

DFG-Forschungszentrum MATHEON Mathematik für Schlüsseltechnologien www.matheon.de

Analysis and numerics of the peridynamic equation

Etienne Emmrich Stephan Kusche Henrik Büsing http://www.math.tu-berlin.de/~emmrich/project.htm

Technische Universität Berlin www.tu-berlin.de

Introduction

The peridynamic model is a non-local theory in continuum mechanics that avoids spatial derivatives. The equation of motion reads as

$$ho(oldsymbol{x})\partial_t^2oldsymbol{u}(oldsymbol{x},t) = \int_{\mathcal{N}}oldsymbol{f}_{d,\delta}(oldsymbol{x},\hat{oldsymbol{x}},oldsymbol{u}(oldsymbol{x},t),t)doldsymbol{\hat{x}} + oldsymbol{b}(oldsymbol{x},t)\,,\quad (oldsymbol{x},t)\in\mathcal{V} imes(0,T),\mathcal{V}\subseteq\mathbb{R}^d.$$

It essentially relies upon differences of the displacement of material points interacting within a prescribed horizon of radius δ . Here also lies the possible advantage as the evolution of discontinuities in the displacement might be inherently described within the peridynamic model. Typical applications are the autonomous propagation of cracks.

Well-Posedness

 $u(\hat{x})$

 $\boldsymbol{u}(\boldsymbol{x},t)$

horizon

One of the simplest nonlinear models based on

$$egin{aligned} egin{aligned} eta_{d,\delta} &= \left\{ egin{aligned} c_{d,\delta}\,s\,e & ext{if}\,\|\hat{m{x}}-m{x}\| < \delta \ 0 & ext{else} \end{aligned}
ight. \ egin{aligned} eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{u}}-m{x}\| & -\|\hat{m{x}}-m{x}\| \ \|\hat{m{x}}-m{x}\| \end{matrix}
ight. \ eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{u}}-m{x}\| & -\|\hat{m{x}}-m{x}\| \ \|\hat{m{x}}-m{x}\| \end{matrix}
ight. \ eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{u}}-m{x}\| & -\|\hat{m{x}}-m{x}\| \ \|\hat{m{x}}-m{x}\| \end{matrix}
ight. \ eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{u}}-m{x}\| \ \|\hat{m{x}}-m{x}\| \end{matrix}
ight. \ eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{u}}-m{x}\| \ \|\hat{m{x}}-m{x}\| \end{matrix}
ight. \ eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{u}}-m{x}\| \ \|\hat{m{x}}-m{x}\| \end{matrix}
ight. \ eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{u}}-m{x}\| \ \|\hat{m{x}}-m{x}\|
ight. \ eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{u}}-m{x}\|
ight. \ eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{x}}+\hat{m{x}}+\hat{m{x}}\|
ight. \ eta_{d,\delta} &= egin{aligned} \|\hat{m{x}}+\hat{m{x}}$$

Model

$$egin{aligned} egin{aligned} egin{aligned} eta_{d,\delta} &= m{C}_{d,\delta}(m{x},m{\hat{x}})\cdot(m{\hat{u}}-m{u}) \end{aligned}$$

Convergence

Convergence of linear peridynamics towards the Navier-Lamé equation is studied. Comparison

correspond to different mechanical models.

Spatial approximation

formula method with different types of Gaußconfirm expected convergence rates.

Cooperation

This project is partially supported by The Boeing Company, Mathematics & Engineering Analysis.