
III European Conference on Computational Mechanics
Solids, Structures and Coupled Problems in Engineering

C.A. Mota Soares et.al. (eds.)
Lisbon, Portugal, 5–8 June 2006

THE PERIDYNAMIC EQUATION OF MOTION IN NON-LOCAL
ELASTICITY THEORY

Etienne Emmrich1 and Olaf Weckner2

1Technische Universität Berlin, Institut für Mathematik
Straße des 17. Juni 136, 10623 Berlin, Germany

e-mail: emmrich@math.tu-berlin.de

2 Massachusetts Institute of Technology, Department of Mechanical Engineering
Cambridge, MA 02139, USA

e-mail: olaf@weckner.de

Keywords: Long-range interaction, microelastic material, integro-differential equation, energy
conservation, well-posedness, quadrature

Abstract. Non-local theories in solid mechanics that account for effects of long-range inter-
actions –such as the peridynamic modelling introduced by Silling [39] in 2000– have become
topical again. The peridynamic theory is based upon a mathematical formulation without any
spatial derivative and may cope with discontinuous displacement fields commonly occurring in
fracture mechanics.

Beside an overview of the peridynamic modelling and its application, results concerning the
mathematical analysis and numerical solution of the governing equation, which is a partial
integro-differential equation with second-order time derivative, are presented. Moreover, the
question of energy conservation and the comparison of elastic energy in both the peridynamic
and the classical theory are discussed.

Concentrating on the description of a linear microelastic material, well-posedness is proved.
Based upon the quadrature formula method, a spatial approximation for the numerical solution
is suggested. Finally, numerical simulations are presented.
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1 INTRODUCTION

Although non-local theories in continuum mechanics have rather been known since the 1970s
from articles by Kröner [29], Edelen, Eringen and co-authors (cf. e.g. [20] and the references
cited in [8, 36]), and since 1982 from the books by Kunin [30] and Rogula [38], they have
recently become topical again, cf. e.g. [1, 2, 8, 15, 33, 35, 36, 39, 48, 49] and the references
cited therein. One of the non-local theories is the so-called peridynamic theory, suggested
in Silling [39] in order to describe the formation of discontinuities in the displacement field
such as cracks and fractures due to deformations of (micro-)elastic materials. In contrast to
the classical local theory but also to other non-local approaches, the peridynamic equation of
motion is in integral form and is free of any spatial derivative as it relies on differences of nearby
displacements.

Meanwhile, Silling together with Askari, Bobaru, Gerstle,Jiang, and Sau (cf. [11, 12, 21,
22, 40, 42, 43, 44]) have applied the peridynamic modelling to study many examples of solid
mechanics such as the Kalthoff-Winkler experiments of the fracture of a steel plate with notches,
the cracking growth of a thick plate with an initial inner crack, Hertzian cracks, reinforced
concrete beams, the damaging, cracking, and tearing of membranes, the bursting of balloons,
and the deformation of fibers and networks of fibers due to long-range forces. In addition
to Silling [39], more theoretical considerations regarding the peridynamic modelling, as for
instance the dynamics of an infinite bar, the motion of phase boundaries, jump conditions or
nonlinear dispersion relations, can also be found in papersby Abeyaratne, Bhattacharya, Dayal,
Emmrich, Weckner, and Zimmermann (cf. [17, 19, 47, 50, 51, 52, 53]). The numerical solution
of the peridynamic equation of motion has been considered especially in [19, 21, 22, 43, 51, 52].

In the peridynamic theory, the time evolution of the discplacementu of a body that occupies
the reference volumeV ⊆ R

3 in the time interval(0, T ) is described by the partial integro-
differential equation (PIDE)

ρ0(x)∂2
t u(x, t) =

∫

H(x)

f(x, x̂,u(x, t),u(x̂, t), t) dx̂ + h(x, t) , (1)

whereρ0 denotes the mass density,f the pairwise force field that describes the interaction of
material particles, andh collects outer forces. Moreover,

H(x) := {x̂ ∈ V : ‖x̂− x‖ ≤ δ}

is the peridynamic horizon ofx ∈ V, where‖ · ‖ denotes the Euclidean norm. It is assumed
here that the pairwise force function vanishes outside the corresponding horizon although an
integration over the whole domain might be the starting point of the model. Moreover, the pair-
wise force function might be depending on further quantities as e.g. first-order time derivatives.
The PIDE (1) is supplemented by initial conditions foru(·, 0) and∂tu(·, 0).

From the mathematical point of view, it is worth mentioning that relatively little is known
about integro-differential equations and if so then authors consider integro-differential equa-
tions in which the integral is taken over time. Such problemsarise when modelling materials
with memory or population dynamics with delay (cf. e.g. [14,31]). Only in [4], PIDEs of the
aforementioned type (1) with a linear force function (leading to a so-called Barbashin operator)
are considered but with a focus that is outside of our scope. Recently, Emmrich and Weckner
[19] have provided a mathematical setting for the treatmentof (1) in the linear one-dimensional
case that allows to prove existence, uniqueness, and stability results, including the stability with
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respect to the perturbation of the pairwise force function,which justifies its reconstruction from
experimental data.

There is also very few known on the numerical solution of (1).With respect to space, one
might try to adopt methods known for the approximate solution of integral equations of the sec-
ond kind (cf. e.g. [6, 13] and the references cited therein).However, there is even less known on
the solution of nonlinear integral equations (cf. the survey in Atkinson [7]). The approximation
of the integral part leads to an initial value problem for a large coupled system of second-order
ordinary differential equations. Beside classical methods such as the Newmark scheme or the
leap-frog method, many other methods might be applicable for the time discretisation as much
progress has been made in the construction of especially structure-preserving time integrators
(cf. e.g. [27, 45, 46] and the references cited therein).

The computational code called Emu (cf. [41]) behind the numerical studies by Silling and
co-authors is a quadrature formula method relying on the composite midpoint rule for the ap-
proximation of the integral. It uses equidistant cubes of length∆x ≈ δ/3. The discretisation in
time is an explicit leap-frog method using the central divided difference of second-order with
constant time steps. The method falls into the class of meshfree approximations. Moreover, the
Emu code uses parallelisation.

For other meshfree methods and similar discrete problems, we refer to the papers in [25, 26].
Meshfree methods applied to problems with cracking or rupture can also be found e.g. in [9, 16,
34, 37].

For the peridynamic equation of motion in a one-dimensionalunbounded domain, Weckner
and Emmrich [19, 51, 52] have suggested the approximation ofthe integral, possibly splitted
with respect toa priori known discontinuities in the initial values or right-hand side, by means
of the Gauß-Hermite and composite midpoint quadrature. Forthe time discretisation, linear
multistep methods with changing order and changing step size have been employed. Moreover,
linear finite elements have been considered.

After spatial discretisation, the peridynamic equation ofmotion resembles the equations aris-
ing in molecular dynamics (cf. e.g. [24]). Although peridynamic modelling is meant to describe
length scales between those of classical and molecular dynamics, it is a very interesting ques-
tion whether in the limitδ → 0 the classical elasticity theory is recovered and how the spatially
discretised peridynamic equation for largeδ is related to molecular dynamics. The discussion
of the limit behaviour is also very topical. We refer in particular to the work by Arndt, Blanc,
Griebel, Le Bris, Legoll, and Lions (cf. e.g. [5, 10, 32]) on higher-order gradient continuum
models, the coupling of atomistic and continuum mechanics by multiscale methods, and the
modelling of crystalline structures.

The aim of this paper is to give a short overview of the peridynamic theory. We introduce
the peridynamic equation of motion and its corresponding variational formulation and address
the question of energy conservation. We then discuss possible choices of the pairwise force
function and establish a relation of material paramaters inthe peridynamic and in the classical
local theory. For the linear case with damping, we furthermore prove well-posedness as well
as stability with respect to the data and against a perturbation of the integral kernel. Finally,
we suggest the numerical solution via the quadrature formula method based upon a composite
Gauß quadrature and present some numerical simulations.
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2 MODELLING DIFFERENT MATERIAL BEHAVIOUR

Due to the balance of the linear as well as angular momentum ofthe massfree bond between
x andx̂,

(x̂ + u(x̂, t)) × f(x, x̂,u(x, t),u(x̂, t), t)

= (x + u(x, t)) × f(x, x̂,u(x, t),u(x̂, t), t) , ∀x, x̂ ∈ V, t ∈ (0, T ) ,

the pairwise force functionf in (1) has always the direction of the vector pointing from the
current positionx + u(x, t) to the reference position̂x + u(x̂, t). We can, therefore, write

f(x, x̂,u, û, t) = f(x, x̂,u, û, t) e , e :=
(x̂ + û) − (x + u)

‖(x̂ + û) − (x + u)‖ , (2)

with a scalar functionf .
If the system is assumed to be invariant against a rigid body motion and if the internal forces

are independent of time then

f(x, x̂,u, û, t) = f(x, x̂, û− u) (3)

with
f(x̂,x,−η) = −f(x, x̂, η)

for all x, x̂, η because of Newton’s lawactio et reactio.
If the material is microelastic in the sense of Silling [40] then there exists a pairwise potential

w such that
f(x, x̂, η) = ∇η w(x, x̂, η) .

The equation of motion (1) then follows from the variationalproblem

find u = arg min J(u) with J(u) :=

∫ T

0

∫

V

l(x,u(x, t), t) dVdt ,

wherel = ekin − eel − eext is the Lagrangian density and incorporates the density

ekin =
ρ(x)

2
|∂tu(x, t)|2

of the kinetic energy, the elastic energy density

eel =
1

2

∫

H(x)

w(x, x̂,u(x̂, t) − u(x, t)) dV̂ , (4)

and the density

eext = −h(x, t) · u(x, t)

due to the external force densityh as is shown in [52].
We are now going to present some simple choices for the pairwise force function describing

different material behaviour which have been suggested in the literature so far.
A Taylor expansion off justifies thelinear ansatz

f(x, x̂, η) = f0(x, x̂) + C(x, x̂) · η (5)
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with a stiffness tensorC = C(x, x̂) andf0 denoting forces in the prestressed reference config-
uration. For convenience, we only considerf0 ≡ 0. The linear ansatz (5) is the simplest model
we can employ.

In general, the stiffness tensorC is neither definite nor depending on the length of the dif-
ference‖x̂ − x‖, only. It is, however, assumed to be symmetric with respect to its arguments
(actio et reactio) as well as symmetric with respect to its tensor structure,

C(x̂,x) = C(x, x̂) , C(x, x̂)T = C(x, x̂) .

The corresponding micropotential is then given by

w(x, x̂, η) =
1

2
η · C(x, x̂) · η .

In this linear case, the peridynamic equation of motion (1) reads as

ρ(x)∂2
t u(x, t) =

∫

H(x)

C(x, x̂) · (u(x̂, t) − u(x, t)) dV̂ + h(x, t) , (x, t) ∈ V × (0, T ) . (6)

As we have shown in [52], the total energy is conserved ifh does not depend ont,

d

dt
(Ekin(t) + Eel(t) + Eext(t)) = 0 ,

whereEi(t) =
∫

V
ei(x,u(x, t), t) dV (i ∈ {kin, el, ext}). In the non-autonomous case, the

energy inequality

Ekin(t) + Eel(t) + ν

∫ t

0

eν(t−s)Eel(s) ds

≤ eνt (Ekin(0) + Eel(0)) +
1

2ν

∫ t

0

∫

V

eν(t−s)

ρ(x)
‖h(x, t)‖2 dVds

holds true for allt ∈ (0, T ) and arbitraryν > 0. A similar result can also be found in [39].
If we assume a linear microelastic material then the stiffness tensor can be shown to read as

C(x, x̂) = λ(‖x̂− x‖) (x̂− x) ⊗ (x̂− x) , (7)

cf. also [39], whereλ depends on the specific material model and is e.g. given by

λ(ξ) =
c

ξ3
, (8)

cf. also [43]. Here,c denotes a constant that depends again on the material but also on the
dimension of the problem. We are going to determinec below.

In order to incorporate nonlinear effects, theproportional microelastic materialhas been
proposed by Silling. Remembering (2) and (3), we suppose that

f(x, x̂, η) = f(x, x̂, η) e , f(x, x̂, η) = cs , x̂ ∈ H(x) , (9)

wheres denotes the bond stretch that is the relative change of the length of a bond (see also
Figure 1),

s :=
‖(x̂ + u(x̂, t)) − (x + u(x, t))‖ − ‖x̂− x‖

‖x̂− x‖ .

5



Etienne Emmrich and Olaf Weckner

x

x̂

x + u(x, t)

x̂ + u(x̂, t)

H(x)

Figure 1: New and old bond and displacements within the peridynamic horizon

Note that

|s| ≤ ‖u(x̂, t) − u(x, t)‖
‖x̂− x‖ .

If necessary we annotate explicitly the arguments ofs.
The constant of proportionalityc depends on the radius of the peridynamic horizon but also

on the dimension of the domainV. It can be determined in such a way that the deformation
energy of a homogeneous body under isotropic expansion arising from the peridynamic model
coincides with the energy known from the classical theory. More precisely, ifη := u(x̂, t) −
u(x, t) = s(x̂ − x) (with s > 0) then the micropotentialw is (up to some additive constant)
given by

w(x, x̂, η) =
cη · η

2‖x̂− x‖ =
cs2‖x̂− x‖

2
.

This is easily justified since

∇ηw(x, x̂, η) = cs‖x̂− x‖∇ηs = cs∇η‖x̂− x + η‖ = cse = f(x, x̂, η) .

From (4), we conclude in the three-dimensional case

eel =
cs2

4

∫ δ

0

∫ 2π

0

∫ π

0

r3 sin θdθdφdr =
cs2δ4π

4

(we assume that the horizon is a full ball). In the classical linear elasticity theory, we have

eel =
9ks2

2
=

3Es2

2(1 − 2ν)
,

wherek denotes the bulk modulus,ν the Poisson number, andE the Young modulus. As one
can also show thatν = 1/4 in the peridynamic theory, we obtain

c =
12E

πδ4
=

18k

πδ4
.

In the two-dimensional case, we find analogously

c =
72k

5πδ3
(10)
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and in the one-dimensional case

c =
18k

5δ2
.

A linearisation of the pairwise force function (9) of the proportional microelastic material
gives exactly the linear model (5) with the stiffness tensorC given by (7) and (8) and the
constant of proportionalityc (depending on the dimension ofV) as above.

A next step in the modelling is to incorporate breaking bondsin order to describe damage
and fracture. The simplest approach is the so-calledprototype microelastic brittle material(cf.
[42, 43, 44]) that relies upon the idea of the proportional microelastic material but allows bond
breakage (see also Figure 2),

f(x, x̂,u(x, t),u(x̂, t), t) =











cs(x, x̂,u(x, t),u(x̂, t)) if x̂ ∈ H(x) and
s(x, x̂,u(x, τ),u(x̂, τ)) ≤ s0∀τ ≤ t ,

0 else.

Here s = s(x, x̂,u(x, t),u(x̂, t)) again denotes the bond stretch but note that it implicitly
depends on time. Moreover,s0 is some given critical bond stretch that might be determined
from experimental data. In [43],

s0 =

√

5G0

9kδ

is suggested for the three-dimensional case with the workG0 required to break all the bonds per
unit fracture area (energy release rate). If a bond is brokenthen it remains broken for all future
time.

f

s0 s

Figure 2: Prototype microelastic brittle material

Further material models such as the proportional microplastic one have also been suggested
in the literature.

3 MATHEMATICAL ANALYSIS IN THE LINEAR CASE

Recently, we have proven well-posedness in the linear, one-dimensional, unbounded case
(cf. [19]). In the following, we employ the same technique ofproof to establish existence,
uniqueness, and stability results as well asa priori estimates in the linear case with damping
for a bounded domain of arbitrary dimension.

More precisely, we consider for(x, t) ∈ V × (0, T ) the initial-value problem for the more
general PIDE

∂2
t u(x, t) + r∂tu(x, t) =

∫

V

K(x, x̂) · u(x̂, t) dV̂ + K0(x) · u(x, t) + b(x, t) (11)
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with a bounded domainV ⊂ R
d (d ∈ {1, 2, 3}), the time interval(0, T ), and a damping pa-

rameterr ≥ 0. Here,K : V̄ × V̄ → R
d×d, K0 : V̄ → R

d×d, andb : V̄ × [0, T ] → R
d are

given matrix- and vector-valued functions, respectively.Equation (11) coincides with the linear
peridynamic equation of motion (6) ifr = 0 and

K(x, x̂) =







C(x, x̂)

ρ(x)
if x̂ ∈ H(x)

0 else
, K0(x) = −

∫

V

K(x, x̂) dV̂ , b(x, t) =
h(x, t)

ρ(x)

but it also includes the more general case whereK does not vanish outside the peridynamic
horizon. Whether the assumptions imposed onK andK0 in the following are fulfilled for a
stiffness tensorC given by (7) and (8) will be discussed at the end of this section.

Let X be a suitable Banach space of functions depending onx ∈ V̄ mapping intoR
d that

will be specified below. With theRd-valued functionsu = u(x, t) : V̄ × [0, T ] → R
d and

b = b(x, t) : V̄ × [0, T ] → R
d, we can associate theX-valued abstract functionsu = u(t) :

[0, T ] → X andb = b(t) : [0, T ] → X. Equation (11) can then be rewritten as the second-order
operator-differential equation inX

ü(t) + ru̇(t) = Au(t) + b(t) , t ∈ (0, T ) , (12)

or as the first-order operator-differential equation inX × X

d

dt

(

u(t)
u̇(t)

)

= A(t)

(

u(t)
u̇(t)

)

+

(

0
b(t)

)

, t ∈ (0, T ) , A :=

(

0 id
A −rid

)

. (13)

Here,id denotes the identity inX andA = K + K0 is the sum of the integral operatorK and
the multiplication operatorK0, which are given by

(Kv)(x) :=

∫

V

K(x, x̂) · v(x̂) dV̂ , (K0v)(x) := K0(x) · v(x) , v ∈ X .

Moreover, a dot means the derivative of an abstract functionwith respect to timet.
In order to justify (12) and (13), we show thatA mapsX into X. This, however, depends on

the choice of the spaceX. In the following, we consider the caseX = Lp(V)d (p ∈ [1,∞]), the
space ofRd-valued functions onV whose components are Lebesgue-measurable and for which
the p-th power of the absolute value of the components is integrable if 1 ≤ p < ∞ and the
absolute value of the components is essentially bounded ifp = ∞, respectively, equipped with
the norm

‖v‖Lp(V)d :=















(
∫

V

‖v(x)‖p dV
)1/p

if 1 ≤ p < ∞ ,

ess sup
x∈V

‖v(x)‖ if p = ∞ .

We make also use of otherLp-spaces whose definition is analogous.
Here and in the following,‖·‖ denotes again the Euclidean length but also the corresponding

spectral matrix norm. Note that by definition

‖A · v‖ ≤ ‖A‖ ‖v‖

holds for all matricesA ∈ R
d×d and vectorsv ∈ R

d.
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Proposition 3.1. Let K0 ∈ L∞(V)d×d, let K be Lebesgue-measurable onV × V, and assume
that for somep ∈ [1,∞] (with the conjugated exponentq, 1/p + 1/q = 1)

κ0 := ess sup
x∈V

‖K0(x)‖ < ∞ , κ < ∞ ,

where

κ :=











































∫

V

ess sup
x̂∈V

‖K(x, x̂)‖ dV if p = 1 ,

(

∫

V

(
∫

V

‖K(x, x̂)‖q dV̂
)p/q

dV
)1/p

if 1 < p < ∞ ,

ess sup
x∈V

∫

V

‖K(x, x̂)‖ dV̂ if p = ∞ .

Then the operatorsA, K, andK0 are linear bounded mappings inLp(V)d, and the operatorA
is a linear bounded mapping inLp(V)d × Lp(V)d.

Proof. Let v ∈ Lp(V)d (p ∈ (1,∞)). It is clear that(x, x̂) 7→ K(x, x̂) · v(x) as well as
x 7→ K0(x) · v(x) are Lebesgue-measurable functions. With Hölder’s inequality, it holds

‖Kv‖Lp(V)d =

(
∫

V

∥

∥

∥

∥

∫

V

K(x, x̂) · v(x̂) dV̂
∥

∥

∥

∥

p

dV
)1/p

≤
(
∫

V

(
∫

V

‖K(x, x̂) · v(x̂)‖ dV̂
)p

dV
)1/p

≤
(
∫

V

(
∫

V

‖K(x, x̂)‖ ‖v(x̂)‖ dV̂
)p

dV
)1/p

≤
(

∫

V

(

(
∫

V

‖K(x, x̂)‖q dV̂
)p/q ∫

V

‖v(x̂)‖p dV̂
)

dV
)1/p

= κ ‖v‖Lp(V)d .

SinceK is obviously linear, this not only shows thatK mapsLp(V)d into itself but also thatK
is bounded. The casesp = 1 andp = ∞ are analogous although somewhat simpler.

Similarly, we have

‖K0v‖Lp(V)d =

(
∫

V

‖K0(x) · v(x)‖p dV
)1/p

≤ κ0‖v‖Lp(V)d ,

which proves the assertion forK0.
It immediately follows thatA : Lp(V)d → Lp(V)d is linear and bounded with

‖Av‖Lp(V)d ≤ α ‖v‖Lp(V)d , α := κ + κ0 . (14)

If we equip the function spaceLp(V)d × Lp(V)d with the standard norm

‖(v,w)T‖Lp(V)d×Lp(V)d := ‖v‖Lp(V)d + ‖w‖Lp(V)d ,

we find

‖A(v,w)T‖Lp(V)d×Lp(V)d = ‖(w, Av − rw)T‖Lp(V)d×Lp(V)d

≤ α ‖v‖Lp(V)d + (1 + r)‖w‖Lp(V)d ≤ max(α, 1 + r) ‖(v,w)T‖Lp(V)d×Lp(V)d

that finally shows the boundedness of the linear operatorA : Lp(V)d × Lp(V)d → Lp(V)d ×
Lp(V)d.
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By standard arguments (cf. e.g. Amann [3, pp. 151ff.] or Emmrich [18, pp. 173ff.]), it follows
that A generates the uniformly continuous one-parameter group{exp(tA)}t∈R in Lp(V)d ×
Lp(V)d with

exp(tA) :=

∞
∑

n=0

tn

n!

(

0 id
A −rid

)n

,

and the solution to (12) and (13), respectively, is given by Duhamel’s principle. Note that the
representation ofexp(tA) simplifies if r = 0:

exp(tA)
r=0
=











∞
∑

n=0

t2nAn

(2n)!

∞
∑

n=0

t2n+1An

(2n+1)!

∞
∑

n=0

t2n+1An+1

(2n+1)!

∞
∑

n=0

t2nAn

(2n)!











.

We thus come up with the following theorem:

Theorem 3.1. Under the assumptions of Proposition 3.1, there is for givenu0,v0 ∈ Lp(V)d,
b ∈ L1(0, T ; Lp(V)d) a unique mild solutionu ∈ C1([0, T ]; Lp(V)d) to the initial-value problem
for (12) and (13), respectively, withu(0) = u0 andu̇(0) = v0, which is given by

(

u(t)
u̇(t)

)

= exp (tA)

(

u0

v0

)

+

∫ t

0

exp ((t − s)A)

(

0
b(s)

)

ds , t ∈ (0, T ) . (15)

If r = 0 then for allt ∈ (0, T )

u(t) = cosh(t
√

A)u0 +
√

A
−1

sinh(t
√

A)v0 +
√

A
−1
∫ t

0

sinh((t − s)
√

A) b(s) ds , (16)

with the suggestive notation

cosh(t
√

A) :=

∞
∑

n=0

t2nAn

(2n)!
,
√

A
−1

sinh(t
√

A) :=

∞
∑

n=0

t2n+1An

(2n + 1)!
.

If b ∈ C([0, T ]; Lp(V)d) thenu ∈ C2([0, T ]; Lp(V)d).

Here,L1(0, T ; Lp(V)d) denotes the Banach space of Bochner-integrable abstract functions
with values inLp(V)d (roughly spoken the space of functions that are integrable with respect to
time and square-integrable with respect to space) andCm([0, T ]; Lp(V)d) (m ∈ N) is the Banach
space ofm-times continuously differentiable abstract functions with values inLp(V)d (cf. e.g.
[18] for more details).

Also regularity results may be obtained which then show the existence and uniqueness of a
classical solution to (11).

Regarding the representation (15) as well asa priori estimates in the case of damping, it
might be useful to transform the damped system into a system without damping: Let

ũ(t) := ert/2u(t) , b̃(t) := ert/2b(t) , Ã := A +
r2

4
id .

A short calculation shows that (12) then is equivalent to

¨̃u(t) = Ãũ(t) + b̃(t) , t ∈ (0, T ) . (17)

10
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Hence, the representation (16) applied toũ yields

u(t) = e−rt/2 cosh

(

t

√

A +
r2

4
id

)

u0 + e−rt/2

√

A +
r2

4
id

−1

sinh

(

t

√

A +
r2

4
id

)

v0

+

√

A +
r2

4
id

−1
∫ t

0

e−r(t−s)/2 sinh

(

(t − s)

√

A +
r2

4
id

)

b(s) ds , t ∈ (0, T ) . (18)

We are now going to establish ana priori estimate for the solution. Since the problem under
consideration is linear, this estimate also proves stability with respect to the the initial data and
right-hand side.

Theorem 3.2. Under the assumptions of Proposition 3.1 and Theorem 3.1, the following a
priori estimate holds true for allt ∈ (0, T ):

‖u(t)‖Lp(V)d ≤ e−rt/2 cosh

(

t

√

α +
r2

4

)

‖u0‖Lp(V)d

+ e−rt/2

√

α +
r2

4

−1

sinh

(

t

√

α +
r2

4

)

‖v0‖Lp(V)d

+

√

α +
r2

4

−1
∫ t

0

e−r(t−s)/2 sinh

(

(t − s)

√

α +
r2

4

)

‖b(s)‖Lp(V)d ds . (19)

Proof. The estimate is a direct consequence of the representation (18) together with (14).

Thea priori estimate above shows indeed the damping effect of the termr∂tu.
As we have described in [19], it might be possible to determine the integral kernel from ex-

perimental data. It is, therefore, the question whether thesolution is stable against perturbations
of K andK0. This can be answered in the affirmative by the following theorem.

Theorem 3.3. Let b ∈ L1(0, T ; Lp(V)d) and let, for arbitraryε > 0, K,K0,Kε,K0ε, which
are assumed to fulfill the assumptions of Proposition 3.1, such that

∆ + ess sup
x∈V

‖K0(x) − K0ε(x)‖ < ε ,

where

∆ :=











































∫

V

ess sup
x̂∈V

‖K(x, x̂) −Kε(x, x̂)‖ dV if p = 1 ,

(

∫

V

(
∫

V

‖K(x, x̂) −Kε(x, x̂)‖q dV̂
)p/q

dV
)1/p

if 1 < p < ∞ ,

ess sup
x∈V

∫

V

‖K(x, x̂) −Kε(x, x̂)‖ dV̂ if p = ∞ .

11
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The corresponding mild solutionsu, uε to equation (12) with initial datau0,v0 ∈ Lp(V)d then
satisfy for allt ∈ (0, T ) the estimate

‖u(t) − uε(t)‖Lp(V)d ≤ ε

√

α +
r2

4
+ ε

−1

×

×
∫ t

0

e−r(t−s)/2 sinh

(

(t − s)

√

α +
r2

4
+ ε

)

‖u(s)‖Lp(V)d ds .

Proof. The proof follows the same lines as in [19, Thm. 3.2] if one replaces the solution space
L∞(R) used there byLp(V)d. Moreover, the damping term has to be incorporated here.

Let us consider now the linear peridyamic equation (6) with constant densityρ and with a
stiffness tensorC given by (7) and, in particular, (8). Since

‖C(x, x̂)‖ =
c

‖x̂− x‖3
‖(x̂− x) ⊗ (x̂− x)‖ =

c

‖x̂− x‖ ,

the corresponding integral kernelK is weakly singular ifd ∈ {2, 3} but strongly singular if
d = 1.

Unfortunately, we cannot apply the mathematical setting above in the one-dimensional case
since thenK(x, x̂) is not integrable and the assumptions of Proposition 3.1 arenot fulfilled.
Note that we have considered different integral kernels in [19] satisfying the assumptions of
Proposition 3.1 withp = ∞ andq = 1. These integral kernels describe, however, a different
material behaviour.

In the two-dimensional case, we can apply the above setting with anyp > 2 as thenq < 2
and (without loss of generality for a horizonH(x) that is a full ball)

∫

V

‖K(x, x̂)‖q dV̂ =

(

c

ρ

)q ∫

H(x)

1

‖x̂− x‖q
dV̂ =

(

c

ρ

)q ∫ δ

0

∫ 2π

0

r1−q drdφ < ∞

as well as

‖K0(x)‖ ≤ c

ρ

∫

H(x)

1

‖x̂− x‖ dV̂ =
2πcδ

ρ
.

Analogously, the mathematical setting above works fine for the three-dimensional case with
anyp > 3/2 as thenq < 3 (andr2−q is integrable). In particular, we then haveL2-solvability
(i.e.p = q = 2) of the initial-value problem for (6) with (7) and (8).

4 NUMERICAL SOLUTION AND SIMULATIONS

For the numerical solution of (1), we suggest a quadrature formula method. Let us suppose
we are givenN ∈ N quadrature pointsxi ∈ V (i = 1, 2, . . . , N). Any quadrature then reads as

∫

V

Φ(x̂) dV̂ ≈
N
∑

j=1

σjΦ(xj)

with suitable quadrature weightsσj . For i ∈ {1, 2, . . . , N}, let

I(i) := {j ∈ {1, 2, . . . , N} : xj ∈ H(xi)}

12
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be the set of indices describing the quadrature points interacting withxi. It follows
∫

H(xi)

Φ(x̂) dV̂ ≈
∑

j∈I(i)

σjΦ(xj) . (20)

In the quadrature formula method, we now solve the original equation (1) only at the quadra-
ture points which leads to a large coupled system of nonlinear ordinary differential equations.
To be precise, we look for approximationsui(t) ≈ u(xi, t) (i = 1, 2, . . . , N) satisfying

ρ(xi)üi(t) =
∑

j∈I(i)

σjf(xi,xj ,ui(t),uj(t), t) + h(xi, t) , t ∈ (0, T ) . (21)

In [52], we have proven the conservation of the discrete total energy in the autonomous,
linear, one-dimensional case for any quadrature formula and Galerkin-type (e.g. finite element)
method.

Possible choices for the quadrature are e.g. the composite midpoint rule or a composite
Gauß quadrature on tetrahedrons or cuboids. For simplicity, we confine ourselves to the two-
dimensional case and the composite midpoint and4-point-Gauß rule relying on rectangles. Both
quadratures can take place at the same time. The midpoint rule is exact for bilinear polynomials.
The4-point-Gauß quadrature is a cross-product rule relying on the one-dimensional quadrature

∫ 1

−1

Φ(x)dx ≈ Φ

(

−
√

3

3

)

+ Φ

(√
3

3

)

.

It is exact for bicubic polynomials. For the quadrature on anarbitrary rectangle, we only have
to map affine-linearly the four Gauß points(±

√
3/3,±

√
3/3).

We assume that the rectangular domainV is partitioned into the (non-overlapping) rectangles
Tl (l = 1, 2, . . . , M ; N ≤ M) with area|Tl|. On one rectangle, we have the quadrature

∫

Tl

Φ(x̂) dV̂ ≈
∑

xk∈Tl

σkΦ(xk)

with

σk :=







|Tl| if the midpoint rule is used onTl,

|Tl|
4

if the 4-point-Gauß rule is used onTl.

Summing up over all quadrature points lying in the peridynamic horizon gives the composite
quadrature. A possible covering of the peridynamic horizontogether with the Gauß points is
shown in Figure 3.

As an example, we have solved numerically the peridynamic equation of motion with the
proportional microelastic material model (without outer forces and without damping) based
upon the composite4-point-Gauß quadrature on24×8 equidistantly distributed rectangles. We
have considered a steel plate with densityρ ≡ 8000 kgm−3, Young modulusE = 210 · 109 Pa,
and Poisson numberν = 1/4 of dimension1 m × 0.3 m. As the constant of proportionality,
(10) has been employed (withk = E/3(1 − 2ν)). The initial displacement is zero whereas the
y-component of the initial velocity vanishes and thex-component of the initial velocity is given
by 10(x − 0.5) ms−1. This models an initial tension inx-direction. Figures 4 and 5 show the
results with a total of 768 quadrature points. The peridynamic horizon isδ = 0.1.

13
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Figure 3: Covering of the peridynamic horizon by rectanglesand corresponding Gauß points

Figure 4: Displacement inx- (above) andy-direction (below) at timet = 0.001 s

In the following, we show two simulations done with Silling’s Emu code (cf. [41]) that is
based upon the composite midpoint rule and employs the modelof the prototype microelastic
brittle material.

The first simulation shows a rubber plate (ρ ≡ 1000 kgm−3, E = 3 · 106 Pa, ν = 1/4) with
a slit under constant tension. We have used50 × 50 × 5 quadrature points.

The next simulation shows the evolution of a defect in a steelbar (ρ ≡ 8000 kgm−3, E =
2.43 · 1011 Pa, ν = 1/4) under tension at the front edge. For the simulation,30 × 60 × 30,
quadrature points have been used.

14
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Figure 5:x- (left) andy-component (right) of the movement of the first Gauß point in the lower left corner over
time

Figure 6: Displacement iny-direction at different times
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Einführung in Randwertprobleme und Evolutionsgleichungen für Studierende. Vieweg,
Wiesbaden, 2004.

[19] E. Emmrich and O. Weckner, Analysis and numerical approximation of an integro-
differential equation modelling non-local effects in linear elasticity.Math. Mech. Solids
(2005), published online first, DOI: 10.1177/1081286505059748.

[20] A. C. Eringen, Vistas of nonlocal continuum physics.Int. J. Eng. Sci.30 (1992) 10,
pp. 1551–1565.

[21] W. Gerstle and N. Sau, Peridynamic modeling of concretestructures. Proc. 5th
Int. Conf. Fract. Mech. Concr. Struct., In: L. Liet al. (eds.),Ia-FRAMCOS2 (2004),
pp. 949–956.

[22] W. Gerstle, N. Sau, and S. A. Silling, Peridynamic modeling of plain and reinforced con-
crete structures. SMiRT18: 18th Int. Conf. Struct. Mech. React. Technol., Beijing, 2005.

[23] K. F. Graff,Wave Motion in Elastic Solids. Dover Publ., New York, 1991.

[24] M. Griebel et al.,Numerische Simulation in der Moleküldynamik.Springer, Berlin, 2004.
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