

cv cx

Contraction

Figure 2.2.: Some steps in the proof of Proposition 2.1.3 shown on a planar graph G.

Proof. Let G• be the full subdivision of a non-planar graph G and assume it is a string
graph. Let VS denote the set of vertices that have been added to G when subdividing (the
white vertices in the figure above) and let V denote the set of vertices in G• that are not in

21

VS . The vertices in V form an independent set in G•. Therefore, in the string representation
of G•, the set V corresponds to a collection of disjoint Jordan curves A in the plane. We
can then contract each curve cx in A to a point (see Figure 2.2) such that:

• The set of curves that each contracted curve intersects does not change.

• Uncontracted curves now intersect if and only if there exists a contracted curve cx that
they both intersected before the contraction, in which case they will intersect in the
contraction of cx.

Each curve ce that has not been contracted corresponds to a subdivision vertex ve, which
in turn corresponds to an edge e = (v,w) of G. The curve ce intersects the contracted
segments cv and cw of v and w, respectively. We remove any loops from ce and ‘cut’ off the
ends so that ce has cv and cw as endpoints. We do this for all uncontracted curves ce. None
of the modified uncontracted curves intersect unless they meet in an endpoint. Therefore
we have a planar drawing of G, which is a contradiction.

Note that a subdivision of a graph is non planar by Kuratowski’s Theorem (see Theo-
rem 1.2.9), which states that a graph is planar if and only if it does not contain a subdivision
of K5 or K3,3. Ehrlich et al. [20] noticed that all planar graphs are string graphs: For each
vertex, one can assign a path around the vertex which contains 3

4 of each edge adjacent to
that vertex as in Figure 2.3. The intersection graph of this set of strings is clearly isomorphic
to the original graph. The dashed line in Figure 2.3 shows such a string for the vertex v.

v

Figure 2.3.: Obtaining strings from a planar embedding.

One can also prove this result by applying Koebe’s coin kissing theorem, which states
that every planar graph is the intersection graph of discs in the plane such that no disc
intersects the interior of another (for a proof, see the book by Pach and Agarwal [45]). One
consequence of this approach is that we can also conclude that planar graphs have intersec-
tion representations of convex sets in the plane. One could ask the question whether there
are string representations of planar graphs in which Jordan curves are allowed to pairwise
intersect in at most one point in which they cross. Graphs with such string representa-
tions are called pseudosegment intersection graphs or 1-string graphs. In the constructions
of string representations of planar graphs given above, the Jordan curves either cross more
than once (in the first construction) or have intersection points that are not crossings (in the
second construction). Scheinerman [53] conjectured in his PhD thesis, that planar graphs
have a segment representation. After years of work on the topic by various researchers,
Chalopin and Gonçalves [12] proved this result for pseudosegment intersection graphs, and

22

later for segment graphs [13]. Regarding the complexity of recognising string graphs, Kra-
totchvíl [39] showed that the recognition of string graphs is NP-hard. It was unknown for a
long time whether recognising string graphs was decidable, which was finally proved by Pach
and Tóth [48]. One year later, it was shown by Schaefer et al. [52] that recognising string
graphs is in NP, which means that recognising string graphs is NP-complete. Regarding the
recognition of segment graphs, Kratochvíl and Matoušek [37] showed that the recognition
of segment graphs has the same complexity as deciding truth in the existential theory of
the reals, which is NP-hard and lies in PSPACE, but is unknown to be in NP. Kratochvíl
and Matoušek [37] also show that some segment representations can need an exponential
number of bits to store the end coordinates of the segments. They also show that for a num-
ber k ≥ 3, the recognition problem is NP-complete for segment graphs whose segments are
restricted to lie in at most k different directions (where parallel segments do not intersect).
Kratotchvíl [36] showed that this result also holds for the case when k = 2.

It follows from the proof of Scheinerman’s conjecture that the problem of computing
the independence number, clique covering number, and the chromatic number of segment
graphs is NP-hard, given the segment representation as an input. This is because all of
these problems are NP-hard for planar graphs and because the construction of a segment
representation of planar graphs given by Chalopin and Gonçalves [12] is found in polynomial
time.

Recently, Cardinal et al. [8] showed that computing the clique number of a segment graph
is NP-hard, by showing that for each planar graph G one can compute an even subdivision G′

of G whose complement has a segment intersection representation. The important results
that they prove are that G′ is an even subdivision that can be computed in polynomial
time, and that the segment representation of G′ can be constructed in polynomial time.
Using these results, they reduce the problem of computing the independence number of
planar graphs to the problem of computing the clique number of segment graphs. The
reduction is as follows: Given a planar graph G, compute the special subdivision G′ whose
complement is a segment graph. Then compute the segment representation of G′. It follows
that because G′ is an even subdivision of G, the independence number of G can be computed
in constant time given the clique number of G′. Computing the independence number of
planar graphs is NP-hard, therefore, computing the clique number of segment graphs is
NP-hard. In fact, the representation that Cardinal et al. [8] find can be extended to a
ray intersection representation. Therefore computing the clique number of ray intersection
graphs is NP-hard.

From the results mentioned above, we see that many problems on segment graphs are
much more difficult to solve than for interval graphs. Although many results about segment
graphs are now known, their structure remains not very well understood.

Aside: An interesting open question A graph is called coplanar if it is the complement
of a planar graph. If coplanar graphs are a subclass of segment graphs, then this would
give a simpler reduction from computing the maximum independent set of planar graphs
to computing the maximum clique of segment graphs. This problem, originally posed by
Kratochvíl [38], remains unsolved and was the starting point of our research.

23

2.1.2. Models and the Recognition Problem

In this subsection we define cyclic segment graphs and prove the equivalence of various dif-
ferent models of these graphs. We conclude this subsection by showing that the recognition
problem is NP-complete for cyclic segment graphs.

For the remainder of this thesis, unless stated otherwise, we consider segment graphs
which have a representation such that no two segments are parallel. Given such a segment
representation we can then extend the segments to lines in the plane, which we call the
underlying line arrangement of the segment representation. For a better understanding of
line arrangements see the book by Felsner [23]. As mentioned above, it is known to be difficult
to recognise segment graphs in general. For this reason, we question whether the recognition
problem is easier if we restrict our attention to segment graphs whose underlying arrangement
is the cyclic arrangement (a set of lines that are tangent to a convex body). Normally, we
consider line arrangements in the projective plane and two line arrangements are considered
equivalent if there is a projective transformation that maps one line arrangement onto the
other. For this reason, the line arrangement is well defined without specifying the convex
body. It is not enough that two arrangements are projectively equivalent in order to conclude
that the same segment graphs lie on them. Indeed, if we take the convex body to be a
parabola, then it does not give the same class of graphs as if we were to take a closed convex
body. The reason for this is that a projective transformation f might map a finite segment
to a segment through infinity, although f preserves incidences and maps lines to lines. We
will mention a specific difference between the classes later in this chapter. After some study,
we realised that the segment graphs that lie on the set of lines tangent to a parabola have
very interesting properties. This is how we came to investigate cyclic segment graphs, which
we define as follows:

Definition 2.1.4. A segment graph G is called a cyclic segment graph if there exists a
segment representation of G whose underlying line arrangement has all its lines tangent to
a parabola.

Once again, we do not specify the parabola; however, this class is well defined as we can find
a homeomorphism of the plane mapping the one parabola to the other. This homeomorphism
also maps segments to segments in the Euclidean plane and preserves incidences.
Note that no two segments lie on the same line as we do not allow for parallel segments. For
each vertex v, let Sv denote its corresponding segment and Lv denote the line on which Sv

lies. Given a cyclic segment representation, we let L1, L2, . . . , Ln be the ordering of the
lines so that the slope of Li is less than the slope of Lj whenever i < j. We denote by Si,
the segment that lies on Li in the representation. Let v1, v2, . . . , vn be the ordering of the
vertices such that vi is associated to segment Si in the representation; we call this ordering
the cyclic segment ordering of the vertices.

We define the Θ-graph to be the graph shown in Figure 2.4. Figure 2.5 shows a cyclic
segment representation of Θ together with the underlying arrangement, the ordering of the
lines, and the parabola.

24

v3

v1v2

v4

Figure 2.4.: The Θ-graph.

L1

L2

L3

L4

Figure 2.5.: Cyclic segment representa-
tion of Θ.

We now introduce another model, which we call the point-interval-containment model of
the cyclic segment graph.

Definition 2.1.5. Given a graph G = (V,E), we assign to each vertex v the ordered pair
(Iv , pv) where Iv is an interval in the real numbers and pv ∈ R such that pv 6= pw for v 6= w.
We call the set {(Iv , pv) : v ∈ V } a point-interval-containment representation of G, or a PIC
representation) of G if (v,w) ∈ E if and only if pv ∈ Iw and pw ∈ Iv.

Given a cyclic segment ordering v1, v2, . . . , vn, let pi and Ii denote pvi and Ivi , respectively.

Definition 2.1.6. A set of real intervals I1, I2, . . . , In is called a indexed interval represen-
tation of a graph G = (V,E) if there exists an ordering of the vertices v1, v2, . . . , vn such
that (vi, vj) is an edge if and only if i ∈ Ij and j ∈ Ii.

Proposition 2.1.7. Given a graph G = (V,E) then the following three statements are
equivalent:

• G is a cyclic segment graph

• G has an indexed interval representation

• G has a PIC representation.

Essentially, a point pv in the PIC representation corresponds to an index in the indexed
interval representation, which corresponds to a line Lv in the cyclic segment representation.
An interval Iv corresponds to where a segment lies on Lv.

Proof. (1) =⇒ (2) : Given a cyclic segment representation then let v1, v2, . . . , vn be the
cyclic segment ordering. We show that we can use this ordering for the indexed intervals,
i.e., we assign to each vi an interval Ii. The position of segment Si on line Li in the cyclic
segment representation determines Ii. We use the points where other lines intersect Ii as
a means to define where Si lies on Li. Namely, we label (on Li) the intersection points
between Li and Lj with the number j. We also label the intersection point between Li and
the parabola with the number i (see Figure 2.6).

A consequence of the line ordering is that the labels on Li are increasing from left to right.
We let Ii = [mi − 1

2 , hi +
1
2], where mi and hi are taken to be the lowest and highest labels

of intersection point that the segment Si contains, respectively. In the special case that Si

doesn’t contain a label, we let Ii = [0, 12] (note that in this case, the vertex vi doesn’t have

25

l2

1
2

3

Figure 2.6.: Labelling the intersection points along line L2.

neighbours). By construction (vi, vj) is an edge if and only if the intersection point labelled
i (on Lj) is in Sj and the intersection point labelled j (on Li) is in Si, which is true if and
only if i ∈ Ij and j ∈ Ii. Therefore we have an indexed interval representation of G.
(2) =⇒ (1) : Let I1, I2, . . . , In be an indexed interval representation of G and order the
vertices v1, v2, . . . , vn so that Ii corresponds to vi. Draw n lines tangent to the parabola and
label them L1, L2, . . . , Ln as above. We draw the segment Svi on on line Li. Let j (resp. k)
be the largest (respectively smallest) index of a neighbour of vi, then we draw Si so that
one of its endpoints is the intersection between Li with Lj, and the other is the intersection
between Li and Lk. We then extend all segments slightly to avoid segments of length zero
and ensure that if two segments intersect then they cross. For an isolated vertex vi, we
define Si to be a small segment on line Li that touches the parabola and no other lines in
the arrangement. The result is a cyclic segment representation of our graph.
(2) =⇒ (3): If we have an indexed interval representation I1, I2, . . . , In of G then a PIC
representation of G is (I1, 1), (I2, 2), . . . , (In, n).
(3) =⇒ (2): Given a PIC representation {(Iv , pv) : v ∈ V } of G, let v1, v2, . . . , vn be
the ordering of the vertices such that pvi < pvj when i < j. We claim that this is a valid
ordering for the indexed intervals. To each non-isolated vertex vi we assign the interval
Ii = [min{j : pvj ∈ Ivi} − 1

2 ,max{j : pvj ∈ Ivi}+ 1
2]. We let Ii be the interval [0, 12] for any

isolated vertex vi. It is easy to see that I1, I2, . . . , In is an indexed interval representation of
G.

In the proof above, we saw that a cyclic segment ordering corresponds to an ordering of
the vertices for the indexed interval representation, which corresponds to the ordering of the
vertices with respect to the size of the pv’s. Applying the method in Proposition 2.1.7 to
our representation of the Θ-graph (see Figure 2.5) we obtain the indexed intervals:

I1 = [1.5, 4.5], I2 = [0.5, 4.5], I3 = [0.5, 2.5], and I4 = [0.5, 4.5].

Definition 2.1.8. Given a cyclic segment ordering of a graph G, we define the canonical
indexed interval representation of G to be the set of indexed intervals {I1, I2, . . . , In}, where
Ii is defined as follows:

• Ii = [min{j : (vi, vj) ∈ E},max{j : (vi, vj) ∈ E}] if vi has at least 2 neighbours.

• Ii = [j − 1
2 , j +

1
2] if vi has only one neighbour vj.

• Ii = [i− 1
2 , i+

1
2] if i has no neighbours.

26

This gives a quadratic time algorithm for computing an indexed interval representation
given a cyclic segment ordering. Therefore, we can check in polynomial time if an ordering
of the vertices of a graph is a valid cyclic segment ordering of the vertices by checking the
indexed interval representation obtained above. The recognition of a cyclic segment graphs
G is therefore in NP with a valid ordering as a certificate. Using the indexed interval model,
we now show that cyclic segment graphs are a strict subclass of segment graphs.

Claim 2.1.9. K2,2,2 is not a cyclic segment graph.

Proof. Given the tripartition V1, V2, V3, assume K2,2,2 is a cyclic segment graph. In this case,
we can find an indexed interval representation, whose ordering is v1, v2, . . . , vn. We restrict
this representation to four vertices v1, vi, vj , vk, where i, j, and k are defined as follows.

• Assume v1 ∈ V1 and let vk be the vertex with the highest index, which is not in V1

(without loss of generality, let vk ∈ V2).

• Let vi and vj be the elements of V3. By definition 1 < i, j < k.

V1

V3

V2

Figure 2.7.: K2,2,2,.

vkv1

vi vj

Figure 2.8.: Restriction to {v1, vi, vj , vk}.

We see that vi and vj are both connected to v1 and vk (see Figure 2.8), which means that Ii
and Ij both contain 1 and k. This implies that i ∈ Ij, and j ∈ Ii because 1 < i, j < k. By
definition of the indexed intervals representation we therefore get (vi, vj) ∈ E, which is a
contradiction of the fact that (vi, vj) is not an edge of K2,2,2.

Figure 2.9.: A segment representation of K2,2,2.

A segment representation of K2,2,2 is shown in Figure 2.9. The underlying arrangement
here is also the cyclic arrangement, so this shows it is necessary to specify that the un-
derlying arrangement lies tangent to the parabola and not just any convex body. Having
shown that cyclic segment graphs are a strict subset of segment graphs, one might hope to
recognise cyclic segment graphs in polynomial time. However, the next theorem implies that
a polynomial time algorithm that tests whether a graph G is a cyclic segment graph does
not exist (unless P = NP).

Theorem 2.1.10. Given a graph G, recognising whether G is a cyclic segment graph is
NP-complete.

27

We have already seen that recognising cyclic segment graphs is in NP. It remains to show
that it is NP-hard, which is the aim of the remainder of this section. We begin by introducing
another intersection model of cyclic segment graphs.

Definition 2.1.11. A Generalised hook is one of the following curves in the plane:

1. A vertical segment, which lies below the diagonal, i.e., the line {(x, y) ∈ R2 : x = y}.

2. A horizontal segment, which lies below the diagonal.

3. The union of a horizontal and a vertical segment which lie below the diagonal and
intersect on the diagonal.

In all three cases above, the generalised hooks are allowed to touch the diagonal.
A generalised hook graph is the intersection graph of a set of generalised hooks that satisfies
the following conditions:

• There are no intersections between parallel segments.

• There are no intersections between the horizontal (resp. vertical) parts of a hooks and
horizontal (resp. vertical) segments.

• Generalised hooks don’t intersect each other on the diagonal.

The diagonal

Figure 2.10.: A set of 5 disjoint generalised hooks.

A generalised hook graph representation whose hooks all touch the diagonal is called a
hook representation. A graph that has a hook representation is called a hook graph. Hook
graphs will be discussed in detail later in the chapter.

Claim 2.1.12. A graph G is a cyclic segment graph if and only if it is a generalised hook
graph.

Proof. Given a cyclic segment graph G with a PIC representation {(Iv , pv) : v ∈ V }. We
map each (Iv, pv) to the vertical segment {pv} × Iv in R2. We then reflect any part of this
segment which lies above the diagonal to get the following set (see Figure 2.11):

Hv = {(pv , j); j ∈ Iv and j ≤ pv}
⋃

{(j, pv); j ∈ Iv and j ≥ pv}.

Figure 2.11 shows these steps for the ordered pair ([0.5, 4.5], 2). This delivers a set of
generalised hooks whose intersection graph is isomorphic to G because Hv and Hw intersect
if and only if pv ∈ Iw and pw ∈ Iv.

28

line x = y (the diagonal)

0.5

4.5

2 x

y

The vertical segment.

Hi

2 4.5

The reflection in the diagonal.

Figure 2.11.: Reflecting a generalised hook in the diagonal.

For the other direction, take a generalised hook representation of a graph G. Reflect
the horizontal part of each generalised hook Hv in the diagonal to obtain vertical segments
of the form pv × Iv. The set {(Iv, pv) : v ∈ V)} is then a PIC representation of our
graph after slightly perturbing any pv’s that coincide (without changing the point-interval-
containments).

Definition 2.1.13. Given a cyclic segment ordering of G, let {I1, I2, . . . , In} be the cor-
responding canonical indexed interval representation. We define the canonical generalised
hook representation of G to be the representation we obtain when following the steps of the
proof above on the PIC representation {(I1, 1)(I2, 2), . . . , (In, n)}.

Remark 2.1.14. There is a nice visual way of obtaining the PIC representation from the
generalised hook representation. Let p′v be the intersection point between the generalised hook
Hv and the diagonal. If Hv doesn’t touch the diagonal then it must be a segment, in which
case let p′v be the intersection of the underlying line and the diagonal (see Figure 2.12). We
then project each generalised hook Hv onto the diagonal obtaining a segment H ′

v as shown
by the arrows in Figure 2.12.

Hv
p ′
v

H
′
v

Hooks touching the diago-
nal.

H
′
v

p ′
v

Hv

Vertical hooks.

Hv

H
′
v

p ′
v

Horizontal hooks.

Figure 2.12.: Mapping a hook to an interval and a point.

By construction, two generalised hooks Hv and Hw intersect if and only if points p′w and
p′v are in Hv and Hw respectively. Considering the diagonal as the real line, the point p′v
can be seen as a real number pv and the projected segment H ′

v as an interval Iv. Therefore,
{(Hv , pv) : v ∈ V } is a PIC representation of G.

29

Unless stated otherwise, given a generalised hook representation, we let H1,H2, . . . Hn be
the ordering of the generalised hooks that corresponds to a cyclic segment ordering of the
vertices, i.e., the ordering of their pv’s along the diagonal.

Definition 2.1.15. A graph is said to be a grid intersection graph if it is the intersection
graph of horizontal and vertical segments in the plane such that parallel segments do not
intersect.

Using the generalised hook model, we find a bijection between bipartite cyclic segment
graphs and grid intersection graphs.

Proposition 2.1.16. Finite bipartite cyclic segment graphs are exactly finite grid intersec-
tion graphs.

Kratochvíl [36] proved that the recognition of grid intersection graphs is NP-complete.
This result together with the fact that bipartite graphs can be recognised in polynomial
time gives a proof of Theorem 2.1.10:

Proof of Theorem 2.1.10. Algorithm 1 shows the pseudocode of a reduction from the recog-
nition of grid intersection graphs to the recognition of cyclic segment graphs. Note that it
is important that the subroutine used to check whether a graph is bipartite is a polynomial
time algorithm. The algorithm actually tells us if a graph is a bipartite cyclic segment graph
or not, but this is the same as a grid intersection graph by the previous proposition.

Algorithm 1 GridIntReduction

Input: A graph G = (V,E)
Output: ’YES’ if G is a grid intersection graph, ’NO’ if G is not a grid intersection graph.
1: if G is bipartite then

2: if G is a cyclic segment graph then

3: ANSWER← Y ES
4: else

5: ANSWER← NO
6: else

7: ANSWER← NO
8: return ANSWER

Proof of Proposition 2.1.2. For finite graphs we first show that grid intersection graphs are
bipartite cyclic segment. A grid intersection representation of a finite graph must be con-
tained in a bounded region. Therefore, this representation can be translated below diagonal
to get a bipartite cyclic segment representation. Now for the other inclusion, consider a
generalised hook representation of a bipartite cyclic segment graph G = (V1;V2, E). Map
the generalised hooks Hi ∈ V1 to vertical segment H ′

i by reflecting the horizontal parts of
the generalised hooks in the diagonal (see Figure 2.13). If Hi ∈ V2 we reflect only the ver-
tical part in the diagonal to get H ′

i. This maps V1 and V2 to sets of vertical and horizontal
segments, respectively.

It is immediate from the following three observations that the intersection graph of these
segments is isomorphic to G.

30

Set H of generalised hooks. The image if H ⊂ V1. The image if H ⊂ V2.

Figure 2.13.: The image of generalised hooks depending on their colour class.

1. There is no new intersection below the diagonal as no new part of a segment is created
beneath the diagonal.

2. If there is an intersection between H ′
i and H ′

j above the diagonal, then Hi and Hj

must intersect as anything that has been mapped above the diagonal must have been
mapped there by the same map, namely, the reflection in the diagonal.

3. No intersection between Hi and Hj could have been removed: Either it was between
a horizontal part of a vertex in V1 and a vertical part of a vertex in V2, in which case
these lines were both reflected by the same mapping. Or vice versa, in which case
the transformation would not have affected this intersection. Note that, no two of the
parallel H ′

i intersect.

Therefore bipartite cyclic segment graphs and grid intersection graphs are the same.

This is an interesting result, which shows that two seemingly different classes are the same.
We conclude this section by remarking that although grid intersection graphs are exactly
bipartite cyclic segment graphs, claim 2.1.9 shows that not all segment graphs that have a
representation using segments with three different slopes are cyclic segment graphs. Also
note that K2,2,2 is a planar graph, hence not all planar graphs are cyclic segment graphs.

2.2. Hook Graphs

In this section we investigate hook graphs and introduce a useful characterisation of hook
graphs that is completely combinatorial. This characterisation is a tool that we often use
later in this chapter. In Subsection 2.2.2, we compare hook graphs to other known graph
classes. Although hook graphs seem quite restricted, it turns out that the class is rich in
the sense that it contains other interesting and non trivial graph classes. We also discuss a
special subclass of bipartite hook graphs, which we call stick graphs. We give an example of
a graph that is a bipartite hook graph, but not a stick graph. We conclude this section by
showing that hook graphs are a subclass of the class of intersection graphs of axis-aligned
rectangles.

2.2.1. Models of Hook Graphs

We begin this subsection by reminding the reader of what a hook graph is.

31

Definition 2.2.1. A hook graph is a cyclic segment graph which has a generalised hook
representation where all the generalised hooks touch the diagonal. We call such generalised
hooks in the plane hooks.

Remark that hooks can also be horizontal or vertical segments; the only restriction is that
hooks must touch the diagonal.

Figure 2.14.: The three different types of hooks.

Remark 2.2.2.

1. Hook graphs have an PIC representation {(I1, p1), (I2, p2), . . . , (In, n)} such that for
all i, we have pi ∈ Ii. This is immediate when obtaining the point-interval-containment
representation by projecting the hooks onto the diagonal as described in remark 2.1.14.

2. Cyclic segment graphs are hook graphs if and only if they have a cyclic segment repre-
sentation, whose segments themselves are tangent to the parabola. This is immediate
from the proof of Proposition 2.1.7.

H i
H j

H k
H l

Figure 2.15.: Four hooks with Hi <h Hj <h Hk <h Hl.

Given a hook representation H of a hook graphs G, we call the cyclic segment ordering
corresponding to H, a hook ordering of G. In poset notation, given a set H of hooks in the
plane, we denote the hook orderings by the poset (H, <h). We abuse notation slightly and
denote the corresponding ordering of the vertices by (V,<h). Generally, for a given hook
graph the hook ordering is not unique.

We now introduce a completely combinatorial characterisation of hook graphs.

Definition 2.2.3 (Cross Completion Property). Given a graph G, then an ordering of
the vertices v1, v2, .., vn is said to satisfy the cross completion property if

For all i < j < k < l, if (vi, vk), (vj , vl) ∈ E then (vj , vk) ∈ E. (2.1)

Remark 2.2.4. It is easy to see that an ordering of the vertices satisfies the cross completion
property if and only if

32

• for all i < j < k < l such that i (resp. l) is the minimum (resp. maximum) index such
that (vi, vk), (vj , vl) ∈ E then we must have (vj , vk) ∈ E.

Proposition 2.2.5. A graph is a hook graph if and only if there exists an ordering of the
vertices that satisfies the cross completion property.

Proof. Given a hook representation of a graph, we show that the hook ordering v1, v2, . . . , vn
satisfies the cross completion property. Assume there exists i < j < k < l such that
(vi, vk), (vj , vl) ∈ E. This implies that Hj must leave the triangle △ to the right, where △
is the triangle bounded by the diagonal, the vertical part of Hk, and the horizontal part of
Hi (see Figure 2.16). By continuity, we must have that Hj must intersect Hk in point p (see
Figure 2.16). Therefore (vj , vk) ∈ E and the hook ordering satisfies the cross completion
property.

△

H i

H j
H k

H l

p

Figure 2.16.: Hooks satisfy the cross completion property.

We now show that an ordering satisfying the cross completion property is a hook ordering
of the vertices of the graph. The indexed intervals of the representation are constructed as
follows:

Ii = [min{i, {min{j : (vi, vj) ∈ E}},max{i,max{j : (vi, vj)}}].

Highest index of a neighbour

Hi

Lowest index of a neighbour

Figure 2.17.: The hook Hi that corresponds to Ii.

We have clearly forced i to be in Ii, so in order to check that these intervals define a hook
graph we have to check that

(vj , vk) ∈ E ⇐⇒ j ∈ Ik and k ∈ Ij for j < k.

(⇒) This is immediate by the definition of the intervals.
(⇐) Given the intervals as defined above, assume that there exists i < j such that i ∈ Ij
and j ∈ Ii, but (vi, vj) /∈ E. In this case:

33

• i ∈ Ij =⇒ there exists k < i such that (vk, vj) ∈ E, and

• j ∈ Ii =⇒ there exists l > j such that (vi, vl) ∈ E.

From these two facts, the cross completion property implies that (vj , vk) ∈ E, which is a
contradiction. Therefore a graph has an ordering with the cross completion property if and
only if it is a hook graph.

Proposition 2.2.6. Given a graph G, an ordering <h of the vertices satisfies the cross
completion property if and only if we can draw the graph in the plane so that the following
hold:

• The vertices lie on the x-axis so that the order of the vertices from left to right is <h.

• All the edges can be drawn above the x-axis so that if two edges (v,w) and (x, y)
intersect with v < w < x < y, then (w, x) must be an edge as well (see Figure 2.18).

We call a drawing as in Proposition 2.2.6, a hook ordering on a line.

u v w x

Figure 2.18.: Forbidden ordering if (v,w) is not an edge.

Given an ordering of the vertices V of a graph and four vertices u <h v <h w <h x,
then we say that the (ordered) 4-tuple, (u, v, w, x), violates the cross completion property
if (u,w) and (v, x) are both edges, but (v,w) is not an edge. By Proposition 2.2.5, if there
is a 4-tuple that violates the cross completion property, then the ordering cannot be a hook
ordering of V .

2.2.2. Contained Graphclasses, Forbidden Subgraphs and Basic Properties

We begin this subsection by showing that there are cyclic segment graphs that are not hook
graphs.

Proposition 2.2.7. Hook graphs are a strict subclass of cyclic segment graphs.

Before we prove this, we prove a lemma about induced disjoint paths in a hook graph. Two
paths x1, x2 . . . xi and y1, y2, . . . , yj in G are called induced disjoint paths if G|{x1,...,xi,y1,...,yj}

is the disjoint union of the two paths.

Lemma 2.2.8. Let (V,<h) be a hook ordering of a hook graph G and let x1, x2 . . . xi and
y1, y2, . . . , yj be two induced disjoint paths. We have that the two paths cannot alternate in
the hook ordering, that is, given 4 distinct numbers i1, i2, j1, j2 ∈ N, then the following order
of vertices is forbidden:

• xi1 <h yj1 <h xi2 <h yj2.

Proof. Assume there exist vertices as above, such that xi1 <h yj1 <h xi2 <h yj2 . Consider
the hook ordering on a line. The edges in the path P from xi1 to xi2 must block the vertex
yj1 from yj2 (see Figure 2.19). By this we mean that any path P ′ in the top half of the plane

34

from yj1 to yj2 would cross an edge in P or go through a vertex in P . However, the paths P
and P ′ do not share a vertex and so there must be an edge in P that intersects an edge in
P ′. Therefore, by the property of a hook ordering on a line, there must be an edge between
a vertex of P and a vertex of P ′. This contradicts that the paths P and P ′ are induced
disjoint paths. We conclude that two induced disjoint paths cannot alternate in the hook
ordering.

P

xi1 yj1 xi1 yj2

Figure 2.19.: yj1 blocked from yj2 by P .

Using this lemma, we show that the full subdivision of K2,3 (see Figure 2.20), denoted
K•

2,3, is not a hook graph. Figure 2.21 shows a cyclic segment representation of K•
2,3. Once

we have shown that K•
2,3 is not a hook graph we have proved Proposition 2.2.7.

A B

C
BC

AD
D

Figure 2.20.: K•
2,3.

B

A

Figure 2.21.: A cyclic segment represen-
tation of K•

2,3.

Proof of Proposition 2.2.7. Suppose that there exists a hook representation of K•
2,3. Con-

sider the hook ordering cyclically, that is, take the hook ordering on a line then ‘glue the
two ends of the line together’ to obtain the hook ordering on a circle (see Figure 2.22). The
vertices labeled A and B naturally partition the other vertices into two sets according to
where they lie in this order. By the pidgeonhole principle, two of the three white vertices
in Figure 2.20 must lie in the same half. Without loss of generality these are the vertices C
and D in Figure 2.20 and they lie on the circle in the order shown in Figure 2.23.

v3
v4

v1 v2
v11

v10

v9
v8

v7 v6
v5

Glueing point

Figure 2.22.: The hook ordering on a cir-
cle.

C
A

D

B

Figure 2.23.: Order of vertices A,B,C,D
on the circle.

The paths A,AD,D and B,BD,D are alternating in the hook ordering as we go around
the circle. No matter where we break this cyclic order we must still have that these two

35

paths alternate in the hook ordering. However, these two paths are disjoint, which is a
contradiction of Lemma 2.2.8.

Remark 2.2.9. The proof of Proposition 2.2.7, can be generalised in the following way:
Given a graph G and two non-adjacent vertices x and y in G. Then there do not exist
three disjoint induced paths P1, P2, and P3 from x to y such that each path has at least 5
vertices, i.e., if |P1|, |P2|, |P3| ≥ 5 are are paths with no vertices in common, then the edge
set of G|P1∪P2∪P3 must contain edges that are not in the paths P1, P2, and P3 (abusing the
notation slightly by regarding a path Pi as a set of vertices and as a graph).

Note that K•
2,3 is a bipartite graph, therefore by Proposition 2.1.2, we have shown that

not all grid intersection graphs are hook graphs. We now show that the graph G shown in
Figure 2.25 is not a hook graph. Before we prove that G is not a hook graph, we show that
the induced subgraph of G shown in Figure 2.24 has a representation that is fairly restricted.

c

c′ b′

b
a

a′

Figure 2.24.: The induced subgraph.

b∗b

b′c′
c

a

a′

Figure 2.25.: Another non hook graph.

Proposition 2.2.10. Consider a representation of the graph shown in Figure 2.24 with the
vertices named as in the figure. If vertex a is the lowest vertex in the hook ordering and
a <h b <h c, then the only possible canonical hook representations are the ones shown in
Figure 2.26.

Ha

Hb

Hc

Hc′
Hb′
Ha′

Representation 1.

Hb
Ha

Hc′
Hc

Hb′
Ha′

Representation 2.

Figure 2.26.: The two possible canonical hook representations of G.

Proof. Consider the vertices named as in Figure 2.24 and satisfying the conditions of the
proposition, then we must have that c <h a′. If this were not true, then either we have
b <h a′ <h c, or a <h a′ <h b. In the first case, the (ordered) 4-tuple (a, b, a′, c) violates
the cross completion property. In the second case, we cannot add c′ to the ordering without
violating the cross completion property:

1. If b <h c′, then the 4-tuple (a, a′, b, c′) must violate the cross completion property.

36

2. If c′ <h b, then the 4-tuple (a, c′, b, c) must violate the cross completion property.

Note that the second statement above does not depend on the position of a′, therefore we
must have that b <h c′. We now make the following observations:

• We have that c <h b′. If this were not true, from the fact that c <h a′, the 4-tuple
(a, b′, c, a′) would violate the cross completion property.

• We have that b′ <h a′. If this were not true, the 4-tuple (a, b, a′, b′) would violate the
cross completion property. Here we used that b <h c <h a′ and b <h c <h b′.

• We have that c′ <h b′. If this were not true, the 4-tuple (b, c, b′, c′) would violate the
cross completion property.

Combining the restrictions above, there are only two possible hook orderings given the
assumptions on a, b, c. These orderings correspond to the canonical hook representations in
Figure 2.26.

Proposition 2.2.11. The graph G shown in Figure 2.25 is not a hook graph.

Proof. Assume that we can find a hook representation of the graph G shown in Figure 2.25.
In this case we can find a canonical hook representation of G. Because of the symmetry
in the graph, we can assume without loss of generality that the restriction of the hook
ordering on the set {a, b, c, a′, b′, c′} satisfies the conditions in the statement of the pre-
vious proposition. Therefore, the canonical hook representation restricted to the hooks
{Ha,Hb,Hc,Ha′ ,Hb′ ,Hc′} is one of the two representations in Figure 2.26. Suppose we have
representation 1 (the other case is similar), then we cannot place b∗ in the ordering without
violating the cross completion property:

• If b∗ <h a, then the 4-tuple (b∗, a, b′, a′) violates the cross completion property.

• If a <h b∗ <h c, then the 4-tuple (a, b∗, c, b′) violates the cross completion property.

• If c <h b∗ <h c′, then the 4-tuple (c, b∗, c′, b′) violates the cross completion property.

• If c′ <h b∗ <h a′, then the 4-tuple (b, c′, b∗, a′) violates the cross completion property.

• If a′ <h b∗, then the 4-tuple (a, b, a′, b∗) violates the cross completion property.

Therefore G is not a hook graph.

Remark 2.2.12. If we add edges between any of the white vertices in Figure 2.25, then the
new graph that we obtain is also not a hook graph. This is true because we only used the fact
that we cannot represent the vertex b∗ in the proof that the graph in Figure 2.25 is not hook
graph.

Having mentioned graph classes that are not hook graphs, we now discuss some graph
classes that have hook representations.

Proposition 2.2.13. Outerplanar graphs are hook graphs.

37

Cut vertex

Figure 2.27.: Adding a (white) vertex and edges to remove cut vertices.

Proof. Let G be an outerplanar graph. If there are any cut vertices, we add a vertex to the
outer face and connect it to two of the neighbours of the cut vertex that are in different
components (see Figure 2.27). We do this in such a way that the graph remains outerplanar
by avoiding that we enclose a vertex. This gives us a 2-connected outerplanar graph G′ with
G as an induced subgraph.

As induced subgraphs of a hook graphs are also hook graphs, it is enough to show that G′

is a hook graph. Now, as the graph is 2-connected, the outer face is a cycle. Let v1, v2, . . . , vn
be the order in which we meet the vertices when going around the outer face of an outerplanar
embedding of G′ in a clockwise direction starting from any vertex v1. We show that this
ordering satisfies the cross completion property.
Given vertices vi, vj , vk, vl with i < j < k < l then they lie in clockwise order along the
outerface. If (vi, vk) is an edge, then it must be a Jordan edge going through the bounded
region that the outerface defines; if not, one of vj or vl would not lie incident to the outerface,
which is a contradiction of G′ being outerplanar. Similarly, if (vj , vl) is an edge, then it must
also lie in the bounded region. Therefore, it not possible to have both of these edges in our
graph as they would cross in the outerplanar embedding of G′. This proves that the ordering
v1, v2, . . . , vn satisfies the cross completion property.

Another example of graphs that have hook representations are 2-directional orthogonal
ray graphs.

Definition 2.2.14. A 2-directional orthogonal ray graph (2DORG) is the intersection graph
of horizontal and vertical rays in R2, where

• A horizontal ray is defined as {(x, y) : x ≤ z} for fixed y, z in R.

• A vertical ray is defined as {(x, y) : y ≥ z} for a fixed x, z in R.

(x, z)

Figure 2.28.: A horizontal ray.

(x, z)

Figure 2.29.: A vertical ray.

2DORGs were introduced in 2008 by Shrestha et al. [55] as a subclass of Orthogonal ray
graphs, where an orthogonal ray graph is the intersection graph of horizontal and vertical

38

half lines in the plane (note that the rays may go to infinity to the north, east, south,
and west). In this paper they give a characterisation of 2DORGs and a characterisation of
trees that are 2DORGs. They also show that orthogonal ray graphs are a strict subclass of
unit grid intersection graphs, which are defined to be graphs that have a grid intersection
representation whose segments are all of the same length. Shrestha et al. [54] published
a paper in 2009 explaining some motivation for studying orthogonal ray graphs and used
them to model defective nano-wire crossbars. In 2010, Shrestha et al. [56] showed that
2DORGs are exactly bipartite graphs whose complement is a circular arc graph. They then
apply a result by Trotter and Moore [43] to show that a graph is a 2-dimensional orthogonal
ray graph if and only if its associated bipartite poset has interval dimension at most 2,
which implies that 2DORGs have a characterisation using forbidden induced subgraphs (see
Trotter [59]). Applying a result by Feder et al. [22] they also show that a graph is a 2DORG
if and only if it is chordal bipartite and contains no edge asteroid. Another consequence
of this characterisation is that there exists an O(n2) time algorithm to test if a graph is
a 2DORG (from a result by McConnell [42]). For a better understanding of the different
characterisations of 2DORGS, see Shrestha et al. [56].

Remark 2.2.15 (2DORGs have hook representations). If we take a finite 2-directional
orthogonal ray graph, then we can move the line f(x) = y to the left until we have all the
intersections between the rays below it. We can then remove the infinite parts of the rays
that all lie above this line to obtain a hook representation of the graph.

Figure 2.30.: Hook representations of a 2DORG.

We now introduce another subclass of bipartite hook graphs, which we call stick graphs.

Definition 2.2.16. We define a stick to be a hook that is a horizontal or a vertical segment.
A graph G is a stick graph if it is the intersection graph of a set of sticks. Such a hook
representation that consists only of sticks is called a stick representation. The hook ordering
of a stick representation is called a stick ordering. For a vertex v in a stick graph, we denote
the stick corresponding to v in a representation by sv.

Remark 2.2.17. Above, we have shown that all 2DORGs have a special type of stick rep-
resentation, namely, all the horizontal sticks are before all the vertical sticks in the hook
ordering. It is not difficult to see that if all the sticks in a stick representations of a graph
G have this additional conditional, then they can be extended to obtain a 2DORG represen-
tations of G. Therefore, this gives a characterisation of 2DORGs.

As the set of vertical segments and the set of horizontal segments both form an inde-
pendent set, we get that stick graphs are bipartite. One can show that all cycles with an

39

even number of vertices have stick representations (see Figure 2.31 for a representation of
a 6-cycle, denoted C6). Because 2DORGs do not contain a cycle on more than 4 vertices, it
follows that not all stick graphs are 2DORGs. Following a similar argument to the one in
Proposition 2.2.5, we can characterise stick graphs as follows.

Proposition 2.2.18. A graph G = (V,E) is a stick graph if and only if it is bipartite and
there exists an ordering <s of the vertices of G such that:

1. The ordering <s satisfies the cross completion property.

2. If A and B are the two colour classes of G, then for all vertices a ∈ A and b ∈ B such
that (a, b) is an edge of G, we have that a <s b.

This ordering <s corresponds to the stick ordering.

Later in Theorem 2.3.28, we describe all the possible hook orderings of a cycle. Apply-
ing Theorem 2.3.28, together with the property 2 of the stick ordering stated in Proposi-
tion 2.2.18, one can show that the stick ordering of a cycle of even length is unique up to
graph automorphisms. We now use the uniqueness of stick orderings of cycles to show that
not all bipartite hook graphs have stick representations.

Proposition 2.2.19. There exists a bipartite hook graph that doesn’t have a stick represen-
tation.

Before we show this result, we prove a lemma about the structure of a stick representation
of the graph G6 shown in Figure 2.32, which is the key gadget in the construction of a
bipartite hook graph that has no stick representation.

s6
s5

s4
s3

s2
s1

Figure 2.31.: Stick repre-
sentation of
C6.

x yx′ y′

Figure 2.32.: The graph
G6.

sy

sx

Figure 2.33.: The sticks in
case 1.

Lemma 2.2.20. Given a stick representation of the graph G6, which is shown in Figure 2.32,
if the vertices x and y in Figure 2.32 satisfy x <s y, then one of the two following statements
hold:

1. The stick sx is a horizontal segment and the stick sy is a vertical segment (see Fig-
ure 2.33).

2. The sticks sx and sy are seperated from each other, i.e., any continuous curve in the
plane that intersects both sx and sy must either cross the diagonal or intersect one of
the sticks that is not sx or sy in the representation.

40

Proof. First note that G6 is just a 6-cycle with two extra vertices x and y, which are
adjacent to two vertices in the 6-cycle. The stick representation of the 6-cycle is unique
up to automorphisms of the graph and must be as in Figure 2.31. In G6, there are two
vertices x′ and y′ that are two opposite vertices in the 6-cycle such that (x, x′) and (y, y′)
are both edges (see Figure 2.32). Therefore, as x′ and y′ are opposite in the 6-cycle and we
supposed that x <s y, the only possible choices in Figure 2.31 for the pair of sticks (sx′ , sy′)
are (s1, s5), (s2, s6), and (s3, s4). If (sx′ , sy′) = (s3, s4), then sx is a horizontal segment and
sy is a vertical segment, i.e., the first statement holds. Suppose (sx′ , sy′) = (s1, s5), then as
sy is a stick that must intersect s5, it must be completely contained in the interior of the
region Ω shown in Figure 2.34. More precisely, Ω is the region that is bounded by s1, s3, s6,

s1

s2

s3

s4

s5

s6

Ω

Figure 2.34.: The bounded region Ω.

and the diagonal. As sx is a stick that intersects s1, it must be contained in the exterior of
Ω. Therefore, any continuous curve that intersects both sx and sy must also intersect the
boundary of Ω, and the second statement holds. One can show in a similar manner that in
the case where (sx′ , sy′) = (s2, s6), then the second statement must also hold.

Remark 2.2.21. Consider a stick graph G such that G6 is an induced subgraph of G and
x <s y. If there exists a path P from x to y that does not go through any of the vertices in
G6, then sx must be horizontal and sy must be vertical in a stick representation of G. Indeed,
the second statement in Lemma 2.2.20 cannot hold because from the stick representation of
P we get a continuous curve in the plane that intersects sx and sy, but does not cross the
diagonal and does not intersect any of the sticks in the representation of G6.

Proof of Proposition 2.2.19. We show that the graph G shown in Figure 2.35 does not have
a stick representation. A hook representation of G is shown in Figure 2.36. Assume that

C
x4 x5x3x2x1 x6

Figure 2.35.: A bipartite hook graph Gbip that is not a stick graph.

we can find a stick representation of G. First note that G restricted to the vertices x3 and

41

x4 together with the 6-cycle C (see Figure 2.36) is isomorphic to G6. Now G also contains
a path from x3 to x4 that satisfies the conditions of Remark 2.2.21 above. Therefore sx3

and sx4 must be horizontal and vertical sticks respectively. Arguing similarly, but with the
cycle C ′, we can conclude that x3 <s x2 and that s2 is a vertical stick. There are two cases:

1. Case 1: x2 <s x4. In which case, we consider the vertex x1. Again, applying
Lemma 2.2.20 and Remark 2.2.21 we get that x1 <s x2 and therefore x1 <s x4.
One can find a path P from x1 and x4, and a path P ′ from x2 to x3, so that P and
P ′ are two induced disjoint paths, i.e., none of the vertices in P are adjacent to any of
the vertices in P ′. By Lemma 2.2.8, we can conclude that P and P ′ do not alternate
in the stick ordering, and therefore we must have x1 <s x3. However, if x1 <s x3, it
is not hard to see that we have two other induced disjoint paths that alternate in the
stick ordering. Therefore, Case 1 is not possible.

2. Case 2: x4 <s x2. In this case, the same argument as in Case 1 applied to the vertices
x2, x3, x4, and x5 can be used to show that there must be induced disjoint paths that
alternate in the stick ordering. Therefore, this case is also not possible.

We can conclude that G is not a stick graph, but is a bipartite hook graph from Figure 2.36.

sx5

sx6

sx2

sx1

sx4

sx3

Figure 2.36.: A hook representation of Gbip.

Some motivation for the recognition of bipartite hook graphs and stick graphs. In
Theorem 2.1.10, we showed that cyclic segment graphs are NP-complete to recognise, but
the complexity of the recognition problem for hook graphs remains unknown. The com-
plexity is even unknown for bipartite hook graphs and stick graphs. By Remark 2.2.15, we
know that 2DORGs are stick graphs and one can recognise them in polynomial time (see

42

McConnell [42]). Stefan Felsner (personal communication) has proved that a stick graph
is the comparability graph of a 3-dimensional posets of height 2. Veit Wiechert (personal
communication) has generalised this result by showing that bipartite hook graphs are also
comparability graphs of 3-dimensional posets of height 2. Yannakakis [61] showed that test-
ing whether a height 2 poset has dimension at most k is NP-complete for k ≥ 4. Testing
whether a poset is of dimension at most 2 can be done in polynomial time (see Golumbic [27]).
It remains unknown, whether testing if a poset of height 2 has dimension at most 3 is NP-
complete. This gives much motivation for investigating the complexity of the recognition
question for stick graphs and bipartite hook graphs. For further reading about posets and
their dimensions, we refer the reader to Trotter [59] and Golumbic [27].

We now show that the class of interval graphs is contained in the class of hook graphs.

Proposition 2.2.22. Interval graphs have a hook representation.

As we are considering a finite number of closed intervals, we can peturb an endpoint slightly
without changing the intersection graph. Therefore we may assume that all endpoints of
intervals are different.

Proof. Place the interval representation of an interval graph G on the x-axis so that all the
intervals lie under the diagonal. Lift each interval I vertically to get a horizontal segment
SI whose left endpoint intersects the diagonal. Now add to each SI , the vertical segment
from the left endpoint of SI to the x-axis to get a hook HI (see Figure 2.37).

HI
SI

I

Figure 2.37.: From an interval to a hook.

SI

HI

Vertical segment of HJ

JI

HJ

Figure 2.38.: Intersection of HI and HJ .

Two intervals I and J intersect if and only if the left endpoint of one interval is in the
other (w.l.o.g. the left endpoint of J is in I). This is true if and only if the vertical segment
of HJ intersects the horizontal segment HI (see Figure 2.38). Therefore the intersection
graph of these hooks is isomorphic to G. Notice, that we do obtain a set of hooks as we may
take an interval representation whose left endpoints are all different.

We conclude this section by showing that hook graphs are a special type of intersection
graph of axis-aligned rectangles. An axis-aligned rectangle R is a set in R2 of the form Ix×Jy,
where Ix and Jy are intervals in R. Throughout the rest of this chapter, unless stated other-
wise, all the rectangles that we mention are axis-aligned, and a rectangle intersection graph
is an intersection graphs of axis-aligned rectangles. Before we state the characterisation, we
discuss some results that are known about rectangle intersection graphs. Rectangle inter-
section graphs were introduced by Roberts [50] in 1969. The complexity of the recognition
problem for rectangle intersection graphs was unknown for a long time, until it was finally

43

proved by Kratochvíl [36] in 1994 that the recognition problem for rectangle intersection
graphs is NP-complete. Asano and Imai [3] gave an O(n log(n)) time algorithm to compute
the clique number ω(G) of any rectangle intersection graph G. The independence number
α(G) (Fowler et al. [25]), the clique covering number γ(G) (Asano and Imai [3]), and the
chromatic number χ(G) (Asano and Imai [3]) have all been shown to be NP-hard to compute
for rectangle intersection graphs in general. For a rectangle intersection graph G, the relation
between χ(G) and ω(G), and the relation between γ(G) and α(G) are both very interesting
questions, which we discuss further in Subsections 2.3.3 and 2.3.4. In Subsection 2.3.3, we
discuss results that approximate the chromatic number by a function of the clique number,
which we apply in the case of hook graphs to achieve a bound of O(ω(G) log(ω(G))) on
χ(G). In Subsection 2.3.4, we use the rectangle intersection representation below to discuss
approximations of the clique covering number of hook graphs. In particular, we show that
for the special class of rectangle intersection graphs given below, the independence number
is a 2-approximation of the clique covering number.

Proposition 2.2.23. A graph is a hook graph if and only if it is the intersection graph of
rectangles whose top-left corner lies on the diagonal.

Proof. The first thing to note is that a rectangle is uniquely defined by its top and left
boundaries. One of these boundaries can be a point, in which case we have a horizontal or
a vertical segment, which is a degenerate rectangle.
Given a hook, we can obtain a rectangle whose top-left corner is touching the diagonal by
letting the vertical (resp. horizontal) part of a hook be the left (resp. top) boundary of the
rectangle (see Figure 2.39).

Two hooks. Two rectangles.

Figure 2.39.: From hooks to axis-aligned rectangles touching the diagonal.

We can obtain hooks from rectangles whose top-left corner are touching the diagonal by
using the inverse of the map above. Two hooks intersect if and only if the vertical part of
one hook intersects the horizontal part of another. In addition, two rectangles whose top-
left corner is on the diagonal intersect if and only if the top boundary of one intersects the
left boundary of the other. These two facts imply that both the maps above preserve the
intersections and therefore the intersection graphs of both sets of objects are the same.

2.3. The Perfect Graph Parameters of Hook Graphs

Given a hook graph G, in this section we investigate properties of the clique covering num-
ber γ, the chromatic number χ, the clique number ω, and the independence number α of

44

G. Before we give an overview of this section, we define a maximum-weight clique and a
maximum-weight independent set.

Definition 2.3.1. Given a graph G = (V,E) and a weight function w : V → R on the
vertices . Let A ⊂ V , then we define the weight of A to be

w(A) =
∑

v∈A

w(v).

1. A maximum-weight clique is a clique Cmax in G of maximum weight, i.e.,

w(Cmax) = max{w(C) : C is a clique in G }.

2. A maximum-weight independent set is an independent set Imax in G of maximum
weight, i.e.,

w(Imax) = max{w(I) : I is an independent set in G }.

We denote by WMCLIQUE, the problem of computing a maximum-weight clique. Similarly,
we denote by WMIS, the problem of computing a maximum-weight independent set.

Note that if we take the weight function to be the map w(v) = 1 for all v ∈ V , then
maximum-weight cliques and maximum-weight independent sets coincide with maximum
cliques and maximum independent sets, respectively.

In Subsection 2.3.1, we give a O(n2) time algorithm to solve WMCLIQUE for hook graphs.
In Subsection 2.3.2 we give an O(n3) time algorithm to solve WMIS for hook graphs. In Sub-
section 2.3.3 we discuss approximations of the chromatic number. In particular, we discuss
the relation between the chromatic number and the clique number of rectangle intersection
graphs and segment graphs. We then apply a result by Chalermsook [10] on rectangle inter-
section graphs to give an log(ω(G))-approximation algorithm of the chromatic number. We
also include a sketch proof of the result by Chalermsook [10] that we use. In Subsection 2.3.4,
we show that the independence number is a 2-approximation of the clique covering number.
All of the algorithms given in this section are polynomial time algorithms. Unless stated
otherwise, the time complexity of the algorithms in this chapter are assumed to be with
respect to the number of vertices in the input.

2.3.1. A Polynomial Time Algorithm for Weighted Maximum Clique

In this subsection we give an O(n2) time algorithm that solves WMCLIQUE for hook graphs
given a hook ordering as input. There already exists an O(n log(n)) time algorithm to find
a maximum clique in hook graphs from the O(n log(n)) time algorithm that is given by T.
Asano and H. Imai [3]. The algorithm we give uses a different and solves the general case of
finding a maximum-weight clique. In our algorithm, we use a nice interval graph structure
of the upper-neighbourhood of a vertex (defined below).

Definition 2.3.2. Given a hook graph G = (V,E) with hook ordering <h, and a vertex
v ∈ V :

• U(v) = {w ∈ V : (w, v) ∈ E and v <h w} is called the upper-neighbourhood of v.

45

v

The hooks in U(v) (in black).

v

The hooks in L(v) (in black).

Figure 2.40.: The upper and lower-neighbourhood of a vertex.

• L(v) = {w ∈ V : (w, v) ∈ E and w <h v} is called the lower-neighbourhood of v.

Lemma 2.3.3. Given the ordering (V,<h) of the vertices of a hook graph, then for all v ∈ V :

1. G|U(v) is an interval graph.

2. G|L(v) is an interval graph.

3. Given w ∈ V with v <h w, we have that G|U(v)
⋂

L(w) is a clique.

Proof of (1). For x ∈ U(v), project the horizontal part of the hook Hx downwards onto the
x-axis to get an interval Ix. Loosely speaking, this is the inverse of the map we used to
obtain hooks from an interval representation. Let Hx and Hy be hooks of two vertices x
and y in the upper-neighbourhood of a vertex v with x <h y. Hx

⋂

Hy 6= ∅ if and only
the horizontal part of Hx lies beneath the horizontal part of Hy (as they both intersect Hv,
which lies beneath both Hx and Hy). However, this is true if and only if the projected
horizontal parts intersect each other.
Proof of (2.) For x ∈ L(v) we project the vertical parts of the hooks onto the y-axis. This
gives us an interval representation of L(v) by arguing similarly to 1.
Proof of (3.) Fix x, y ∈ U(v)

⋂

L(w) with x <h y. As we have v <h x <h y <h w
and (v, y), (x,w) ∈ E, the cross completion property implies that (x, y) is also an edge in G
therefore G|U(v)

⋂
L(w) is a clique.

A slightly stronger statement also can be shown with exactly the same arguments: Given
a hook ordering <h of a hook graph G, we have that G|U (v) and G|L(v) are both interval

graphs, where U(v) and L(v) are defined below.

• U(v) is the set of vertices w with v <h w such that w has a neighbour w′ with w′ <h v.

• L(v) is the set of vertices w with w <h v such that w has a neighbour w′ with v <h w′.

In addition, given v <h w then one can show that G|U(v)
⋂

L(w) is a clique.

46

Weighted Maximum Clique for interval graphs We now show an O(n) time algorithm
that finds the maximum-weight clique of an interval graph. For this algorithm we need an
interval representation that has already been sorted in a certain way.

Lemma 2.3.4. Let w : V → R be a weight function on the vertex set of an interval graph
G. Given the list of endpoints of an interval representation of G in increasing order (with
respect to the natural ordering of the real numbers), Algorithm 2 solves WMCLIQUE for G
in O(n) time. Here, a list of endpoints contains the additional information of whether an
endpoint it is a left or a right endpoint of an interval.

Algorithm 2 IntWeightedMaxClique

Input: List of endpoints of the intervals in a representation of graph G in increasing order
x1, x2, . . . , x2n

Output: The size of a maximum clique in G

1: CMAX ← ∅
2: MAX ← 0
3: CWEIGHT ← 0
4: C ← ∅
5: for j = 1, 2, . . . 2n do

6: v ← vertex whose interval has endpoint xj
7: if Endpoint xj is a left endpoint then

8: CWEIGHT ← CWEIGHT + w(v)
9: C ← C

⋃{v}
10: else

11: CWEIGHT ← CWEIGHT − w(v)
12: C ← C \ {v}
13: if CWEIGHT > MAX then

14: MAX ← CWEIGHT
15: CMAX ← C

16: return CMAX

Proof. Notice that if we have a clique in an interval graph then the left endpoint of an
interval that is furthest to the right is contained in all of the intervals involved in the clique.
Figure 2.41 shows four intervals which form a clique. Note that in this example, p is the left
endpoint which is contained in all other intervals of the clique.

R
p

Figure 2.41.: The left endpoint p that is contained in all intervals of the clique.

We define a counter MAX, which is initialised to zero at the beginning of the algorithm.
We then go through the list of endpoints in increasing order, such that when we encounter
a left endpoint we look at the sum of the weights of the intervals that the endpoint is
contained in. We achieve this by keeping another counter CWEIGHT , which is increased

47

by the weight of the interval whose left endpoint we meet, or is decreased by the weight
of the interval whose right endpoint we meet (line 8 and line 11). That is, CWEIGHT
corresponds to the sum of the weights of the intervals whose left endpoint we have visited
and whose right endpoint we have not visited. The maximum-weight clique is found similarly
and stored in the variable CMAX, and its weight is stored in the variable MAX (line 14).
Looking at each endpoint and processing it takes a constant amount of time, and as there
are 2n endpoints, we conclude that the complexity of the algorithm is O(n).

Now we are ready to state the algorithm HookWeightedMaxClique, which solves
WMCLIQUE for hook graphs in O(n2) time given a hook representation as input.

Algorithm 3 HookWeightedMaxClique

Input: List of vertices v1, v2, .., vn corresponding to a hook ordering of a hook graph G
together with a weight function w : V → R

Output: The size of a maximum clique in G

1: MAX ← 0
2: MAXCLIQUE ← ∅
3: Initiate the upper-neighbourhoods of all vertices vj and save them as U(vj)

4: for j = 1, 2, . . . n do

5: JMAX ← w(IntWeightedMaxClique(U(vj))) + w(vj)
6: JMAXCLIQUE ← IntWeightedMaxClique(U(vj))

⋃{vj}
7: if JMAX > MAX then

8: MAX ← JMAX
9: MAXCLIQUE ← JMAXCLIQUE

10: return MAXCLIQUE

Theorem 2.3.5. Given a hook ordering v1, v2, . . . , vn of a hook graph G and a weight
function w : V → R, the algorithm HookWeightedMaxClique solves WMCLIQUE for G
in O(n2) time.

Proof. The idea is that we run through the vertices in increasing order with respect to <h,
finding the largest clique in their upper-neighbourhoods. A maximum-weight clique must
be encountered when we look at the upper-neighbourhood of its lowest vertex in the hook
ordering. Therefore if we find a maximum-weight clique in the upper-neighbourhoods of
each vertex, then a maximum-weight clique of the entire graph will have been found. By
Lemma 2.3.3, the upper-neighbourhood of each vertex is an interval graph. We would like
to use IntWeightedMaxClique, but first we need to find and store the upper-neighbourhoods
in the correct format for the algorithm, which is done in Line 3. More precisely, we start
by associating to each vertex vj , the inteval Ij = [j ,max{j ,max{k : (vj , vk) ∈ E}}].
This corresponds to the interval representation that can be found in Lemma 2.3.3 from the
representation found as in Figure 2.17. This can be done in O(n2) time. Then order all
the endpoints with respect to the natural order on the real numbers, which can be done in
O(n log(n)) time using a basic sorting algorithm. We then find the upper-neighbourhood of
each hook, which takes O(n2) time for all the hooks altogether. This is because checking
adjacencies and comparing hook indices can be done in constant time. Once we have all of

48

the upper-neighbourhoods, we go through the ordered list of endpoints above and select the
endpoints corresponding to the hooks in the upper-neighbourhood in O(n2) time, retaining
the order of the endpoints. The entire process described so far is what we refer to in Line 3
of HookWeightedMaxClique. Line 5 computes the largest weight of a clique that has v as
its lowest vertex in the hook ordering. We go through all of the hooks, keeping track of
the largest clique encountered so far (Line 9). As mentioned at the start, the maximum-
weight clique will be found when looking at the upper neighbourhood of its lowest vertex
v. From Algorithm 2, the maximum-weight clique in an upper-neighbourhood can be found
in linear time. As this is computed n times, the FOR LOOP in the algorithm is completed
in O(n2) time. Hence, the entire algorithm can be performed in O(n2) time.

2.3.2. A Polynomial Time Algorithm for Weighted Maximum Independent
Set

Given a hook representation of a hook graph G = (V,E), together with a weight function
w : V → R, we give an O(n3) time algorithm that finds a maximum-weight independent
set. The key observation that we use is Lemma 2.3.7, which allows us to break down larger
instances of the problem into smaller instances and hence use a dynamic programming
approach to solve WMIS for hook graphs. We must first define free hooks.

Definition 2.3.6. Given a hook graph G = (V,E) and a hook ordering v1, v2, . . . , vn, let
I1, I2, . . . , In be the canonical indexed interval representation of G (see Definition 2.1.8) and
H1,H2, . . . ,Hn be the canonical hook representation of G. Let I be an independent set in
G and let vi be a vertex in I with Hi and Ii its hook and indexed interval, respectively.

• We say that Hi is free from below (in I) if we can extend the vertical part of the
hook downwards to infinity without intersecting any other hook in the representation
restricted to the independent set (see Figure 2.42). Equivalently, there is no vertex
vj ∈ I with j < i whose indexed interval Ij contains i.

• We say that Hi is free from the right (in I) if we can extend the horizontal part of the
hook to infinity to the right without intersecting any other hook in the representation
restricted to the independent set (see Figure 2.43). Equivalently, there is no vertex
vj ∈ I with i < j whose indexed interval Ij contains i.

• We say that H is free (in I) if it is free from below and it is free from the right
(see Figure 2.44). Equivalently, there is no vertex vj ∈ I whose indexed interval Ij
contains i.

Lemma 2.3.7. Given a hook graph G with hook ordering v1, v2, . . . , vn, every independent
set I must have a free hook.

Proof. Consider the restriction of the representation to the independent set I . It is enough
to prove the following statement:

• Given a hook Hi that is free from below, then either it is free or there exists another
hook Hj with Hi <h Hj that is free from below.

49

Hi

Figure 2.42.: Free from be-
low.

Hi

Figure 2.43.: Free from the
right.

Hi

Figure 2.44.: A free hook.

This is sufficient because H1 is free from below. Therefore, by repeatedly using the statement
above we must obtain a free hook as G is finite (see Figure 2.45).

Let Hi be a hook that is free from below. If Hi is not free from the right, there is a
vertex vj ∈ I with i < j whose indexed interval Ij contains i (see Figure 2.45). We claim
that Hj is free from below. Suppose not, then there exists a vertex vk ∈ I with k < j and
j ∈ Ik. As (k, j) /∈ E, we must have k /∈ Ij and therefore we must have k < i as [i, j] ⊂ Ij.
However, this implies that i ∈ Ik because i ∈ [k, j] ⊂ Ik. This contradicts that vi is free
from below.

Theorem 2.3.8. Given a weight function w : V → R and a hook ordering of a hook graph
v1, v2, . . . , vn, we can find a maximum-weight independent set in O(n3) time.

As mentioned above, our algorithm will reduce larger instances into smaller instances of
the problem. We will use open triangles, which are defined as follows.

Definition 2.3.9. Let G = (V,E) be a hook graph with a hook ordering v1, v2, . . . , vn.
Let H1,H2, . . . ,Hn be the canonical hook representation of G. We define the open trian-
gle

a
i,k to be the interior of the region in the plane enclosed by the triangle whose corners

are (i, i), (k, k), and (k, i) (see Figure 2.47). We define Vi,k ⊂ V to be the set of vertices vj
whose hooks Hj lie completely within the region

a
i,k.

We define
a

0,k and
a

k,n+1 to be the set of hooks which lie to the left of the vertical
line {(x, k) : x ∈ R} and to the right of the horizontal line {(k, y) : y ∈ R}, respectively. We
also define

a
0,n+1 to be the vertex set V .

Free hook

Figure 2.45.: Finding a free hook.

Hj

Hi

Hk

i ∈ Ik

Figure 2.46.: If H ′ is not free from below.

50

Hj
a

i,k

Hl

i

k

Figure 2.47.: The open triangle
a

i,k with Hj ⊂
a

i,k and Hl *
a

i,k.

If I1, I2, . . . , In is an indexed interval representation of a hook graph, we have that
Hj ⊂

a
i,k if and only if Ij ⊂]i, k[, where]i, k[denotes the open interval between i and k.

51

Given a canonical hook representation, then Vi,k can also be defined as follows:
vj ∈ Vi,k if and only if

• i < j < k and

• (vj , vl) ∈ E =⇒ i < l < k.

Define w(i, k) to be the weight of a maximum-weight independent set of G|Vi,k
, i.e., the

largest weight of an independent set whose hooks lie completely in the open triangle
a

i,k.

Remark 2.3.10. w(i, k) = MAX{w(j) + w(i, j) + w(j, k) : i < j < k, hj ⊂ (i, k)}.

Proof. By Lemma 2.3.7, we get that any independent set has a free hook, in particular, there
is a free hook Hj in a maximum-weight independent set Ii,k in G|Vi,k

. In this case, by defi-
nition of a free hook, none of the other indexed intervals Il of the vertices vl ∈ Ii,k contain j
and therefore vl must be in Vi,j or Vj,k. Now as Ii,k

⋂

Vi,j and Ii,k
⋂

Vj,k are an independent
set in Vi,j and Vj,k, respectively, we must have

w(i, k) ≤MAX{w(j) + w(i, j) + w(j, k) : i < j < k, hj ⊂ (i, k)}.

As an independent set in Vj,k and an independent set in Vi,j together with the vertex vj is
an independent set in Vi,k, we also have that

w(i, k) ≥MAX{w(j) + w(i, j) + w(j, k) : i < j < k, hj ⊂ (i, k)}.

Therefore we have equality and we are done.

Now we are ready to understand the cubic time algorithm that finds a maximum-weight
independent set of hook graphs.

Proof of Theorem 2.3.8. We claim that the following algorithm is a cubic time algorithm
whose output is a maximum-weight independent set of a hook graph G.

Algorithm 4 HookWeightedMaxIndependentSet

Input: List of vertices v1, v2, .., vn corresponding to a hook ordering of a hook graph G and
a weight function w : V → R

Output: A maximum-weight independent set of G

1: Compute the canonical indexed interval representation I1, I2, . . . , In of the hook ordering
2: for k = 1, 2, . . . n+ 1 do

3: for i = 0, 1, . . . , n+ 1− k do

4: w(i, i + k)← 0
5: Ii,i+k ← ∅
6: for j = i+ 1, i+ 2, . . . , i+ k − 1 do

7: if w(i, i+ k) < w(i, i+ j) +w(vi+j) +w(i+ j + 1, i+ k) AND Ii+j ⊂]i, k[then

8: w(i, i + k)← w(i, i + j) + w(vi+j) + w(i+ j + 1, i+ k)
9: Ii,i+k ← Ii,i+j

⋃{vi+j}
⋃ Ii+j+1,i+k

10: return I0,n+1

52

Line 1 is carried out once and computes the canonical indexed interval representation in
quadratic time. For a fixed i and k, the FOR LOOP in Line 6 calculates w(i, i+ k) in linear
time as there are k iterations and each iteration can be performed in constant time. The
iterations take constant time as they use stored values of w(i, i+ j) and w(i+ j + 1, i+ k).
In line 7 we check whether Ij ⊂]i, k[, i.e., we check whether vj is in Vi,k. A maximum-weight
independent set Ii,i+k in Vi,k is stored in line 9. The value w(i, i + k) is calculated for all
values of i and k such that 0 ≤ i < k ≤ n+1. Therefore HookWeightedMaxIndependentSet
is a cubic time algorithm. Note that we initialise the values of w(i, i + k) in line 4. Also
note that for all i, one should also initialise Ii,i and w(i, i) to be the emptyset and zero
respectively, as these values are sometimes used in the algorithm.
This algorithm computes the maximum-weight independent set of G due to Remark 2.3.10,
together with the fact that V0,n+1 = V and hence I0,n+1 is a maximum-weight independent
set, which is the output.

Note that we store each value of w(i, i + k) in an array to obtain a faster algorithm by
avoiding repetition of many calculations, i.e., we use dynamic programming. However, this
could be a problem because we might use a large amount of memory space to store this
information in an array.

2.3.3. Approximating the Chromatic Number

In this subsection we explore the relation between the chromatic number χ and the clique
number ω of hook graphs. More precisely, we search for a function f such that for all hook
graphs G, we have χ(G) ≤ f(ω(G)). For graphs in general, Mycielski [44] showed that such
a function f does not exist. However, hook graphs have nice features that one can exploit
to show that χ(G) = O(ω(G) log(ω(G))). This bound comes from an application of a result
by Chalermsook [10] about the chromatic number of rectangle intersection graphs. It has
been shown by Cantazaro et al. [9] that computing the chromatic number of a hook graph
is NP-hard. A consequence of the bound in this subsection is that the clique number is a
O(log(ω(G)))-approximation of the chromatic number as ω(G) is a lower bound of χ(G),
and cliques have hook representations. The proof of this bound also gives a polynomial time
algorithm that computes a O(log(ω(G)))-colouring of hook graphs. In the case of segment
intersection graphs it was a long standing open problem, which was posed by Erdős in
the 1970s, whether such a function exists. Recently, the question was answered negatively
by Pawlik et al. [49]. They give a construction of a triangle-free segment graph Gk whose
chromatic number is k. We will begin this subsection by explaining their construction. First,
we need the following definition.

Definition 2.3.11. Given real number a, b, and c, we define a probe P to be a subset of R2

of the form P = {(x, y) : x ≤ a, b ≤ y ≤ c}.

Remark 2.3.12. Probes are not used here to correspond to vertices, but to define some
structure in the representations so that we can recursively construct Gk.

Theorem 2.3.13. For each natural number k there exists a triangle-free segment graph Gk

with χ(Gk) = k, for which we can find a segment representation together with a set of disjoint
probes that satisfy the following properties:

53

1. For a given probe, the set of segments it intersects is an independent set.

2. Given any good colouring of G, one of the probes must intersect a set of segments that
have been coloured using at least k different colours.

3. If a segment intersects a probe, then it must intersect the top and the bottom boundary
of the probe.

Proof. We prove this by induction on k. For k = 1, the result is clear as we can just take a
probe and a vertical segment that crosses the probe.

Gk+1 from Gk : Given the graph Gk with the properties above, we construct the graph
Gk+1 in the following way:

• Take a copy, Sk, of the segment representation of Gk that has the properties of the
induction hypothesis.

• For each probe P that comes with Sk, insert a scaled copy of Sk, call it SPk , so that
it fits in the axis-aligned rectangle RP at the end P (see Figure 2.48). By scaling
SP , also ensure that the top and bottom boundaries of the probes defined with SP
intersect the right boundary of P (see Figure 2.49).

• For each probe P ′ in each small copy of Sk we add the segment s′P (see Figure 2.50),
which is defined below.

RP

P

Figure 2.48.: The big picture.

P ′

P

Figure 2.49.: Big and small probe inter-
section.

P ′

P

sP ′

Figure 2.50.: The segment sP ′.

Defining s
′
P
: Let P be a probe of Sk and P ′ be a probe of SPk . Let IP ′ be the set

of segments in SPk that intersect P ′. By the induction hypothesis, IP ′ corresponds to an

54

independent set. We define one endpoint of the segment sP ′ to be on the top boundary of
P ′ to the right of P

⋂

P ′ and to the left of all the intersections points between segments in
IP ′ and P ′. The other endpoint of sP ′ is defined to lie on the bottom boundary of P ′ to the
right of the intersection point P ′

⋂

s, for all s ∈ IP ′ .
For Gk+1, we have that χ(Gk+1) ≥ k + 1. Indeed, given a good colouring of Gk+1, then it
induces a good colouring of SPk . By the induction hypothesis, there is a probe P ′ intersecting
a set of segments in SPk that have been coloured by at least k different colours. Now as the
segment sP ′ intersects all these segments, sP ′ must receive a new colour. χ(Gk+1) ≤ k + 1
as we can colour all the segments in every copy of Sk with the same k colours as they are all
disjoint, then use one extra colour to colour the sP ′ , which form an independent set as the
probes are all disjoint. Gk+1 is triangle-free as each copy of Sk is disjoint, and all the extra
segments sP ′ intersect an independent set by property 1 in the induction hypothesis.

Defining the probes of Gk+1: For each probe P ′ in each SPk , we define two probes,
P ′
upper and P ′

lower, which are both subsets of P ′. More precisely, we take P ′
upper to be a

probe lying in the upper part of P ′ that is crossed by sP ′ , but does not intersect any other
segments in the independent set IP ′ in SPk (see Figure 2.51). Define P ′

lower to be a probe
lying in the lower part of P ′ that intersects every segment that P ′ intersects except sP ′ (see
Figure 2.51). The set of probes of Gk+1 is defined to be the set of all P ′

upper and P ′
lower. We

show below that the probes satisfy the induction hypothesis.

P ′

P

sP ′

P ′
lower

P ′
upper

Figure 2.51.: P ′
upper and P ′

lower.

Proof of Property 1: P ′
upper intersects sP ′ and the independent set of segments that P inter-

sects in Sk. Therefore P ′
upper intersects an independent set. P ′

lower intersects an independent

set as it intersects an independent set in SPk and an independent set in Sk, which are dis-
joint.
Proof of Property 2: Given a good colouring of Gk+1, there must exist a probe P of Sk
that intersects a set IP of segments with k different colours by property 2 of the induction
hypothesis applied to Sk. Similarly, there must be a probe P ′ of SPk that intersects a set
IP ′ of segments in SPk with k different colours. If the sets of colours used on IP ′ and IP
are not the same, then the set of segments that Plower intersects has been coloured using at
least k + 1 different colours. If the sets of colours used on IP ′ and IP are the same, then
set of segments that Pupper intersects has been coloured using at least k+1 different colours
because the colour of sP ′ is different to the colour of all the segments in IP ′ .
Proof of Property 3: Let P ′

upper be a probe of Gk+1 that intersects probe P of SkP . Using the

55

notation in the proof of Property 2, we have that Pupper only intersect IP
⋃{sP ′}. Applying

Property 3 of the induction hypothesis to Sk, the segments in IP must cross the top and
bottom of P , and therefore the top and bottom of Pupper. In addition, we can choose P ′

upper

so that sP ′ crosses it correctly. Similarly, the segments in IP cross Plower correctly. The
segments in IP ′ also cross Plower correctly, because of property 2 of the induction hypothesis
applied to SPk . As Plower only intersects IP

⋂

IP ′ , we have shown Property 3. This completes
the proof.

Remark 2.3.14. Although the construction is not very difficult to understand, the difficulty
in proving this theorem is finding the correct induction hypothesis using the probes.

The chromatic number of intersection graphs of axis-aligned rectangles

Hook graphs are special types of segment graphs and it is not obvious whether the construc-
tion shown above is realisable using hooks. In fact, it is not possible because hook graphs
have rectangle intersection representations (see Proposition 2.2.23) and Asplund and Grün-
baum [2] have shown that χ(G) ≤ 4(ω(G))2 − 3ω(G). We will discuss this result later, but
first we mention a nice nice property of representations of cliques in rectangle intersection
graphs, which comes as a consequence of this Helly’s Theorem.

Theorem 2.3.15 (Helly’s Theorem [31]). Let n ≥ d+1 and C1, C2, . . . , Cn be convex regions
in Rd. If every d+ 1 of these sets has a common intersection point, then

⋂

i≤nCi 6= ∅.

Note that rectangles Ri = Ii × Ji and Rj = Ij × Jj intersect if and only if Ii
⋂

Ij 6= ∅ and
Ji

⋂

Jj 6= ∅. Using this, we can conclude the following remark.

Remark 2.3.16. Let R1, R2, . . . , Rn be axis-aligned rectangles which correspond to a clique
C in a rectangle intersection graph, then

⋂

i≤nRi 6= ∅.

Proof. Let Ri = Ii×Ji. As C is a clique, we have that Ri
⋂

Rj 6= ∅ for all i 6= j. This implies
that Ii

⋂

Ij 6= ∅ for all i 6= j. Because an interval is a convex set in R, Helly’s Theorem
implies that they must have a common intersection point x. Similarly the Ji have a common
intersection point y. By definition the point (x, y) intersects all the rectangles in the clique
and we are done.

This is a nice geometric property that one can exploit when dealing with cliques in rect-
angle intersection graphs. Chalermsook [10] makes use of this property in a result that we
apply to hook graphs later in this subsection. First we discuss some notions that help us
bound the chromatic number of rectangle intersection graphs. Recall that we can bound
the chromatic number of a graph by a number k, by showing that it is (k − 1)-degenerate
(see Remark 1.3.2). Given a rectangle representation of a graph G, one can show that G
is O(w(G))-degenerate by showing that the representation is s-sparse for some number s.
This concept was introduced in [10] and is a generalisation of an idea used in Asplund and
Grünbaum [2], where they show χ(G) = O((ω(G))2) for rectangle intersection graphs.

Definition 2.3.17. Given a set R of rectangles in the plane and a natural number s, then
R is s-sparse if for all rectangles R in R we can assign a set of points {PR

1 , PR
2 , . . . , PR

s } in
the plane such that

• R,R′ ∈ R with R
⋂

R′ 6= ∅ =⇒ ∃i such that PR
i ∈ R′ or PR′

i ∈ R.

56

This set of points is called a set of representative points for a rectangle.

Lemma 2.3.18 (Chalermsook [10]). Let R be a set of rectangles in the plane. If R is
s-sparse, then the intersection graph G = (V,E) of R is 2sω(G)-degenerate, and therefore:

χ(G) ≤ 2sω(G) + 1.

Proof. The proof of this uses a double counting argument very similar to one used by Asplund
and Grünbaum [2]. Namely, we double count the number of elements in the set X, which is
defined as follows:

X = {(PR, e) : e ∈ E, e = (R,R′) and PR
i ∈ R′}.

Note that we abuse the notation slightly and say that an edge e equals (R,R′) if
e = (vR, vR′), where vR and vR′ are the vertices that correspond to the rectangles R and R′

respectively.

1. By the definition of sparse, for each edge e ∈ E there exists at least one point PR
i such

that PR
i ∈ R′, where e = (R,R′). Therefore we have |X| ≥ |E|.

2. Each rectangle has been assigned s points, and there are |V | rectangles altogether,
therefore the total number of points is s|V |. Each point PR

i can be in at most ω(G)
different rectangles as the set of rectangles that contain PR

i form a clique. This implies
that each point PR

i can be in at most ω(G) pairs in X. Summing this bound over all
the points we get |X| ≤ s|V |ω(G).

Putting 1 and 2 together, we get

|E| ≤ s|V |ω(G) =⇒ |E|
|V | ≤ sω(G). (2.2)

Let δave denote the average degree of a vertex. Using Equation 2.2 together with the Degree
Sum Formula (Proposition 1.1.7) we get

δave =

∑

v∈V deg(v)

|V | =
2|E|
|V | ≤ 2sω(G). (2.3)

Therefore, the average degree is bounded by 2sω, which means there is a vertex v with
deg(v) ≤ 2sω. Remove the rectangle corresponding to v from the representation and repeat
the argument above to find a vertex that has degree at most 2sω(G) in the new repre-
sentation. Continue until there are no vertices left. By definition, this shows that G is
2sω(G)-degenerate, which completes the proof.

Remark 2.3.19. Given an s-sparse set of rectangles R, then a good 2sω(G)+1 colouring of
the intersection graph G of R can be found in polynomial time. This is true as the argument
to show that G is (2sω(G)+1)-colourable only uses that G is 2sω(G)-degenerate. In fact, we
have shown that given a rectangle intersection graph G, then any induced subgraph of G is
2sω(G)-degenerate. Therefore, a 2sω(G)-degenerate ordering of the vertices is computable in
polynomial time as it suffices to search for any vertex v with deg(v) ≤ 2sω(G) when looking
for the next vertex in the ordering. Once we have this ordering, we can colour the vertices
in reverse order using a greedy colouring, i.e., we can colour the vertices with the lowest
available colour that has not been used on any of its neighbours so far. This can all be done
in polynomial time.

57

We now give a proof of a theorem by Asplund and Grünbaum [2], which states that
χ(G) ≤ 4(ω(G))2 − 3ω(G) for a rectangle intersection graph G. Although the result is over
40 years old, the best improvement of this result is by Hendler [32], who has shown that
χ(G) ≤ 3(ω(G))2−2ω(G)−1. The best known lower bound for general rectangle intersection
graphs is 3ω(G) (Kostochka [35]).

Theorem 2.3.20 (Asplund and Grünbaum [2]). Let G = (V,E) be a rectangle intersection
graph, then we have χ(G) ≤ 4(ω(G))2 − 3ω(G).

Proof. We partition the edge set of G into two sets, E1 and E2. Let G1 = (V,E1) and
G2 = (V,E2). We show the following:

1. χ(G1) ≤ ω(G)

2. χ(G2) ≤ 4ω(G) − 3

The partition is defined according to how the rectangles intersect. In general, there are four
types of intersections that we distinguish between (see Figure 2.52). Namely, given an edge
e = (R,R′):

• If one rectangle contains all 4 corners of the other it is a containment intersection.

• If one rectangle contains exactly 2 corners of the other it is an overlap intersection.

• If one rectangle contains exactly 1 corner of the other it is a corner intersection.

• If none of the corners of any of the rectangle are contained in the other, then the
intersection is a crossing intersection.

Containment. Overlap. Corner. Crossing.

Figure 2.52.: Four different types of intersection.

Let E1 = {e ∈ E : e is a crossing } and E2 = E \ E1.
Proof of (1). We show that G1 is a comparability graph and therefore perfect (see Subsec-
tion 1.3.2). Given the representation of G1 induced from the representation of G, we define
the partial order ≤1 on G1 by

vR ≤1 vR′ ⇐⇒ R is thinner in the horizontal direction than R. (2.4)

This is clearly a partial order and therefore G1 is comparability graph and hence perfect. It
follows that χ(G1) = ω(G1) ≤ ω(G).
Proof of (2). To show that G2 is (4ω(G)− 3)-degenerate, we use an argument similar to the
one in Lemma 2.3.18. We double count the number of ordered pairs (c, e) such that c is a
corner of a rectangle in e that lies in the other rectangle in e. We assign to each rectangle
the set of its 4 corners. The only changes to the proof of Lemma 2.3.18 are:

58

• Each corner can be involved in at most ω(G) − 1 pairs. This is because the corner is
also in the rectangle that it has been assigned to.

• Each edge e appears in at least 2 pairs because we don’t have crossings in E2.

Following the proof of Lemma 2.3.18 and taking these modifications into account, we obtain
that χ(G2) ≤ 4ω(G2)− 3 ≤ 4ω(G)− 3.
Let c1 and c2 be good colourings of G1 and G2 respectively. We construct a good colouring
c of G by letting c(v) = (c1(v), c2(v)), i.e., each vertex receives one pair of colours. This is
a good colouring of G because

e = (v,w) ∈ Ei =⇒ ci(v) 6= ci(w) =⇒ c(v) 6= c(w).

The number of colours c uses is the number of colours c1 uses times the number of colours
c2 uses, which is at most 4(ω(G))2 − 3ω(G).

Note that rectangle representations that come from hook representations, do not have
containment intersections. Regarding hook graphs as special rectangle intersection graphs
we can adjust this proof to obtain a slightly better upper bound for hook graphs.

Proposition 2.3.21. We have χ(G) ≤ 3(ω(G))2 − 2ω(G) for all hook graphs G.

Proof. The proof is identical to the proof of Theorem 2.3.20. Here however, we don’t need
to assign all of the corners to the rectangles. This is because we don’t have any intersection
where the top-left hand corner of a rectangle is in the interior of another rectangle. Assigning
the set of the other 3 corners to each rectangle and following the steps of the proof above
delivers the upper bound of 3(ω(G))2 − 2ω(G).

After a more careful analysis of the structure of rectangle intersection graphs, the following
result was proved by Chalersmook [10].

Theorem 2.3.22 (Chalermsook [10]). χ(G) = O(σ(G)ω(G) log(ω(G))), for all rectangle
intersection graphs G, where σ(G) is defined below.

Definition 2.3.23. We define σ(R) of a set R of rectangles in the plane as follows:

σ(R) = min{d(R), h(R)} + 1,

where d(R) and h(R) are defined as follows:
Given a rectangle R, we define the containment depth of R, denoted d(R), to be the number
of rectangles R′ ∈ R that contain R. We define d(R) to be max{d(R) : R ∈ R}.
Let h(R) be the size of a largest set of disjoint rectangles I satisfying:

• ∃R ∈ R such that R′ ⊂ R for all R′ ∈ I .

• There exists a horizontal line that intersects all rectangles in R′ ∈ I .

We define σ(G) to be min{σ(R) : R is a rectangle representation of G}.

It is clear that all hook graphs G have σ(G) = 1 because a rectangle representation where
the top-left corner of each rectangle lies on a unique point on the diagonal does not have
containment intersections.

59

Corollary 2.3.24. χ(G) = O(ω(G) log(ω(G))) for all hook graphs G.

In what follows, by a clique of rectangles, we mean a set of rectangles that pairwise inter-
sect, and by an independent set of rectangles we mean a set of pairwise disjoint rectangles.
We also say that a good colouring of rectangles in R is a colouring of the rectangles so that
no two rectangles that intersect receive the same colour. We denote by ω(R), the size of
the largest clique in R. Before we sketch the proof of Theorem 2.3.22, we define three more
parameters of a rectangle, which Chalermsook [10] used to help investigate the structure of
rectangle representations.

Definition 2.3.25 (ν(R), η-coverage, τ -coverage). Let R be a set of rectangles in the plane,
and let rectangle R ∈ R.

• Define V(R) to be the set of rectangles in R \ {R} that cross R and that are thinner
than R in the horizontal direction. Let ν(R) be the size of the largest clique in V(R).

• Given η ∈ N, an η-coverage of R is a clique C in R \ {R} such that we can partition
C into two sets X1 (resp. X2), such that |X1| = |X2| = η and all rectangles in X1 and
X2 intersect the top (resp. bottom) boundary of R. We call X1 and X2 a top and a
bottom coverage of R, respectively. η(R) is the largest value of η for which we can find
an η-coverage of R.

• Given τ ∈ N, a τ -coverage of R is defined to be a clique of size τ in R \ {R} whose
rectangles contain both left corners of R or both right corners of R. We define τ(R)
to be the largest value of τ for which there exists a τ -coverage of R.

Sketch of proof of Theorem 2.3.22. Let R be a rectangle representation of the graph G and
let ω = ω(R). We can assume that h(R) ≤ d(R). Otherwise we can decompose R into
the sets D1,D2, . . . ,Dd(R), where Di = {R ∈ D : d(R) = i}. In each set Di we have
no containment intersections and therefore we have h(Di) = d(Di) = 0 and σ(Di) = 1.
Therefore the result for the case h(R) ≤ d(R) would imply the result for h(R) > d(R).
The algorithm to compute the colouring works using iterations. We let R0 = R and let β
be a constant that is defined appropriately for the algorithm to work. Let ω = ω(R) and

σ = σ(R). The input for each iteration is the set Ri, together with the partition {Si
j}β2

i

j=1 of
Ri. Where

Si
j = {R ∈ Ri : (j − 1)

ω

β2i
≤ ν(R) < j

ω

β2i
}

with the additional property that ω(Si
j) ≤ ω

2i
for all j. The iteration returns a setRi+1 ⊂ Ri,

together with a partition {Si+1
j }2i+1

j=1 of Ri+1 such that ω(Si+1
j) ≤ ω

2i+1 . The rectangles that
we remove are chosen so that we can colour them using O(ωσ) colours. This iteration is
carried out k times, where k = O(log(ω)). We are left with the set Rk, together with a
partition of Rk into O(ω) sets Sk

j . By definition, ω(Sk
j) ≤ C for some constant C for all j.

Applying Lemma 2.3.18 to each of these sets implies that we can find a O(ω)-colouring ofRk.

The iterations: For each rectangle R ∈ Si
j, we begin the ith iteration by computing the

size of the largest η-coverage and τ -coverage of R using rectangles in Sj
i . We denote these

coverages by ηi(R) and τi(R). We now show two important facts:

60

1. Given m ∈ N and a set R′ ⊂ R. For m ≥ 2, if all rectangles R ∈ R′ satisfy η(R) ≤ m,
then we have ω(R′) ≤ 3m.

2. Given a rectangle R, and a clique C in V(R), then we have ν(R) ≥ min
R′∈C
{ν(R′)}+⌊ |C|2 ⌋.

The first property is easy to see: If we have that ω(R′) > 3m, then consider a clique C of size
3m+1. Remove the set Clow of m+1 rectangles from C whose top boundaries are the lowest.
From the remaining rectangles C\Clow, remove the set Chigh of m+1 rectangles whose bottom
boundaries are the highest. The set Chigh (resp. Clow) is a top (resp. bottom) coverage of
any of the remaining rectangles (there is at least one rectangle remaining). Therefore, we
have a rectangle R in R′ that has η(R) ≥ m+ 1.
The second property can be shown as follows: Consider a clique C in V(R). Then by there
exists a point p that is contained in all rectangles in C by Remark 2.3.16. Remove the set
Cleft of ⌊ |C|2 ⌋ rectangles from C whose left boundary lie furthest to the left. Let Cright denote
the set of remaining rectangles. Let R′ be the rectangle in Cright whose right boundary
is furthest to the left. Now consider a clique C′ in V(R′). As R′ ∈ V(R), we have that
C′ ⊂ V(R). Therefore, there must exist a point p′ that is contained in all the rectangles in
{R,R′}⋃ C′. If p lies to the left of p′ then all the rectangles in Cright must contain p′, in which
case Cright

⋃ C′ is a clique in V(R). Similarly, if p′ lies to the left of p, then Cleft
⋃ C′⋃{R′}

is a clique in V(R). Therefore in either case, we have a clique in V(R) that contains at least

min
R′∈C
{ν(R′)}+ ⌊ |C|2 ⌋ rectangles, which concludes the proof of the second property.

The ideas in the iterations are as follows:

• The maximum clique size in each set Si
j is reduced by removing the set F i

j of all

rectangles in Si
j that have large ηi(R) (from Property 1).

• We partition F i
j into 2 sets Ai

j and Bij that are 5-sparse and O(σ)-sparse, respectively.

Therefore, as ω(Si
j) ≤ ω

2i
, we can apply Lemma 2.3.18 to find an O(σω

2i
)-colouring of

F i
j . Using different sets of colours for each set F i

j and summing over all j, we can
colour the all the sets that have been removed using O(σω) colours.

The more delicate part is to choose sets Ai
j and Bij so that they are sparse. For all R ∈ F i

j ,
if we let the four corners of a rectangle R be members of the set of representative points of
R, the only intersections that are unaccounted for are crossings
One idea is to add a point pR ∈ R that is contained in all the rectangles involved in a large
ηi-coverage of R to the set of representative points of R. Consider another rectangle R′ in
F i
j that crosses R and is wider than R. If pR is in R′ then the edge (R,R′) is accounted for.

If pR is not in R′, then suppose it lies below R′ as in Figure 2.53. Any rectangle R∗ in the

R
R′

pR

Figure 2.53.: An edge that is not accounted for by any of the corners or pR.

large top coverage of R must satisfy at least one of the following statements:

61

• R∗ intersects the two left corners of R′

• R∗ intersects the two right corners of R′

• R∗ crosses R′.

The set of all such rectangles R∗ that cross R′ forms a clique CiR. A rectangle R∗ in CiR
is in Si

j , which means that ν(R∗) is bounded below. Property 2 therefore implies that there

cannot be too many rectangles in CiR as ν(R′) is bounded above by definition of Si
j . This

is where the τ -coverage is used: If τi(R
′) is low, then CiR must contain many rectangles and

therefore R must contain pR and the edge (R,R′) is accounted for. Chalermsook defines
Ai

j to be the restriction of F i
j to the set of rectangles R with sufficiently low value of τi(R)

so that the point pR is a representative point for any crossing intersection between R and
a wider rectangle in F i

j . For all rectangle R in Ai
j, the 4 corners of a rectangle R together

with pR are representation points of R in Ai
j. Therefore Ai

j is 5-sparse. Note that the case
where the point pR lies above R′ is argued similarly.

Sparseness of Bij The set Bij is just the set F i
j \ Ai

j. When setting up Ai
j one can set the

lower bound on ηi(R) so that the upper bound on τi(R) for rectangles R in Ai
j is quite high.

Therefore τi(R) for rectangles R in Bij is quite high. For a rectangle R in Bij , we define IR
to be a maximal independent set in V(R)

⋂Bij that is minimal in the following sense: Given

a rectangle R′ in V(R)
⋂Bij that is not in IR, then there does not exist a rectangle RI ∈ IR

such that R′ crosses RI , and R′ is thinner than RI in the horizontal direction. Define the set
of representative points of a rectangle R in Bij to be the set of its corners, together with the
points PR, where PR is defined to be the set of intersection points between the boundaries of
the rectangles in IR and the boundary of R (see Figure 2.54). It is not difficult to see that

R

Figure 2.54.: The independent set IR and the set of representative points of R.

the set PR accounts for any edge (R,R′), where R′ crosses R and R′ is thinner than R in the
horizontal direction. Therefore we have a valid set of representative points as the corners
account for the rest of the crossings. Now if |IR| = O(σ), we can apply Lemma 2.3.18 once
again to show that Bij is O(σω)-colourable and we have found the colouring. Chalermsook

showed: If h(R) is bounded, then an independent set IR in V(R)
⋂Bij cannot contain too

many rectangles.
He does this by showing that if IR is too large, then there is a clique of size larger than ω

2i
in

Si
j , which is a contradiction of all the sets being in Si

j. This clique consists of some rectangles
in the τ -coverages of R′ ∈ IR. To find this clique he argues as follows: Given R′ ∈ IR, the
value τi(R

′) is large enough so that one can use Property 2, together with the definition of

{Si
j}β2

i

j=1, to find many rectangles R∗ in a τ -coverage of R′ that intersects the two left corners
of R or the two right corners of R. The bound on h(R) implies that such a rectangle R∗

cannot be in the τ -coverages of many different rectangles in I . If the independent set is too

62

large then we obtain a clique that is larger than the upper bound on the maximum clique in
each of the sets Si

j . One concludes that the size of IR is bounded and that Bij is O(σ)-sparse
and hence O(σω)-colourable. The output is the set Ri+1 of uncoloured rectangles remaining,

together with the partition {Si
j}β2

i+1

j=1 of Ri+1, where

Si
j = {R ∈ Ri : (j − 1)

ω

β2i+1
≤ ν(R) < j

ω

β2i+1
}.

This concludes the description of the iterations and the sketch of the proof that
χ(R) = O(σ(G)ω(G) log(ω(G))) for all rectangle intersection graphs G.

Remark 2.3.26. One can find a O(σ(G)ω(G) log(ω(G))) colouring in polynomial time given
the rectangle representation of the graph G.

Proof. First note that the number of maximal cliques in a rectangle intersection graph is
quadratic in the number of vertices and these can be computed in polynomial time (see
Asano and Imai [3]). It follows that in the ith iteration, computing the values of ηi(R) and
τi(R) can be done in polynomial time. It also follows that the value of ν(R) at the beginning
of the algorithm can be calculated in polynomial time. Therefore partitioning the vertices

into the sets {Si
j}β2

i+1

j=1 and computing the sets Ai
j and Bij can all be done in polynomial

time. Computing the good colourings of Ai
j and Bij can be done in O(n) time, because of

Lemma 2.3.18.

It is widely believed that a linear upper bound exists for the chromatic number of rectangle
intersection graphs; however, even in Chalermsook’s result, τ(G) can be linear in terms of
ω(G). Therefore no improvement on the quadratic upper bound can be deduced from this
bound for rectangle intersection graphs in general. Although we have an extra restriction,
we have not been able to improve this bound for hook graphs in general. We have made an
improvement in the case of triangle-free hook graphs, which we will explain later. In what
follows, we denote the cycle of length n by Cn and we show that Cn is not a hook graph
for n ≥ 7. The motivation behind this result is the Strong Perfect Graph Theorem (see
Subsection 1.3.2).

Proposition 2.3.27. Cn is not a hook graph for n ≥ 7.

In the proof the reader should note that although we show that Cn is not a hook graph,
we use Cn in the argumentation.

Proof. Let n ≥ 7 and assume that Cn is a hook graph. Let v1 be the minimum vertex in
a hook ordering of Cn and let vm be its highest neighbour in the hook ordering. Because
there are at least 7 vertices in Cn there exists a path vm, vi, vj , vk of length 3 in Cn starting
at vm that does not contain v1 (see Figure 2.55).

Because of the cross completion property on the vertices v1, vi, vj , vm, we must have that
vi <h vj, and hence the ordering of these four points must be as shown in Figure 2.56. When
trying put vk into the ordering, we must violate the cross completion property:

• If v1 <h vk <h vj , we have a contradiction of the cross completion property as (v1, vj)
and (vk, vm) are both edges of Cn, but (vj , vk) is not.

63

v1

vm

vi

vj

vk

Figure 2.55.: Path from vm without v1.

v1 vi vj vm

Figure 2.56.: The order of v1, vi, vj , vm.

• If vj <h vk, we have a contradiction of the cross completion property as (vi, vk) and
(v1, vj) are both edges of Cn, but (vj , vk) is not.

This shows that it is not possible to find an ordering of the vertices of Cn that satisfies the
cross completion property, hence Cn is not a hook graph.

For n ≤ 6, Cn is a hook graph. Figure 2.57 shows a valid hook ordering of C6.

v2

v4

v1

v3

v5

v6

v1 v2 v3 v4 v5 v6

H6
H5

H4
H3

H2
H1

Figure 2.57.: A hook ordering of C6, its ordering on the real line, and its hook representation.

We have shown that the only odd antihole (see Theorem 1.3.17) that a hook graph can
contain is C5, which is isomorphic to C5. We now describe all possible different hook
orderings of cycles, and therefore odd holes.

Theorem 2.3.28. Given a representation of a cycle Cn, consider the hook ordering as a
permutation πh = (v1v2 . . . vn). Let πc = (v1vc2 . . . vcn) be the permutation of the vertices
that we read when going around the cycle Cn in the direction where vc2 is the lowest neighbour
of v1 in the hook ordering (see the left of Figure 2.58). Then the following statements hold:

1. vcn = vn, and

2. πh can be obtained from πc by a sequence of transpositions of neighbouring pairs of
vertices (vci , vci+1) with 2 ≤ i ≤ n − 2 such that no vertex is in more than one trans-
position.

Proof of 1. This is immediate from the observation that given i ≤ n− 2, then

if v1 <h vci <h vcn then v1 <h vci+1 <h vcn .

If this were not true, then (v1, vci , vcn , vci+1) would violate the cross completion property.
Therefore, as v1 <h vc2 <h vcn , we can apply the observation above and conclude that the

64

v1
vc2

vc4

vc3

vcn

vcn−1

The permutation πc.

Hci

Hci+1

When πh = πc.

Hci
Hci+1

(vci , vci+1) transposed.

Figure 2.58.: πc, its representation, and a transposition.

first statement holds.
Proof of 2. We first prove the following:

vci−1 <h vci+1 for 2 ≤ i ≤ n− 1. (2.5)

Suppose not, then the path P = v1, vc2 , . . . , vci−1 and the path P ′ = vci+1 , vci+2 , . . . , vn
alternate (see Lemma 2.2.8), we get that an edge of P must intersect an edge of P ′ in the
hook ordering on a line. The only edge between P and P ′ is (v1, vn), hence P ′ must intersect
this edge to avoid violating the cross completion property. However, v1 and vn are the largest
and smallest vertices in the hook ordering. Therefore it is not possible for P ′ to cross (v1, vn)
and Equation 2.5 must hold.
We now show that Equation 2.5 implies that we can obtain πh from πc using a sequence of
transpositions as stated above. Consider the position x of vci in πh for 2 ≤ i ≤ n− 1. Then
|i− x| ≤ 1, else we would have a contradiction of Equation 2.5:
In the case where x = i+ 1, then the vertex in position i in πh must be vci+1 : Indeed, there
must be a vertex vck with k > i whose position y in πh satisfies y ≤ i. By Equation 2.5, the
only vertex that can be below vci with respect to <h is vci+1 . If y ≤ i− 1 then we must find
a vertex vcl with l ≤ i − 1 which is larger than y in the hook ordering, which contradicts
Equation 2.5. This argument is identical if x = i− 1
We can go through all the vertices vci in πc in increasing order and transpose them when
necessary to their final position x in πh. Whilst doing this, we maintain the invariant that a
vertex has been seen at most once, and any vertex that has been seen is in its final position.
Let vci be a vertex that has not yet been seen. If i = x then there is nothing to do. Otherwise,
if x = i+1 then the position of vertex vci+1 must be i and hence vci+1 can’t have been seen
yet. In this case, we can transpose both vertices to obtain their final position. We then label
vci and vci+1 as seen. We can continue this process until all the vertices are in their final
positions. By the invariant maintained, we have found a sequence of transpositions with the
properties wanted.

Remark 2.3.29. Given a cycle Cn the following orderings of the vertices are all the valid
hook orderings of Cn. Let vc1 be a vertex in Cn and let πc = (vc1vc2 . . . vcn) be the permuta-
tion of the vertices that we encounter when going around the cycle. Let π be a permutation
(vc1v2 . . . vn−1vcn) that can be obtained via a sequence of transpositions as in 2 of Proposi-
tion 2.3.28, then π is a valid hook ordering.

65

vci+1vci

Figure 2.59.: Locally before a transposi-
tion.

vci+1 vci

Figure 2.60.: Locally after a transposi-
tion.

Proof. Figure 2.58 shows that πc is a valid hook ordering. We perform the transpositions one
by one and show that the permutation is a valid hook ordering. Consider the hook ordering
on a line, then before we transpose (vci , vci+1) the picture looks locally like Figure 2.59
as vci and vci+1 have not been involved in a transposition. Figure 2.60 shows how the
ordering would be locally after transposing them. This is still a valid hook ordering because
the only new intersection between edges does not violate the cross completion property as
(vci , cci+1) ∈ E and therefore we still have a valid hook ordering.

Now we discuss the case ω(G) = 3. Asplund and Grünbaum [2] showed that the chromatic
number of triangle-free rectangle intersection graphs is at most 6. They also gave an example
that achieves this upper bound. We use the structure of the representations of cycles to show
that triangle free hook graphs can be coloured with at most 4 colours.

Theorem 2.3.30 (Triangle-free hook graphs). If G triangle-free hook graph, then χ(G) ≤ 4.

Proof. We will construct a partition of the vertex set V into 2 sets, V1 and V2, such that
G|V1 and G|V2 are both trees. Then we can find good 2-colourings c1 and c2 of G|V1 and
G|V2 respectively, since trees are bipartite. Let the set of colours that c1 uses be disjoint to
the set that c2 uses. The following colouring is a good colouring of G with 4 colours.

c(v) =

{

c1(v) if v ∈ V1.

c2(v) if v ∈ V2.

Before we can state our partition, we need to do a little work.

Definition 2.3.31. Given a hook representation of a graph G, let e = (u,w) be an edge,
and v a vertex such that u <h v <h w. We say that v leaves e to the south if (u, v) is an
edge (see Figure 2.61). Similarly, we say that v leaves e to the east if (v,w) is an edge (see
Figure 2.62).

u

w

v

Figure 2.61.: v leaving (u,w) to the
south.

u

w

v

Figure 2.62.: v leaving (u,w) to the east.

66

Note that a vertex cannot leave an edge e both to the south and to the east in a triangle-
free hook graph. In fact, a stronger statement also holds:

Lemma 2.3.32. Given a triangle-free hook representation, if a vertex v leaves an edge e to
the east, it cannot leave another edge e′ to the south.

Proof. Let e = (u,w) and e′ = (u′, w′) such that v leaves e to the east and e′ to the south.
We first note that u 6= u′, and w 6= w′, otherwise (u, v, w) or (u′, v, w′) form triangles.

1. We have that u <h u′, otherwise we have u′ <h u <h v <h w, which implies that (u, v)
(cross completion property), and thus (u, v, w) forms a triangle.

2. Analogously, we have that w <h w′, otherwise we have u′ <h v <h w′ <h w implies
that (u′, v′) is an edge (cross completion property), and thus (u′, v, w′) forms a triangle.

Items 1 and 2 imply that u <h u′ <h w <h w′. However, the cross completion property
now implies that (u′, w) is an edge, and therefore (u′, v, w) forms a triangle. This is a
contradiction to the graph being triangle-free. We have shown that if a vertex leaves an
edge to the east, then it does not leave an edge to the south.

Now we are ready to define the sets V1 and V2. Given a triangle-free hook representation,
let v be in V1 if there exists an edge e such that v leaves e to the south. Let V2 = V \V1. We
claim that G|V1 and G|V2 are trees. Consider the hook representation of a cycle C in G. Let
vs and vl be the smallest and the largest vertices in the hook ordering of C, respectively, then
by Proposition 2.3.28, we have (vs, vl) ∈ E. Therefore by definition, the other neighbour
vs′ of vs in the cycle leaves (vs, vl) to the south. In addition, the other neighbour vl′ of vl
must leave (vs, vl) to the east. Lemma 2.3.32 implies that vl′ cannot leave any edge to the
south. Therefore vl′ ∈ V2 and vs′ ∈ V1 by definition. Therefore, none of the cycles in G can
be completely contained in one of the vertex sets V1 or V2 and we are done.

The question remains open whether all triangle-free hook graphs are 3-colourable or not.
The odd cycle is a triangle-free hook graph, which requires 3 different colours. Theo-
rem 2.3.30 shows a difference between triangle-free rectangle intersection graphs and triangle-
free hook graphs. We hope that the techniques used in the proof can be extended to graphs
whose clique number is larger than 2, but we are yet to succeed in generalising the method.

2.3.4. Approximating the Clique Covering Number

Given a graph G, a clique covering is a partition of the vertex set into subsets, such that G
restricted to each subset is a clique. The clique covering number γ(G) is the size of a smallest
clique covering, i.e., the minimum number of subsets in the partition. Equivalently, it is the
colouring number of the complement of G (χ(G)). For segment graphs, we already mentioned
in Subsection 2.1.1 that computing γ(G) is NP-hard as a consequence of planar graphs be-
ing a subclass of segment graphs (Chalopin and Gonçalves [13]). For rectangle intersection
graphs, Asano and Imai [3] have shown that it is NP-hard to compute γ(G). However, for
Interval graphs (see Algorithm 6), 2DORGS, and outerplanar graphs, computing γ(G) can
be done in polynomial time. For hook graphs, the complexity of calculating γ(G) remains
unknown. In this subsection we give an algorithm that computes a 2-approximation of the

67

clique covering number in O(n2) time. In doing this, we show that the independence num-
ber α(G) is a 2-approximation of γ(G) for hook graphs. For general rectangle intersection
graphs, the problem of trying to bound γ(G) by a linear function of α(G) dates back to
1965, where Wegner [60] asked whether one could bound γ(G) by 2α(G) − 1. Since then
there has been much interest in trying to find a linear upper bound. The best upper bound
that is known is by Károlyi [33], who shows that γ(G) ≤ α(G) log(γ(G)) + 2. Fon-Der-
Flaass and Kostochka [24], show that there exists a rectangle representation of a graph G,
where γ(G) ≥ 5

3α(G). For hook graphs, we can apply a result by Chepoi1 and Felsner [15]
to show that γ(G) ≤ 8α(G) for all hook graphs G: Chepoi1 and Felsner [15] show that
γ(G) ≤ 8α(G) for a rectangle intersection graph G with the following property: There exists
a rectangle representation of G that is pierced by an axis-monotone curve C, i.e., all rect-
angles have their top left corner above C and their bottom right corner below C. Where,
an axis-monotone curve is an unbounded Jordan curve C, such that the intersection of C
with any horizontal of vertical line is a segment (this includes points). The diagonal in a
hook representation is an example of an axis-monotone curve. Therefore, given a rectangle
representation that comes from a hook representation, we can translate the diagonal to the
right by a very small amount to obtain a rectangle representation that is pierced by an axis
monotone curve. Giving us γ(G) ≤ 8α(G). The ideas used to obtain the 2-approximation
in this subsection are similar to the ideas used by Chepoi1 and Felsner [15]. Before we state
the algorithm that gives the 2-approximation for hook graphs, we introduce the notion of a
hitting set, which is closely related to a clique covering of R.

Definition 2.3.33. Given a set of rectangles R, we define a hitting set of R to be a set P
of points in the plane such that every rectangle R ∈ R contains at least one point p in P .

Now as the set of rectangles that intersect a single point must be a clique, we can obtain
a clique covering of size k from a hitting set of R of size k. From a consequence of Helly’s
Theorem (See Remark 2.3.16) we can also obtain a hitting set of size k given a clique covering
of size k. Therefore, the clique covering number is equal to the size of the smallest hitting
set of a rectangle intersection representation of G.

Theorem 2.3.34. Given a hook ordering of a hook graph:

1. There is a clique covering of size at most 2α(G).

2. We can calculate such a clique covering in O(n2) time.

This theorem implies that we have a quadratic time algorithm to compute a 2-approximation
of the clique covering number γ(G) (and the independence number α(G)) as
α(G) ≤ γ(G) ≤ |OUTPUT | ≤ 2α(G) ≤ 2γ(G).

Proof of (1). We define the greedy independent set I with respect to a hook ordering to be
the set that is constructed as follows: Let I start as the empty set, then go through the
vertices in increasing order with respect to <h. When we reach vertex v, we add it to I if and
only if it is not adjacent to any vertices that are already in I . Figure 2.63 shows the hooks in
a greedy independent set, whose vertices are marked in black. Given a greedy independent
set I = {vβ1 , vβ2 , . . . , vβn}, we define P to be the set of points {Pi : 1 ≤ i ≤ n − 1}, where
Pi = (βi+1 + ǫ, βi − ǫ), for 0 < ǫ < 1

2 (see Figure 2.64). Take the rectangle representation of

68

Hβ1

Hβ2

Hβ3

Hβ4

Figure 2.63.: The greedy independent set.

Pi

Hz

Hy

Hx

Hβi+1

Hβi

Figure 2.64.: A closer look between two
hooks in I .

G that corresponds to the canonical hook representation. We define A to be the set of all
vertices whose rectangles contain at least one point in P. Define B to be V \A. In Figure 2.64,
the vertices that correspond to the hooks Hβi

,Hx, and Hz are in A and the other vertices
are in B. By definition, the set P is a hitting set of A. In addition, |P| = |I| − 1 < |α(G)|.
Therefore, we have that γ(G|A) < α(G). We now need to bound γ(G|B), which can be done
using the following remark.

Remark 2.3.35. The hook graph restricted to the set B is an interval graph.

Proof (of Remark 2.3.35). For all Hk ∈ B, there exists an vertex vβj
in the greedy indepen-

dent set such that βj ≤ k < βj+1. With βj defined like this, we have the following:

1. Hk intersects the horizontal line y = βj :
If vk = vβj

, the statement is obvious. If vk 6= vβj
then, by definition of I , there exists

a vertex vl ∈ I with l ≤ βj such that (vk, vl) ∈ E.

2. Hk does not cross the vertical line x = βj+1:
Indeed, as Hk must cross the line y = βj by the first property, if it also crosses the
vertical line x = βj+1 then its corresponding rectangle would contain the point Pi,
which would imply Hk is in A. Note that we use the fact that we have a canonical
representation, i.e., if two hooks intersect, then they intersect in a crossing that is
defined so that the rectangles would contain Pi.

From the first property we get that the hooks Hk in B with βj ≤ k < βj+1 form an interval
graph Gj . The second property implies that all these interval graphs are disjoint, i.e., there
are no edges between Gj and G′

j for j 6= j′. As B =
⋃

j Gj , and the disjoint union of interval
graphs are interval graphs, we have that G|B is an interval graph.

We know that interval graphs are perfect, and therefore γ(G|B) = α(G|B) ≤ α(G). An
optimal clique covering of B together with the clique covering of A is a clique covering C of
G that satisfies |C| ≤ 2α(G)

Proof of (2). Here is an outline of a quadratic time algorithm that computes the clique cov-
ering described above.

69

Algorithm 5 CliqueCoveringApproximation

Input: A hook graph G = (V,E) together with a hook ordering of the vertices v1, v2, .., vn
Output: clique covering of size at most 2α(G)

1: Compute the canonical indexed interval representation I1, I2, . . . , In of this hook ordering

2: Compute the greedy independent set Iβ1 , Iβ2 , . . . , Iβn and the points Pi

3: Compute the sets A and B
4: CA ← clique covering of A
5: Compute an interval representation of B
6: CB ← clique covering of B
7: return CA

⋃ CB

Line 1: We start by finding the canonical indexed interval representation of G and its corre-
sponding rectangle representation, which can be done in quadratic time. This operation is
not necessary, but it clarifies the explanation.
Line 2: We then compute I and P simultaneously in quadratic time. More precisely, when
we process a vertex, we just check its adjacencies with the current members of I in linear
time. If it is added to I we add the appropriate point to P, which can be computed in
constant time.
Line 3: For each i, we check for each vertex vk with βi ≤ k < βi+1 whether its rectangle Rk

contains any of the points Pi and Pi−1 in P. Note that it is enough to check this because Rk

cannot contain any other point in P. (βi+1, βi) is contained in Rk if and only if the indexed
interval Ik contains both βi+1 and βi. Because we have already computed the indexed in-
tervals, this can be checked in constant time.
Therefore this line can be carried out in linear time.
Line 4: This is immediate and can be stored whilst calculating A.
Line 5: From the proof of 1, the graph G|B is an interval graph. From the hook representa-
tion, we can project the horizontal parts of each hook to obtain the interval representation.
Similarly to finding and storing the upper-neighbourhoods of a vertex in HookWeightedMax-
Clique, we find the interval representation and store it as an ordered list of endpoints.
Line 6: Once we have the interval representation, we can use the algorithm stated below
to give us an optimal clique covering of B in linear time. The last line is computed in con-
stant time. This concludes the proof that CliqueCoveringApproximation is an O(n2) time
algorithm.

Remark 2.3.36. Given an interval representation of a graph, we can compute a clique
covering in linear time given the list of endpoints in increasing order as an input.

Proof. The algorithm below computes the clique covering in linear time.
Basically the algorithm goes through the endpoints in increasing order, finding the ele-

ments of the clique one after another. After initialising all the variables, it adds vertices to
the clique C1 (Line 8) until it meets a right endpoint. When it meets a right endpoint it
checks if the vertex is in C1, in which case the clique C1 is stored and we proceed to in the
same way with the next clique, which is initialised in Lines 10 and 11. The set A is not

70

Algorithm 6 IntCliqueCovering

Input: List of endpoints of the intervals in a representation of graph G in increasing order
x1, x2 . . . x2n

Output: A minimum clique covering of G

1: i← 1
2: C1 ← ∅
3: X ← ∅
4: A← ∅
5: for j = 1, 2, . . . 2n do

6: v ← vertex whose interval has endpoint xj
7: if xj is a left endpoint of v then

8: Ci ← Ci
⋃{v}

9: if xj is a right endpoint and v is in Ci then

10: i← i+ 1
11: Ci ← ∅
12: A← A

⋃{v}
13: return {C1, C2, . . . , Ci−1}

necessary in the algorithm, but we included it just to help argue that the clique covering is
optimal. By construction, A is an independent set (Line 12) that has the same cardinality as
the clique covering C1, C2, . . . , Ci−1 that we obtain. As the largest independent set cannot
be larger than the smallest clique covering, we must have an optimal clique covering. This
is a linear time algorithm as all the operations in the FOR LOOP can be carried out in
constant time. Note that Line 9 can be carried out in constant time as we can we can keep
track of which clique a vertex is in at the time we meet it. As this is repeated 2n times, the
entire algorithm takes O(n) time.

71

3. A Problem Related to Assigning

Frequencies

In this chapter we focus on a colouring problem that is related to conflict-free colourings of
point sets in the plane. Conflict-free colourings were first introduced by Even et al. [21], who
were motivated by a frequency assignment problem in wireless networks. In this chapter,
we investigate the chromatic number of hypergraphs whose vertices are a finite set of points
in R2 and whose edges are induced by axis-aligned rectangles that all intersect a horizon-
tal line. We also study the question in the restricted setting, where edges are induced by
axis-aligned rectangles that contain at least k points. More specifically, we prove that some
bounds given by Keszegh [34] on the number of colours required for a good colouring of any
point set are tight. This is achieved by constructing point sets, whose range spaces require
a sufficient number of colours for a good colouring. Regarding the problem that we study,
only one case remains unresolved. Namely, finding the least upper bound on the chromatic
number of such hypergraphs where each edge contains at least 6 vertices.

In Section 3.1 we begin with a motivation of the problem. We then introduce the main
definitions and explain the important relation between the conflict-free colouring number
and the chromatic number mentioned above. We conclude the section with an overview of
related results. In Section 3.2 we present our results about hypergraphs induced by axis-
aligned rectangles that are all pierced by a horizontal line. We also include the proofs by
Keszegh [34] that give upper bounds on the chromatic number of such hypergraphs.

3.1. Definitions and Motivation

In this section we first introduce some important notions. We then give an overview of some
related problems in the literature (see Subsection 3.1.3).

3.1.1. A Frequency Assignment Problem

First we discuss the frequency assignment problem in wireless networks, which motivated
Even et al. [21] to introduce conflict-free colourings. We are given a finite number of fixed
base stations in the plane, each of which is assigned a (not necessarily unique) frequency
over which it communicates. We assume that if a base station is within range of a client,
then they can communicate. The mobile phone of a client continuously scans for frequencies
of base stations that lie within its range. For the signal to be clear, there must be a base
station within range that communicates over a frequency that is different to all the other
frequencies of the base stations that are also within range (because of interference). Assume
that the base stations are already situated so that there is always a base station within range
of a client. We would like to assign frequencies to the stations so that the client has a clear

72

signal everywhere. A simple solution to this problem is to assign different frequencies to all
the base stations. However, we would like to use as few frequencies as possible to maximize
the differences between the frequencies used and to minimize costs. To translate this to a
graph theoretical problem, we define the following hypergraph.

Definition 3.1.1. Let P be a finite point set in the plane and let F be a set of regions in
the plane. We define the following hypergraph:

G(P,F) = (V, E), where V = P and E = {f ∩ P : f ∈ F , |P ∩ f | ≥ 2}.

We say that a region R ∈ F induces an edge e ∈ E if e ∈ R ∩ P .

In the literature G(P,F) is sometimes called a range space and denoted (P,F). To model
the frequency assignment problem, we let P be the positions of the stations in the plane.
We let F be the set of all regions Rx, where Rx is the range of a client when positioned at
point x in the plane. In this case, a good frequency assignment is equivalent to a conflict-free
colouring of the vertices of G(P,F), where a conflict-free colouring is defined as follows.

Definition 3.1.2. Given a hypergraph G = (V, E), a conflict-free colouring of G is a colour-
ing c : V → [n], such that for all edges e ∈ E , there exists a vertex v ∈ e for which c(v) 6= c(w)
for all w ∈ e \ {v}. The conflict-free colouring number of G, denoted by cf(G), is defined to
be the minimum number of colours needed in a conflict-free colouring of G.

The frequency assignment problem corresponds to a conflict-free colouring of G(P,F). The
minimum number of frequencies needed is the conflict-free colouring number of G(P,F). The
frequency assignment problem can also be seen in the dual setting, that is, by considering the
station’s ranges: For a point p, define r(p) to be the set of stations whose range contains p.
The frequency assignment problem corresponds to assigning a frequencies to stations, so that
for all p ∈ R2 there exists a station s in r(p) who has been assigned a different frequency to
all the frequencies of other stations in r(p). This can also be modeled by finding a conflict-
free colouring of a hypergraph G whose vertices are the stations and whose edge set is the
set {r(p) : p is a station}. This problem has also been the focus of much research; however,
in this thesis, we will not deal with the dual setting further. We refer the interested reader
to a survey by Smorodinsky [57] for further reading about the dual problem.

3.1.2. Conflict-Free Colourings

Given a family F of regions in the plane, Even et al. investigated the least upper bound on
the conflict-free colouring number of G(P,F) for any point set P of size n.

Definition 3.1.3. Given n ∈ N and a fixed set of regions F , we define cf(n,F) to be the
minimum number of colours c so that we can find a conflict-free colouring of any point set
of size n with c colours.

Remark 3.1.4.

cf(n,F) = max{cf(G(P,F)) : P ⊂ R2, |P | = n}.

73

In this chapter, we will only consider the conflict-free colouring number of graphs induced
by points and families in the plane as described above. Unless stated otherwise, all points
and regions that we mention are in the plane.

Note that the set F often has infinitely many elements, but the graph G(P,F) is always
finite. This is because many regions in F can induce the same edge. In fact, in this thesis
we will only consider infinite families of regions. Three families that have been the subject
of much study are given below.

• For real numbers a, b, c, d ∈ R, an axis-aligned rectangle is a set of the form
{(x, y) ∈ R2 : a < x < b, c < y < d}. We let R denote the set of all axis-aligned
rectangles.

• For real numbers a, b, c ∈ R, a disc is a set of the form
{(x, y) ∈ R2 : (x− a)2 + (y − b)2 < c}. We let D denote the set of all discs.

• For real numbers a, b, c ∈ R, a bottomless rectangle is a set of the form
{(x, y) ∈ R2 : a < x < b, y < c}. We let B denote the set of all bottomless rect-
angles.

x

y

Figure 3.1.: An axis-
aligned rectan-
gle.

Figure 3.2.: A
disc.

∞

Figure 3.3.: A bottomless rectan-
gle.

Given the point set P shown in Figure 3.4 the three bottomless rectangles in the figure
imply that {x, y}, {x, z} and {x, y, z} are all edges of G(P,B). Here, {x, z} is not an edge
of G(P,B) as every bottomless rectangle containing x and z must contain y.

x

y

z

Figure 3.4.: Point set P and some bot-
tomless rectangles.

R

Figure 3.5.: A bad colouring of G(P,R).

Figure 3.5 shows a 2-colouring of a point set P that is not a good colouring of G(P,R).
The rectangle R shows that one of the edges of G(P,R) is monochromatic.

Note that in the frequency assignment problem, the more stations in the range of a client
with the same frequency, the more interference there is. Hence we want to bound the number

74

of stations in the range of a client which have the same frequency. This motivates the study
of k-conflict-free colourings, which were defined by Har-Peled and Smorodinsky [28]. We
now introduce this concept, together with some related definitions.

Definition 3.1.5. Let P be a finite point set and F be a set of regions. Given a number
k ≥ 1, we define the following:

• A k-conflict-free colouring of G(P,F) with m colours is a function c : V → [m] such
that for each (hyper)edge e, there exists an i ∈ [m] such that |{v ∈ e : c(v) = i}| ≤ k.

• The k-conflict-free colouring number of G(P,F), denoted by cfk(G(P,F)), is defined
to be the minimum number of colours needed for a k-conflict-free colouring of G(P,F).

• Given n ∈ N and a fixed set of regions F , we define cfk(n,F) to be the minimum
number of colours cmin so that we can find a k-conflict-free colouring of any point set
of size n with cmin colours.

In the rest of this subsection we show a close relation between bounds on the chromatic
number and conflict-free colouring number when the family F satisfies certain nice properties.
This relation has been one of the main tools used so far to find upper bounds on the k-conflict-
free colouring number. We will often abuse notation and refer to an edge (resp. vertex) by
a region (resp. the point) corresponding to it. We begin by introducing a few parameters of
F , which will be our main focus of interest later in this chapter.

Definition 3.1.6. Given a set of regions F and a set of points P :

• Let G≥k(P,F) = (V, E), where V = P and E = {f ∩ P : f ∈ F , |P ∩ f | ≥ k}.

• Let Gk(P,F) = (V, E), where V = P and E = {f ∩ P : f ∈ F , |P ∩ f | = k}.
The graph G2(P,F) is often called the Delaunay graph of P with respect to F .

• Let χk(F) = supn∈N χk(n,F).

• Define χk(n,F) to be the minimum number of colours cmin so that for all point sets
with n elements we have χ(Gk(P,F)) ≤ cmin, where χ(G) is the chromatic number of
G (see Definition 1.3.1). We will often denote χ2(F) by χ(n,F).

Note that cf(G(P,F)) = cf1(G(P,F)) and G(P,F) = G2(P,F). Also note that for all
the families we have mentioned in this chapter, we have cfk+1(n,F) ≤ cfk(n,F) (this is a
consequence of Remark 3.1.9 below). We denote χ(Gk(P,F)) by χk(P,F).
Remark 3.1.7.

χk(n,F) = max{χ(Gk(P,F)) : k ∈ N}.
Note that χk(F) may be unbounded, in which case, studying the asymptotic behaviour

of χk(F) is often an interesting and challenging question. Also note that χk(G(P,F)) ≥ 2
when Gk(P,F) has at least one edge.

Definition 3.1.8 (k-monotonic families). Let P be a set of points and F be a set of regions.
The ordered pair (P,F) is called k-monotonic if for any region r ∈ F and point set P ′ ⊂ P
with |r ∩ P | > k, there exists a region r′ ∈ F with |r′ ∩ P ′| = k and r′ ∩ P ′ ⊂ r ∩ P ′. A
family F is called k-monotonic if (P,F) is k-monotonic for every point set P .

75

Keszegh [34] made the following observation, which had been implicitly stated by Har-
Peled and Smorodinsky [28] beforehand.

Remark 3.1.9 (Keszegh [34]). If F is k-monotonic, then χ(Gk(P,F)) = χ(G≥k(P,F)) for
every point set P .

Proof. It is easy to see that χ(Gk(P,F)) ≤ χ(G≥k(P,F)) for any family F and any point set
P . We now argue that χ(Gk(P,F)) ≥ χ(G≥k(P,F)). Given a good colouring c of Gk(P,F),
any edge e of size larger than k is a superset of an edge e′ of size k, since F is k-monotonic.
As we have a good colouring of Gk(P,F), we have that e′ is not monochromatic and hence
e is not monochromatic. Therefore c is a good colouring of G≥k(P,F). It follows that
χ(Gk(P,F)) ≥ χ(G≥k(P,F)).

The previous remark shows that for k-monotonic families, checking whether a colouring of
a point set c is a good colouring of G≥k(P,F) is equivalent to checking whether c is a good
colouring of Gk(P,F). All the families that we discuss in this thesis are k-monotonic for all k.

Remark 3.1.9 also implies that if a family F is k-monotonic, then cfk+1(n,F) ≤ cfk(n,F).

Remark 3.1.10. If F is a set of regions for which there exists a direction in which all the
regions are bounded, then we have χk(G(n,F) ≤ χk(G(n + 1,F) for all n, k ∈ N. We call
such a family bounded in one direction.

Proof (of Remark 3.1.10): Given a point set P , we want to add a point p to P so that
Gk(P,F) is a subgraph of Gk(P ∪ {p},F). We choose this point as follows: Only finitely
many regions are needed to induce all the edges of the graph Gk(P,F), therefore we can
always find a point p outside of all these regions in the bounded direction. By the choice of
p, we have that Gk(P,F) is a subgraph of Gk(P ∪ {p},F). As a good colouring of a graph
induces a good colouring of a subgraph, we are done.

We include this criteria as it is sufficient for the sequence (χk(n,F))n∈N to be monotoni-
cally increasing, i.e., it does not decrease.

This criteria is stronger than necessary, as can be seen in the case where F is the set of
half planes in the plane. Even though this set is not bounded in one direction, the sequence
(χ(n,F))n∈N is monotically increasing. For our purposes this criteria is sufficient.

Even et al. [21] gave an algorithm that uses a bound on the chromatic number to bound
the conflict-free colouring number. This has been applied in most of the results that bound
cfk(n,F). Har-Peled and Smorodinsky [28] made a slight modification to this result, which
was explicitly stated by Keszegh [34].

Lemma 3.1.11. Let n, k ∈ N and let F be a k-monotonic family of regions that are all
bounded in one direction. The following statements hold:

1. If χk(G(n,F)) ≤ c for some constant c ≥ 2, then cfk−1(G(n,F)) ≤ log(n)
log(c

c−1
) .

2. For 0 < ǫ ≤ 1, if χk(G(n,F)) = O(nǫ), then cfk−1(G(n,F)) = O(nǫ).

76

Proof of 1. Let χk(G(n,F)) ≤ c for some constant c and consider an arbitrary point set P
with n elements. We show that we can find a good k-conflict-free colouring cf that uses at

most log(n)
log(c

c−1
) colours. We iteratively colour the points to construct cf . Let P1 = P . Given

the point set Pi, take a good colouring ci of G(Pi,F) using c colours (This exists because of
Remark 3.1.10). By the pidgeonhole principle, there exists a colour class Xi of ci such that

|Xi| ≥ |Pi|
c . Let cf (p) = i for all points p ∈ Xi and let Pi+1 = Pi\Xi. We repeat this until we

get a set Pm with |Pm| ≤ k−1. We then let cf (p) = m for all p ∈ Pm. By construction, cf is a
(k− 1)-conflict-free colouring of G(n,F). Indeed, let i be the last colour used to colour ver-
tices in an edge e, then we must have |Xi ∩ e| ≤ k− 1. If not, there must be a region r′ ∈ F
such that |r′∩Xi| = k because F is k-monotonic. Therefore, we have that r′∩Xi is an edge
of Gk(Pi,F), which has been coloured monochromatically by ci. This contradicts that ci is
a good colouring of Gk(Pi,F).
We now show that the number of colours used is at most log(n)

log(c
c−1

) . We get that |P1| = n and

|Pi+1| = |Pi| − |Pi|
c . Solving the recursion gives |Pm| = |P1|(c−1

c)m. If m = log(n)
log(c

c−1
) , then

|Pm| ≤ k−1. Therefore, the number of iterations needed is at most log(n)
log(c

c−1
) and we are done.

Proof of 2. We use the same algorithm as in the proof of 1 to find a k-conflict-free colouring
of G(n,F). In each iteration we colour a set of vertices Xi of size |Xi|

C|Xi|ǫ
with colour i, where

C is a constant. Once again, we obtain a recursion. The proof is completed by solving the
recursion to show that the algorithm is terminated after O(nǫ) iterations.

Let H be a family of homothetic copies of a bounded convex shape. By homothetic copies
of a shape R, we mean a shape R′ that can be obtained via a translation and a scaling of
R. Pach and Tóth [47] proved that cf(G(P,H)) = Ω(log(n)) for every point set P of size n
in the plane. Families of homothetic copies of a bounded convex shape R are 2-monotonic
and bounded in one direction. A conflict-free colouring of a graph G is also a good colouring
of G, therefore χ(G) ≤ cf(G). Taking all these facts into account, Lemma 3.1.11 shows
that understanding the asymptotic behaviour of χk(n,H) as n tends to infinity leads to an
asymptotically close bound on cfk(n,H).

When arguing that cf is a k-conflict-free colouring, we only use that the set of vertices Xi,
which we colour in each iteration, is a k-independent set of Gk(Pi,F). Here, a k-independent
set of a graph G is defined to be a subset Ik of the vertices of G for which no edge of G
is a subset of Ik. Bounding the chromatic number from above is one method of showing
the existance of a large independent set, but it is not necessary. Another thing to notice is
that the algorithm above gives a k-conflict-free colouring with a special property. Namely,
if e is an edge of G(n,F), then |{p ∈ e : c(p) = me}| ≤ k where me = maxp∈e{c(p)},
i.e., me the maximum index of a colour used in e. Equivalently, if we order the list of
colours and let ce be the highest colour used on vertices of an edge e, then there are at
most k vertices v ∈ e with c(v) = ce. A colouring that satisfies this additional property
is known as a k-maximum colouring. Given a graph G, the minimum number of colours
that are needed for a k-maximum colouring is denoted by χk-m(G). It is easy to see that
cfk(G) ≤ χk-m(G) for any graph G. In the case where the edges of G are all of size 2, we
have cf(G) = χk-m(G). For k > 2, there exists graphs with n vertices, for which cf(G) = 2

77

and χ1-m(G) = Ω(n) (see [57]). Therefore, the difference between these values can be very
big for graphs in general. Note that bounds on the k-conflict-free colouring number have
usually been identified by constructing good k-maximum colourings as they are easier to
handle.

Lemma 3.1.11 shows that computing k-maximum colourings does not seem too unreason-
able, when bounding cf(G(n,F)) for a k-monotonic family of regions F that is bounded in
one direction; however, it is not always the best method to obtain tight upper bounds on
the k-conflict-free colouring number for other graph classes that are not so well behaved.
Smorodinsky [57] gives examples of graphs with cf3(G) = 2 and cfk-um(G) = ⌊|V |/2⌋.

3.1.3. Related Results

The study of conflict-free colourings of graphs was initiated by Even et al. [21]. Among
other things, they investigated the conflict-free colouring number of range spaces (G(P,F))
for various families of geometric objects in the plane such as discs in the plane (D) and
axis-aligned rectangles in the plane (R). They found the algorithm, which is used in the
proof of Lemma 3.1.11 to find conflict-free colourings. They used this algorithm, together
with the fact that G(P,D) is planar for any point set P , to show that cf(n,D) = O(log(n)),
They showed that this O(log(n))-colouring can be found in O(n log(n)) time. They applied
these ideas to obtain similar results when F is the set of half-planes in the plane. They also
gave a lower bound on cf(n,D). Namely, they show that for any set P of n points on a line,
the graph G(P,D) needs Ω(log(n)) colours for a good colouring. Pach and Tóth [47] proved
the following statement: cf(G(P,F)) ≥ log8(n) for every point set P of size n in the plane
and any family F of homothetic copies of given convex shape.

Regarding axis-aligned rectangles, Har-Peled and Smorodinsky [28] gave a proof that
applies the Erdös-Szekeres Lemma about the existence of monotone subsequences to prove
that cf(n,R) = O(

√
n). Pach and Tóth [47] improved this bound slightly and showed that

cf(n,R) = O
(
√

n log log(n)
log(n)

)

. The best known upper bound is by Ajwani et al. [1], who

show cf(n,R) = Õ(n0.382), where Õ includes a polylogarithmic factor. The best known
lower bound is Ω(log(n)), which is achieved by any set of n- points on a line. A large gap
remains between the lower bound and the upper bound of cf(n,R), which seems much more
challenging to close than in the case of discs.

Trying to improve the bounds known for axis-aligned rectangles has motivated trying
to show the existance of a large independent set in G(P,R) for any point set P . Using
probabalistic arguments, Chen et al. [14] show that there does not exist an Ω(n) lower
bound on the independence number for point sets of size n. In fact, they show that the
graph G(P,R) of a randomly and uniformly selected set of n points in the unit square

almost surely has an independence number of size O
(

n log2 log(n)
log(n)

)

. Applying the fact that

χ(G) ≥ n
α(G) , we get the existence of sets P of n points in the unit square G(P,R) whose

chromatic number is of size Ω
(

log(n)

log2 log(n)

)

. They also generalised this result to hypergraphs,

showing that the k-independence number of the graph Gk(P,R) of a randomly and uniformly

selected set of points in the unit square is almost surely of size O
(

kn log2 log(n)

log1/(k−1)(n)

)

. Here,

the k-independence number is the size of the biggest k-independent set. It follows that for
all values of k, the value of χk(n,F) tends to infinity as n tends to infinity. They also apply

78

a theorem by Spencer [58] to show that every hypergraph G(P,R) of a point set P of size n
has an k-independent set of size Ω(n/(log1/(k−1)(n)))).
In the case when k = 2 the best known lower bound is by Ajwani et al. [1], they show there
exists an independent set of size Ω̃(n0.382).

For some families F where χk(n,F) is bounded by a constant, there has also been interest
in computing the value of χk(F). Recall that χk(F) is the least upper bound of χk(P,F)
over all finite point sets P . Keszegh [34] found the values of χk(F) for all k ∈ N when F
is the set of all bottomless rectangles (see Section 3.2). He also found χk(F) in the case
where F is the set of all half-planes in the plane. Regarding the family of discs in the plane,
χ2(G(P,D)) is planar and hence 4-colourable. From the monotonicity of D it follows that
χk(D) ≤ 4 for all k. Pach et al. [46] gave a construction of a family of point sets Pk such
that χk(Pk,D) = 3. It follows that χk(D) ≥ 3 for all k ∈ N. It remains open whether there
exists a natural number k for which χk(D) = 4.

Regarding the k-conflict-free colouring number for k ≥ 2, Har-Peled and Smorodinsky [28]
showed that there are families for which cfk(G(n,F)) does not have the same value for all
k. More specifically, they showed that cfk(G(n,B2)) = O(n1/k) for any k ∈ N, where B2
denotes the set of all balls in R3. They also give an example of a set P of n points in R3 for
which cfk(G(P,B2)) = n. This implies that cfk(n,F) and cfk+1(n,F) are not the same in
general.

In addition to the problems mentioned above, other colouring problems of this nature that
can be found in the literature include:

• Conflict-free colourings of regions (see the discussion after Definition 3.1.2). Colourings
of regions are closely related to the notion of decomposable coverings of the plane (see
Pach et al. [46]).

• Online variations of colouring problems on point sets, i.e., the points are introduced
one after another and a point must be coloured immediately after introduction.

• The unique-maximum colouring number and how it relates to the conflict-free colouring
number (for graphs in general, and for some specific graph classes).

• Finding efficient approximation algorithms for the conflict-free colouring number. This
is motivated by the fact that computing this number is hard in general, even where F
is the set of all discs in the plane with radius 1 (see Even et al. [21]).

For a more detailed overview of conflict-free colourings and the results known to date, we
refer the reader to [57].

3.2. Axis-Aligned Rectangles that are Pierced by a Line

In this section, we investigate bounds on χk(F) for a specific subfamily of axis-aligned
rectangles. Given a fixed horizontal line L and k ∈ N, we let RL be the set of axis-aligned
rectangles that intersect L (see Figure 3.6). Keszegh [34] gave some bounds on χk(RL) for
all values of k. We find new lower bounds on χk(F) for some values of k, leaving k = 6 as
the only unsolved case.

79

L

Figure 3.6.: Three Rectangles that are in RL, together with a point set P .

Note that in Figure 3.6 G2(P,RL) is a 3-cycle, but if we would translate the entire pointset
above L, then the graph would be a path of length 2 (the same graph that we would obtain
if the regions were bottomless rectangles).

One motivation for studying the family RL is as follows: RL can be generalised to the fam-
ily RL1,L2,...,Lm of rectangles that intersect at least one of the horizontal lines L1, L2, .., Lm.
If we have a point set P ⊂ R2, we can find a number mP that is big enough so that
G(P,R) = G(P,RL1,L2,..,LmP

). Therefore, understanding the structure of G(P,RL1,L2,..,Lm)
as m increases would lead to more insight in the structure of G(P,R).

Keszegh [34] used the values of χk(B), together with Lemma 3.2.2 and Lemma 3.2.3 to
give the upper bounds on χk(RL). These bounds are given in Table 3.1. We give examples
of point sets showing that these upper bounds on χk(RL) are tight for k = 1, . . . , 5. It
follows that the only unknown value of χk(RL) is when k = 6, whose value is either 2 or 3.

Table 3.1.: Bounds on χ(RL) shown by Keszegh [34].

k = 2 3 ≤ k ≤ 6 k ≥ 7

4 ≤ χk(RL) ≤ 6 2 ≤ χk(RL) ≤ 3 χk(RL) = 2

In this chapter all point sets are presumed to be in general position. Here, a point set
is said to be in general position if no two points have the same x- or y-coordinates and no
point lies on the horizontal line L (in the case when looking at RL). Note that because
we are looking at finite sets of points, for any point set P that is not in general position
we can perturb the points slightly to obtain a set of points P ′ in general position such that
edges of G(P,RL) and G(P,B) are also edges of G(P ′,RL) and G(P ′,B), respectively. This
implies that χk(G(P ′,RL)) ≥ χk(G(P,RL)) and χk(G(P ′,B)) ≥ χk(G(P,B)). Therefore,
restricting ourselves to point sets in general position does not change the values of χk(RL)
and χk(B) that we obtain. In the remainder of this subsection we show some relations
between the families RL and B.

Remark 3.2.1. Given a finite point set P , let L1 (resp. L2) be a horizontal line below
(resp. above) all points in P . The following holds:

χk(G(P,RL1)) ≤ χk(B) and χk(G(P,RL2)) ≤ χk(G(B)).
Proof. The inequality on the left holds because every bottomless rectangle can be seen as
a rectangle that intersects a line below all of the points in P . The statement on the right
holds because we could reflect the point set in line L2 to obtain a new point set P ′ above
L2. Edges that bottomless rectangles induce on P ′ then correspond to edges that rectangles
in RL2 induce on P . Therefore χk(G(P,RL2)) = χk(G(P ′,B)) ≤ χk(B).

Using Remark 3.2.1 we get the following two lemmas, which are the key tools used by
Keszegh [34] for obtaining upper bounds on χk(RL).

80

Lemma 3.2.2. Given a point set P , then

χk(G(P,RL)) ≤ 2χk(B) for all k ∈ N.

Proof. Given a line L and a point set P , we partition P into the sets Pupper and Plower,
where Pupper is the set of points in P that lie above L and Plower is the set of points in P
that below the L. This is indeed a partition due to the points being in general position. By
Remark 3.2.1, we can find a colouring of both Pupper and Plower using χk(B) colours so that
there is no monochromatic edge in G(Pupper,RL) or G(Plower,RL). We colour Pupper and
Plower using disjoint sets of colours. We claim that this gives a good colouring of Gk(P,RL).
Consider an rectangle Re ∈ RL that induces an edge e of G(P,RL). Either Re contains k
points that all lie on the same side of the line L, or Re contains points on both side of L. In
the first case, e cannot be monochromatic as it is an edge of G(Pupper,RL) or G(Plower,RL).
In the second case, e cannot be monochromatic as we have used disjoint sets of colours for
Plower and Pupper.

Lemma 3.2.3. Given a point set P , then

χ2k−1(G(P,RL)) ≤ χk(B) for all k ∈ N.

Proof. Similarly to the proof of the previous lemma, we colour Pupper and Plower separately
with a good χk(B)-colouring. This time however, we use the same set of colours to colour
Pupper and Plower. Let R be a rectangle that induces an edge e of G2k−1(P,RL). By
definition, R must contain 2k − 1 points in P . The pidgeonhole principle implies that R
must contain at least k points that lie on one side of L. Therefore R must induce an edge
e′ in either G(Pupper,RL) or G(Plower,RL). By the construction of the colouring, e′ is not
monochromatic, and therefore e is not monochromatic. Hence, we have a good colouring of
G2k−1(P,RL) with χk(B) colours.

3.2.1. Bounding χ2(RL) from Below

In this section we give an example of a point set P such that χ2(P,RL) = 6, from which
it follows that χ2(RL) = 6. We begin by presenting the upper bound χ2(RL), which was
found by Keszegh [34]. For this we need to look at bottomless rectangles. The following
claim, which Keszegh [34] calls ‘folklore’, shows that χ2(B) ≤ 3.

Claim 3.2.4. χ2(B) ≤ 3.

Proof. Given a point set P , we find a 3 colouring of G(P,B). We do this by colouring
the points in increasing order with respect to their y-coordinate, maintaining the following
invariant.

Invariant: Let Pm be the set of points that we have already coloured.
If p1, .., pm is the ordering of the points in Pm with respect to their x-coordinates, such that
subsequent points are not of the same colour, i.e., c(pi) 6= c(pi+1) for 1 ≤ i ≤ m− 1.

We can maintain the invariant because when we colour a point, we have three colours

81

to choose from. There are only at most two points in the ordering with respect to their
x-coordinates whose colour we may not use. Therefore there is always one free colour. It
remains to show that this is a good colouring of G. Let e be an edge of G, and let p be the
last point to be coloured in e. If p is the mth point that we colour, and i is its index in the
ordering p1, .., pm, then the other point in e must be one of pi+1 or pi−1. Therefore, by the
induction hypothesis, e is not monochromatic.

The next corollary follows from Lemma 3.2.2.

Corollary 3.2.5 (Keszegh [34]). χ(RL) ≤ 6.

Note that χ2(B) = 3, as one can find a point set P such that χk(P,B) = 3 (see Figure 3.7).

z

y

x

Figure 3.7.: A point set for which χ2(G(P,RL)) = 3.

We will now show that χ2(RL) = 6 with the following proposition.

Proposition 3.2.6. For the point set P in Figure 3.8 we have χ2(G(P,RL)) = 6.

L

y′
y

x1
x3

x2
x4

Figure 3.8.: A point set P for which χ2(RL) = 6.

Proof. We assume there exists a good colouring c of G(P,RL) with 5 colours. This will lead
to a contradiction. First consider the points in {x1, x2, x3, x4, y, y′} in Figure 3.8.
Fact 1. There exists j ∈ {1, 2} and k ∈ {3, 4} such that c(xj) = c(xk).

If not, then as (x1, x2) and (x3, x4) are both edges, we must have that all the xi’s have
different colours. However, as y and y′ are both adjacent to all xi they must both receive

82

the 5th colour. Because (y, y′) is an edge, we get a contradiction and hence, fact 1 must hold.
Now that such a pair xj , xk exists, we can assume without loss of generality that
c(xj) = c(xk) = 1. Also assume without loss of generality that c(xj+1) = 2. Consider
the point set restricted to the vertical strip between xj and xj+1. The relative positions of
the vertices in the strip are indicated more clearly in Figure 3.9.

L

z3

z1

xj+1

z4

z2

z5

y1

y5
q

y4

y2
y3

xj

Figure 3.9.: A closer look at the section between xj and xj+1.

Given the vertices labeled as in Figure 3.9, we now show the following fact.
Fact 2. c(yi) /∈ {1, 2} for all i = 1, . . . , 5.

Consider a point yi for i ∈ {1, . . . , 5}. As yi is adjacent to xj+1, we have that c(yi) 6= 2. Ad-
ditionally, because of how we chose xj , the vertex xk is adjacent to yi and c(xk) = c(xj) = 1.
Therefore c(yi) 6= 1.
Fact 3. We can use at most 2 different colours on the set {y1, .., y5}.

The vertex z1 is adjacent to vertices xj and xj+1, therefore c(z1) /∈ {1, 2}. Without loss of
generality, let c(z1) = 5. Now, for i = 1, . . . , 5 we have that z1 is adjacent to yi. Therefore,
together with Fact 2, we have that c(yi) ∈ {3, 4} for i = 1, . . . , 5.
Fact 4. c(z1) = 5, c(z3) = 1, c(z5) = 2:

For all i, there exists a number m such that zi is adjacent to ym and ym+1. Therefore, by
Fact 3, together with the fact that {ym,ym+1} ∈ E , we have c(zi) ∈ {1, 2, 5} for all i. Now,
consider the induced subgraph on the vertex set {xj , xj+1, z1, z2, z3, z4, z5} (see Figure 3.10).
The vertices xj and xj+1 already have colours 1 and 2, which forces the colour of the zi for
all i. The statement in Fact 4 follows.
Now vertex q is adjacent to y4, y5, z1, z3, z5, which have received all five of the colours avail-
able (by Facts 3 and 4). Therefore, there is no colour available for q, which implies that
there does not exist a good colouring of G(P,RL) with 5 colours.

83

z2

z4 z3

z1

xj+1

z5

xj

c(xj) = 1

c(xj+1) = 2

Figure 3.10.: Restriction on {xj , xj+1, z1, z2, z3, z4, z5}.

By Corollary 3.2.5 we get χ(G(P,RL)) = 6.

We have shown that χ2(RL) ≥ 6. Therefore, from the upper bound proved by Keszegh [34],
we get the following result:

Theorem 3.2.7. χ2(RL) = 6.

3.2.2. χk(RL) for k > 2

In this subsection we investigate χk(RL) for k ≥ 3. First note that as the family B of
bottomless rectangles is monotonic, we get that χk(B) ≤ χ2(B) by Remark 3.1.9. By
Claim 3.2.4, we know that χ2(B) ≤ 3. Therefore we have χk(B) ≤ 3 for all k ≥ 2. Applying
Lemma 3.2.3, we get that χ3(RL) ≤ 3. We will show that χ5(RL) ≥ 3 and therefore

3 ≤ χ5(RL) ≤ χ4(RL) ≤ χ3(RL) ≤ 3,

which implies χk(RL) = 3 for k = 3, 4, 5.

Proposition 3.2.8. χ5(RL) ≥ 3.

Central Vertex L

The 25 points in
P
r

The
625

points in
P
t

The
12
5 po

int
s in

Ps

q1

q2

q3

q4

q5

P q

Figure 3.11.: A point set P for which χ5(G(P,RL)) ≥ 3.

Proof. We give a point set P for which G5(P,RL) is not 2-colourable. An idea of the overall
structure of the point set P can be seen in Figure 3.11. The point set consists of a central
point together with 780 other points, which we partition into four sets, Pq = {qi : i ≤ 5},

84

Pr = {ri : i ≤ 25}, Ps = {si : i ≤ 125}, and Pt = {ti : i ≤ 625} (indicated in Figure 3.11).
The sets Pq and Pr lie above the line L and the sets Ps and Pt lie below the line L. All the
points in the set Pq and Pt lie completely to the left of all the points in Pr and Ps.

The figures below indicate the relative positions of the points in more detail. The range
of i for which they are true is indicated in the captions of the figures. Note that the figures
have been scaled so that it is easier to see the relative positions.

qi+1

qi r5i−4

r5i

r5i−3

r5i−2

r5i−1

Figure 3.12.: The relative positions
for 1 ≤ i ≤ 4

si+1

si
t5i−4
t5i−3
t5i−2

t5i
t5i−1

Figure 3.13.: The relative positions
for 1 ≤ i ≤ 124.

qi
qi−1

t125i−124
t125i−123

t125i
t125i−1

Figure 3.14.: The relative positions
for 2 ≤ i ≤ 5.

s5i−3
s5i−2

ri
ri−1

s5i
s5i−1

s5i−4

Figure 3.15.: The relative positions
for 2 ≤ i ≤ 25.

A closer look at the relative positions of the points.

• Removing the point qi+1 from Figure 3.12 and letting i = 5, shows the relative positions
of q5, r21, r22, r23, r24, r25.

• Removing the point si+1 from Figure 3.13 and letting i = 125, shows the relative
positions of t625, t624, t623, t622, t621, s125.

• Removing the point qi−1 from Figure 3.14 and letting i = 1, shows the relative positions
of r1, s5, s4, s3, s2, s1.

• Removing the point ri−1 from Figure 3.15 and letting i = 1, shows the relative positions
of t1, t2, . . . , t124, t125, q1.

These figures show a labeling of the points, which we will use in the remainder of the proof.
Assume that we have a good colouring c of G5(P,RL) with two colours (1 and 2). We will
show that c must have a monochromatic edge, i.e., there is a rectangle that contains 5 points
that are all coloured with the same colour. Suppose that we have a good colouring of P
with 2 colours. Without loss of generality, the central point is coloured 1. The set Pq is an

85

edge of G5(P,RL). Therefore, as we have a good colouring of P , not all of the points in Pq

can receive the colour 2. Let qi be the point in Pq that is coloured 1.
Arguing similarly, one of the points r5i−4, .., r5i that lie between qi and qi+1 also receives
colour 1, call this rj. In the same manner, one of s5j−4, .., s5j also receives colour 1, call
this sk. Finally, we must also have that one of t5k−4, .., t5k receives colour 1, call this zl. By
construction of the point set, the four points qi, rj , sk, tl together with the central point pc
are an edge of G.

Indeed, we let the bottom left corner of a rectangle R in RL be tl. Choose the rectangle
R so that sk lies on the right boundary of R. One can find such a rectangle in RL as sk
and tl both lie below L, and the y-coordinate of tl is less than the y-coordinate of sk. We
chose R so that rj lies on the top boundary of R. By definition of the point set, such a
rectangle exists and also contains qi. By the relative positions of the points, R only contains
the points pc, qi, rj , sk, tl. Therefore R induces an edge of G(P,RL) that has been coloured
monochromatically. An example of such a rectangle R is shown in Figure 3.16.

L

qi

tl sk

rj

Figure 3.16.: A monochromatic rectangle.

Corollary 3.2.9. χk(RL) = 3 for 3 ≤ k ≤ 5.

Keszegh shows that χk(B) = 2 for k ≥ 4, for the bottomless rectangles. He then applies
Lemma 3.2.3 to show that χk(RL) ≤ 2 for k ≥ 7. We include this result for completeness.

Proposition 3.2.10 (Keszegh [34]). Given any point set P , we can find a good colouring c
of G4(P,B) with 2 colours.

Proof. We process the points in increasing order with respect to their y-coordinate. By
processing a point p, we mean that we either colour p and possibly another uncoloured point
in P , or we leave p uncoloured so that it can be coloured later. We process the points so
that the following invariant is maintained:

86

Invariant: Let Pk be the set of k points that we have already processed. If p1, p2, . . . , pk is
the ordering of the points in Pk with respect to their x-coordinates, then we have:

1. No two consecutive points in this ordering are uncoloured.

2. If two points pi and pj with i < j have been coloured with the same colour, then there
exists another point pl in Pk with i < l < j that has been coloured with the other
colour.

We maintain the invariant by colouring as follows. We begin by colouring the first vertex
with one of the colours, this clearly satisfies the invariant. Now, suppose the invariant has
been maintained when processing the first k points. Let p be the next point we need to
process and let p1, p2, . . . , pk+1 be the ordering of the points in Pk∪{p} with respect to their
x-coordinates. Let m be the index of p in the ordering p1, p2, . . . , pk+1, i.e., p = pm. If neither
of the points pm−1 and pm+1 is uncoloured, then we leave pm uncoloured and it is easy to
see that we have maintained the invariant. Otherwise, there is a point p′ ∈ {pm−1, pm+1}
which is uncoloured. Without loss of generality p′ = pm+1.

If m /∈ {1, k}, then pm−1 and pm+2 have both been coloured already because the first part
of the invariant holds for Pk. By the second part of the invariant c(pm−1) 6= c(pm+2). We let
c(pm+1) = c(pm−1) and c(pm) = c(pm+2). When m = 1, then p3 must have been coloured.
We let c(p1) = c(p3) and we let c(p2) 6= c(p1). The case when m = k is similar. Colouring
in this way, we have ensured that the invariant holds for Pk+1.

Once we have processed all the points, we colour the remainding uncoloured points ar-
bitrarily. We now show that a colouring c obtained in this way gives a good colouring of
G4(P,B). Let B be a bottomless rectangle that contains exactly 4 contains in P . Consider
the last point p that is processed in B. suppose p is the kth point that is processed. By the
definition of a bottomless rectangle, we have that the four points in B are consecutive in the
ordering p1, p2, . . . , pk of Pk. From the first part of the invariant on Pk, we must have at least
2 points in B that have been coloured before the (k + 1)th point is processed. The second
part of the invariant on Pk implies at least 2 of the points in B must have been coloured
with different colours once p is processed. Therefore, B does not induce a monochromatic
edge. This shows that c is a good colouring of G4(P,B) and we are done.

By Lemma 3.2.3, together with the fact that RL is k-monotonic, we can conclude the
following:

Corollary 3.2.11 (Keszegh [34]). χk(RL) = 2 for all k ≥ 7.

The only unknown value remaining is χ6(RL), which is either 2 or 3 because

3 = χ5(RL) ≥ χ6(RL) ≥ 2.

87

4. Summary

As the problems that we consider in Chapter 2 and Chapter 3 are quite different, we give a
seperate conclusion for each chapter.

4.1. Summary and Open Questions for Chapter 2.

We have investigated cyclic segment graphs and hook graphs and we have given various
models of them. Figure 4.1 shows relations between hook graphs, cyclic segment graphs and
some other known graph classes, where an edge between two classes implies that the highest
of the two classes contains the other.

Convex Graphs

2-Directional Orthogonal Ray Graphs

Interval Graphs Outerplanar Graphs

Segment Graphs Rectangle Intersection Graphs

Hook Graphs

Cyclic Segment Graphs

Figure 4.1.: Subclasses and superclasses

We have proved that the recognition problem for cyclic segment graphs is NP-complete.
Whilst proving the NP-completeness result, we proved that bipartite cyclic segment graphs
are exactly grid intersection graphs. Bellantoni et al. [5] have proved that grid intersection
graphs are exactly bipartite rectangle intersection graphs. Therefore a bipartite graph is a
cyclic segment graph if and only if it is a rectangle intersection graph. Cantazaro et al. [9]
have shown that computing the chromatic number of hook graphs is NP-hard, it follows that
computing the chromatic number of cyclic segment graphs is NP-hard. The complexity of

88

computing the clique number, the independence number, and the clique covering remains
unknown for cyclic segment graphs. We have shown that the clique number and the inde-
pendence number can be computed in polynomial times for hook graphs. It has also been
shown by Cabello et al. [8] (resp. J. Chalopin and D. Gonçalves [13]) that the clique num-
ber (resp. independence number) is NP-hard to compute for segment graphs. It would be
interesting to see whether a polynomial time algorithm that computes any of these values
for cyclic segment graphs exists. Another interesting way of extending ideas would be to
consider another set of lines that is not the cyclic arrangement, i.e., for which there does
not exist a homeomorphism of the plane that maps them to a set of lines that are tangent
to a parabola. We also mentioned that the graph K2,2,2 has a segment representation whose
segments lie on lines that are tangent to a circle, but we have shown that K2,2,2 is not a hook
graph. It would also be interesting to investigate graphs that have segment representations
whose segments lie on lines that are tangent to the circle, and compare this class to hook
graphs.

Regarding Hook graphs, one of the most fascinating problems is to find a bound on the
chromatic number in terms of the clique number that is asymptotically best possible. This
is particularly interesting as it is widely thought that one can bound the chromatic number
rectangle intersection graphs in general by a function that is linear in the clique number.
We have tried to extend the ideas used when showing that triangle-free hook graphs are
4-colourable, but have not been successful. We have also shown that all odd holes do not
have a hook representation except for C5, which is a cycle. We have also shown that the
hook representations of cycles is quite limited and that we can always find three vertices
v,w, and x in a odd hole C2k+1 with v <h w <h x such that (v, x) is an edge of C2k+1, and
(v,w) and (w, x) are not edges of C2k+1. Removing such a vertex w from each odd hole in a
hook graph would leave us with a perfect graph; however, we have not found an effective way
of doing this to find a better bound on the chromatic number. Another problem that would
be very interesting is to compute the complexity of the recognition problem for hook graphs.
We have shown that the recognition problem for cyclic segment graphs is NP-complete. It
also follows from the fact that bipartite rectangle intersection graphs are grid intersection
graphs that the recognition problem for rectangle intersection graphs is also NP-complete.
However, for all the classes of graphs for which we have found hook representations, the
recognition problem can be solved in polynomial time. In Theorem 2.1.10, we showed that
the recognition problem for bipartite cyclic segment graphs is NP-complete, However, the
complexity of the recognition problem remains unknown, even for bipartite hook graphs and
stick graphs. We have shown that 2-directional orthogonal ray graphs are stick graphs. It is
also known that one can recognise them 2-directional orthogonal ray graphs in polynomial
time as their complements are circular arc graphs, which can be recognised in polynomial
time (see McConnell [42]). Stefan Felsner (personal communication) has noticed that stick
graphs are comparability graphs of 3-dimensional posets of height 2. Veit Wiechert (personal
communication) has generalised this result by showing that bipartite hook graphs are also
comparability graphs of 3-dimensional posets of height 2. Yannakakis [61] has showed that
testing whether a height 2 poset has dimension at most k, is NP-complete for k ≥ 4. Testing
whether a poset is of dimension at most 2 can be done in polynomial time (see Golumbic [27]).
It remains unknown, whether testing if a poset of height 2 has dimension at most 3 is NP-
complete. This gives much motivation for investigating the complexity of the recognition
problem for stick graphs and bipartite hook graphs.

89

4.2. Summary and Open Questions for Chapter 3.

We have shown that the bound of 6 on the chromatic number of graphs G(P,Rl) is best
possible, i.e., we have given a point set P such that the chromatic number of G(P,Rl) is
6. We have also shown that the upper bound of 3 on graphs Gk(P,Rl) is best possible for
3 ≤ k ≤ 6. It remains unknown whether the upper bound of 3 is best possible for graphs
G6(P,Rl). An example of a point set P such that the graph chromatic number of the
graph G6(P,Rl) remains unknown. It is also unknown whether we can in fact find a good
2-colouring of G6(P,Rl) for any point set in the plane. Solving this question would give
tight bounds for all values of k as it is known that Gk(P,Rl) is 2-colourable for any k ≥ 7.
One could also generalise these questions to the set Rl1,l2,...,ln of all rectangles that intersect
at least one of n fixed horizontal lines l1, l2, . . . , ln. This problem seems more complicated as
there is no simple way of using the bounds on bottomless rectangles to obtain good bounds
on G(P,Rl1,l2,...,ln).

90

A. Deutsche Zusammenfassung

In dieser Arbeit konzentrieren wir uns auf einige Probleme in der geometrischen Graphen-
theorie. Es gibt zwei Hauptthemen, die wir untersuchen. In dem Hauptteil (Kapitel 2)
dieser Masterarbeit beschäftigen wir uns mit Schnittgraphen von geometrischen Objekten
in der Ebene. Die Arbeit in Kapitel 2 wurde ursprünglich durch die Untersuchung von Seg-
mentgraphen motiviert. Ein Graph ist ein Segmentgraph, wenn der Graph durch Segmente
von Geraden in der Ebene dargestellt werden kann. Dabei ist (v,w) eine Kante genau dann,
wenn sich die zwei entsprechenden Segmente schneiden. Wir führen eine Klasse von Seg-
mentgraphen ein, ihre Elemente nennen wir zyklische Segmentgraphen. Hierbei ist ein Graph
ein zyklischer Segmentgraph, wenn es eine Segmentdarstellung hat, dessen Segmente alle
auf Tangenten einer Parabel liegen und keine zwei Segmente parallel sind. Wir präsentieren
verschiedene Modelle dieser Graphen und beweisen, dass bipartite zyklische Segmentgraphen
genau Schnittgraphen von vertikalen und horizontalen Segmenten in der Ebene sind. Hier-
aus können wir mit einem Ergebnis von Kratochvíl [36] folgen, dass es ein NP-vollständiges
Problem ist zu testen, ob ein Graph ein zyklischer Segmentgraph ist. In späteren Abschnit-
ten beschäftigen wir uns mit einer Unterklasse von zyklischen Segmentgraphen, die wir
Hookgraphen nennen. Auch Cantanzaro et al. [9] haben Hookgraphen unabhängig von uns
untersucht und wurden durch ein Problem in der Biologie motiviert. Ein Hookgraph ist ein
Segmentgraph, der eine Segmentdarstellung hat, dessen Segmente alle tangential zu einer
Parabel liegen und keine zwei Segmente parallel sind. In dieser Arbeit führen wir Hook-
graphen mit Hilfe eines anderen Modells von zyklischen Segmentgraphen ein. Von diesen
anderen Modellen beweisen wir auch, dass ein Graph ein Hookgraph ist, genau dann, wenn
es der Schnittgraph von achsenparallelen Rechtecken in der Ebene ist, wobei die linke obere
Ecke von jedem Rechteck auf der Diagonalen {(x, x) : x ∈ R} liegt. Wir führen die cross com-
pletion property für eine Anordnung von Knoten ein. Wir zeigen, dass sich Hookgraphen als
Graphen charakterisieren lassen, für die eine Anordnung von Knoten existiert, welche diese
cross completion property erfüllt. Mit Hilfe dieser verschiedenen Modelle, zeigen wir, dass
Intervallgraphen, außerplanare Graphen und 2DORGs alle Hookgraphen sind. Im letzten
Abschnitt über diese Thema geben wir Algorithmen mit polynomialer Laufzeit zur Berech-
nung der Cliquenzahl und der Unabhängigkeitszahl von Hookgraphen. Wir zeigen auch,
dass wir für jeden Hookgraphen G die chromatische Zahl χ(G) = O(log(Ω(G))) haben,
wobei χ(G) und Ω(G) die chromatische Zahl von G beziehungsweise die Cliquenzahl von G
ist. Wir schließen Kapitel 2 mit einem Beweis ab, der zeigt, dass die Unabhängigkeitszahl
eines Hookgraphen G eine 2-Approximation der Cliquenzerlegungszahl von G ist.

Das andere Thema meiner Arbeit wird in Kapitel 3 behandelt. Hier beschäftigen wir
uns mit einem Färbungsproblem, welches mit konfliktfreien Färbungen von Punktmengen
verbunden ist. Sei RL die Menge aller achsenparallelen Rechtecke in R2, die eine feste
horizontale Linie L schneiden. Wir bezeichnen mit χk(RL), die Minimalanzahl von Farben,
so dass es für jede Punktmenge P eine Färbung der Punkte gibt, so dass für jedes Rechteck
R ∈ RL mit |R⋂

P | ≥ k (k ≥ 2) zwei Punkte in P
⋂

R mit verschiedenen Farben gefärbt

sind. Wir beweisen für k = 2, . . . , 5, dass die obere Grenze von Keszegh [34] auf χk(RL)
bestmöglich ist. Zusammen mit den Ergebnissen von Keszegh [34] ist k = 6 der einzige Wert
von k, wofür χ(RL) unbekannt bleibt.

92

Bibliography

[1] D. Ajwani, K. Elbassioni, S. Govindarajan, and S. Ray. Conflict-Free Coloring
for Rectangle Ranges Using O(n.382 + ǫ) Colors. Proceedings of the 19th annual ACM
symposium on Parallel algorithms and architectures, pages 181− 187, (2007).

[2] E. Asplund and B. Grünbaum. On a coloring problem. Discrete and Computational
Geometry - The Goodman-Pollack Festschrift, Math. Scand., volume 8, pages 181−188,
(1960). Springer.

[3] T. Asano and H. Imai. Finding the connected components and a maximum clique of
an intersection graph of rectangles in the plane. Journal of Algorithms, volume 4, pages
310− 323, (1983). Elsevier.

[4] S. Benzer. On the topology of the genetic fine structure. Proc. Nat. Acad. Sci. U.S.A.
45, pages 1607 − 1620, (1959).

[5] S. Bellantoni, I. Ben-Arroyo Hartman, T. Przytycka, and S. Whitesides.
Grid intersection graphs and boxicity. Discrete Mathematics, Volume 114, Issues 1− 3,
Pages 41− 49, (1993).

[6] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr
sind (Zusammenfassung). Wiss. Z. Natrin Luther Univ. Math.-Natur. Reihe 10, pages
114− 115, (1961).

[7] K.S. Booth and G.S. Lucker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree Algorithms. J. Comput. Systems Sci., 13,
pages 255 − 265, (1976). Elsevier.

[8] S. Cabello, J. Cardinal, and S. Langerman. The clique problem in ray intersec-
tion graphs. Algorithms - ESA - 20th Annual European Symposium, volume 7501 of
Lecture Notes in Computer Science, pages 241− 252, (2012). Springer Verlag.

[9] D. Cantanzaro, S. Chaplick, B. Halldórsson, M. Halldórsson, and J. Sta-
cho. Max Point-Tolerance Graphs. Preprint.

[10] P. Chalermsook. Coloring and Maximum Independent Set of Rectangles. Lecture
Notes in Computer Science, volume 6845, pages 123− 134, (2011).

[11] P. Chalermsook and J. Chuzhoy. Maximum Independent Set of Rectangles.
SODA’09, pages 892 − 901, (2009).

[12] J. Chalopin, D. Gonçalves, and P. Ochem. Planar graphs are in 1-string. Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on Discrete Algorithms, pages
609− 617, (2007).

93

[13] J. Chalopin and D. Gonçalves. Every planar graph is the intersection graph of
segments in the plane.. Proceedings of the 41st ACM-Symp on Theory of Computing,
STOC, pages 631 − 638, (2009).

[14] X. Chen, J. Pach, M. Szegedy, and G. Tardos. Delaunay graphs of point sets in
the plane with respect to axis-parallel rectangles. SODA ’08, Proceedings of the nine-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 94−101, (2008).

[15] V. Chepoi1 and S. Felsner. Approximating hitting sets of axis-parallel rectangles
with opposite corners separated by a monotone curve. In review.

[16] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect
graph theorem. Annals of Mathematics, volume 164(1), pages 51 − 229, (2006).

[17] S.A. Cook. The complexity of theorem-proving procedures. Proceedings of the 3rd An-
nual ACM Symposium on Theory of Computing, pages 151 − 158, (1971).

[18] D.G. Corneil, S. Olariu, and L. Stewart. The LBFS Structure and Recognition
of Interval Graphs. SIAM Journal on Discrete Mathematics, volume 23(4), pages 1905−
1953, (2010).

[19] R. Diestel. Graph Theory (Graduate Texts in Mathematics), 4th edition, (2012).
Springer Verlag.

[20] G. Ehrlich, S. Even, and R.E. Tarjan. Intersection graphs of curves in the plane.
J. Combin. Theory Series B, volume 21, pages 8− 20, (1976). Elsevier.

[21] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-Free Colorings of
Simple Geometric Regions with Applications to Frequency Assignment in Cellular Net-
works. SIAM J. Comput. volume 33(1), pages 94 − 136, (2003).

[22] T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs.
Combinatorica, volume 19, pages 487 − 505, (1999). Springer Verlag.

[23] S. Felsner. Geometric Graphs and Arrangements, (2004). Springer Verlag.

[24] D.G. Fon-Der-Flaass and A.V. Kostochka. Covering boxes by points. Discrete
Math. volume 120, pages 269− 275. (1993).

[25] R. Fowler, M. Paterson, and S.L. Tanimoto. Optimal Packing and Covering in
the Plane are NP-Complete. Inf. Process. Lett. volume 12, pages 133 − 137. (1981).

[26] P.C. Gilmore and A.J. Hoffman. A characterization of comparability graphs and
of interval graphs. Can. J. Math. volume 16, pages 539 − 548, (1964).

[27] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Second edition, An-
nals of Discrete Mathematics, volume 57, (2004). Elsevier.

[28] S. Har-Peled and S. Smorodinsky. On Conflict-free Coloring of Points and Simple
Regions in the Plane. Discrete and Computational Geometry (DCG), volume 34, pages
47− 70, (2005).

94

[29] M. Habib, R. McConnell, C. Paul, L. Viennot. Lex-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition and consec-
utive ones testing. Theoretical Computer Science volume 234(1 − 2), pages 59 − 84,
(2000).

[30] W. Haken and K. Appel. Solution of the Four Color Map Problem. Scientific Amer-
ican, volume 237(4), pages 108 − 121, (1977).

[31] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahres-
bericht Deutsch. Math. Vereinig. volume 32, pages 175 − 176, (1923).

[32] C. Hendler. Graphenklassen mit durch Funktionen in der Cliquezahl beschränkter Fär-
bungszahl . Diplomarbeit. (1998).

[33] G. Károlyi. On point covers of parallel rectangles. Periodica Math. Hung. volume 23,
pages 105 − 107.(1991).

[34] B. Keszegh. Combinatorial and computational problems about points in the plane. PhD
thesis, (2009).

[35] A. Kostochka. Coloring intersection graphs of geometric figures with a given clique
number. Contemporary Mathematics: Towards a Theory of Geometric Graphs, pages
127− 138, (2004).

[36] J. Kratochvíl. A special planar satisfiability problem and a consequence of its NP-
completeness. Discrete Applied Mathematics, volume 52, pages 233 − 252, (1994). El-
sevier.

[37] J. Kratochvíl and J. Matoušek. Intersection graphs of segments. Journal of Com-
binatorial Theory Series B, volume 62(2), pages 289 − 315, (1994). Elsevier.

[38] J. Kratochvíl and A Kuběna. On intersection representations of co-planar graphs.
Discrete Mathematics. volume 178, pages 251 − 255, (1998).

[39] J. Kratochvíl. String graphs. II. recognizing string graphs is NP-hard. Journal of
Combinatorial Theory, Series B, volume 52, (1991). Elsevier.

[40] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fund. Math. 15,
pages 271 − 283, (1930). Elsevier.

[41] J. L. Lovász. A characterization of perfect graphs. Journal of Combinatorial Theory,
Series B, volume 13(2), pages 95− 98, (1972). Elsevier.

[42] R. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica, volume
37(2), pages 93 − 147, (2003).

[43] J.I. Moore and W.T. Trotter. Characterization problems for graphs, partially
ordered sets, lattices, and families of sets. Discrete Mathematics, volume 16, pages
361− 381. (1976).

[44] J. Mycielski. Sur le coloriage des graphes. Colloq. Math. volume 3, pages 161 − 162,
(1955).

95

[45] J. J. Pach; P.K. Agarwal. Combinatorial geometry. (1995). New York: Wiley-
Interscience.

[46] J. Pach, G. Tardos, and G. Tóth. Indecomposable coverings. Discrete Geometry,
Combinatorics and Graph Theory, The China-Japan Joint Conference (CJCDGCGT
2005), Lecture Notes in Computer Science, volume 4381, pages 135 − 148, (2007).
Springer Verlag.

[47] J. Pach and G. Tóth. Conflict-free Colorings.Discrete and Computational Geometry
- The Goodman-Pollack Festschrift, pages 665 − 671, (2003), Springer Verlag.

[48] J. Pach and G. Tóth. Recognizing string graphs is decidable. Graph Drawing, Lecture
Notes in Computer Science, pages 247 − 260, (2001). Springer.

[49] A. Pawlik, J. Kozik, T. Krawczyk, M. Lason, P. Micek, W.T. Trotter, and
B. Walczak. Triangle-free intersection graphs of line segments with large chromatic
number. arXiv:1209.1595, (2012).

[50] F.S. Roberts. On the boxicity and cubicity of a graph. Recent Progress in Combina-
torics, Academic Press, pages 301 − 310. (1969).

[51] N. Robertson, D.P. Sanders, P. Seymour, R. Thomas The Four-Colour The-
orem.Journal of Combinintorial, Theory Ser. B, volume 70(1), pages 2 − 44, (1997).
Elsevier.

[52] M. Schaefer, E. Sedgwick, and D. Štefankovič. Recognizing string graphs in NP.
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing,
pages 19− 21, May, (2002).

[53] E. Scheinerman. Intersection classes and multiple intersection parameters of graphs.
PhD thesis, Princeton University, (1984).

[54] A.M.S. Shrestha, S. Tayu, and S. Ueno. Orthogonal ray graphs and nano-pla
design. Proceedings of the IEEE International Symposium on Circuits and Systems,
pages 2930 − 2933, (2009).

[55] A.M.S. Shrestha, Y. Kobayashi, S. Tayu, and S. Ueno. On orthogonal ray graphs.
IPSJ SIG Technical Reports, volume 2008, no. 84, pages 9− 15, (2008).

[56] A.M.S. Shrestha, S. Tayu, and S. Ueno. On orthogonal ray graphs. Discrete Ap-
plied Mathematics, volume 158(15), pages 1650 − 1659, (2010).

[57] S. Smorodinsky. Conflict-Free Coloring and its Applications. arXiv:1005.3616v3

[58] J. Spencer. Túran’s theorem for k-graphs. Discrete Mathematics, volume 2, pages
183− 186, (1972).

[59] W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. 1992.
The John Hopkins University Press.

[60] G. Wegner. Über eine kombinatorisch-geometrische Frage von Hadwiger and Debrun-
ner. Israel J. Math., volume 3, pages 187 − 198. (1965).

96

[61] M. Yannakakis. The complexity of the partial order dimension problem. SIAM Journal
on Algebraic and Discrete Methods, volume 3(3), pages 351 − 358, (1982).

97

