Analysis and numerics of the peridynamic equation

Introduction

The peridynamic model is a non-local theory in continuum mechanics that avoids spatial derivatives. The equation of motion reads as

$$\rho(x) \frac{\partial^2 u(x, t)}{\partial t^2} = \int_V f_{d,\delta}(x, \hat{x}, u(x, t), u(\hat{x}, t), t)d\hat{x} + b(x, t), \quad (x, t) \in V \times (0, T), V \subseteq \mathbb{R}^d.$$

It essentially relies upon differences of the displacement of material points interacting within a prescribed horizon of radius δ. Here also lies the possible advantage as the evolution of discontinuities in the displacement might be inherently described within the peridynamic model. Typical applications are the autonomous propagation of cracks.

Model

One of the simplest nonlinear models based on the idea of a spring uses the ansatz

$$f_{d,\delta} = \begin{cases} c_{d,\delta} s e & \text{if } \|\hat{x} - x\| < \delta \\ 0 & \text{else} \end{cases}$$

with

$$s = \frac{\|\hat{x} + \hat{u} - x - u\| - \|\hat{x} - x\|}{\|\hat{x} - x\|}, \quad e = \frac{\hat{x} + \hat{u} - x - u}{\|\hat{x} + \hat{u} - x - u\|}.$$

Linearisation leads to

$$f_{d,\delta} = C_{d,\delta}(x, \hat{x}) \cdot (\hat{u} - u).$$

Well-Posedness

Existence and uniqueness is shown for the linear case but is open for the nonlinear case. Stability w.r.t. initial data, right hand side b, and the integral kernel is also studied.

Convergence

Convergence of linear peridynamics towards the Navier-Lamé equation is studied. Comparison with the classical theory needs to identify

- material constants
- the solution's behaviour at the boundary

Different force ansatzes and dispersion relations correspond to different mechanical models.

Spatial approximation

For the numerical solution, the quadrature formula method with different types of Gauss- and Newton-Cotes quadratures on triangles and quadrilaterals is used. Numerical simulations confirm expected convergence rates.

Cooperation

This project is partially supported by The Boeing Company, Mathematics & Engineering Analysis.