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Abstract. Non-local theories in solid mechanics that account foraffef long-range inter-
actions —such as the peridynamic modelling introduced Byn&i39] in 2000— have become
topical again. The peridynamic theory is based upon a ma#tiead formulation without any
spatial derivative and may cope with discontinuous disptaent fields commonly occurring in
fracture mechanics.

Beside an overview of the peridynamic modelling and itsiappbn, results concerning the
mathematical analysis and numerical solution of the gowveyrequation, which is a partial
integro-differential equation with second-order time igrative, are presented. Moreover, the
guestion of energy conservation and the comparison ofielasergy in both the peridynamic
and the classical theory are discussed.

Concentrating on the description of a linear microelastitarial, well-posedness is proved.
Based upon the quadrature formula method, a spatial appration for the numerical solution
is suggested. Finally, numerical simulations are presgnte
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1 INTRODUCTION

Although non-local theories in continuum mechanics hatlearebeen known since the 1970s
from articles by Kroner [29], Edelen, Eringen and co-aush@f. e.g. [20] and the references
cited in [8, 36]), and since 1982 from the books by Kunin [3AH&Rogula [38], they have
recently become topical again, cf. e.g. [1, 2, 8, 15, 33, 8,39, 48, 49] and the references
cited therein. One of the non-local theories is the so-datleridynamic theory, suggested
in Silling [39] in order to describe the formation of discontities in the displacement field
such as cracks and fractures due to deformations of (mietastic materials. In contrast to
the classical local theory but also to other non-local apphes, the peridynamic equation of
motion is in integral form and is free of any spatial derivatas it relies on differences of nearby
displacements.

Meanwhile, Silling together with Askari, Bobaru, Gerstléang, and Sau (cf. [11, 12, 21,
22,40, 42, 43, 44]) have applied the peridynamic modelllmgttidy many examples of solid
mechanics such as the Kalthoff-Winkler experiments of thettire of a steel plate with notches,
the cracking growth of a thick plate with an initial inner cka Hertzian cracks, reinforced
concrete beams, the damaging, cracking, and tearing of magr@d, the bursting of balloons,
and the deformation of fibers and networks of fibers due to-lamge forces. In addition
to Silling [39], more theoretical considerations regagdthe peridynamic modelling, as for
instance the dynamics of an infinite bar, the motion of phamenbaries, jump conditions or
nonlinear dispersion relations, can also be found in papeAbeyaratne, Bhattacharya, Dayal,
Emmrich, Weckner, and Zimmermann (cf. [17, 19, 47, 50, 51532). The numerical solution
of the peridynamic equation of motion has been consideneegaly in [19, 21, 22, 43,51, 52].

In the peridynamic theory, the time evolution of the discplmentu of a body that occupies
the reference volum® C R3 in the time interval(0, T') is described by the partial integro-
differential equation (PIDE)

po(x)0fu(x,t) = /H( )f(x, x,u(x,t),u(x,t),t)dx + h(x, 1), (1)

wherep, denotes the mass densifythe pairwise force field that describes the interaction of
material particles, ant collects outer forces. Moreover,

H(x):={xeV:||x—x| <4}

is the peridynamic horizon of € V, where|| - || denotes the Euclidean norm. It is assumed
here that the pairwise force function vanishes outside timeesponding horizon although an
integration over the whole domain might be the starting poithe model. Moreover, the pair-
wise force function might be depending on further quargtiéie e.qg. first-order time derivatives.
The PIDE (1) is supplemented by initial conditions fgF, 0) ando,u(-, 0).

From the mathematical point of view, it is worth mentionimgt relatively little is known
about integro-differential equations and if so then awthmonsider integro-differential equa-
tions in which the integral is taken over time. Such problemse when modelling materials
with memory or population dynamics with delay (cf. e.g. [B4]). Only in [4], PIDEs of the
aforementioned type (1) with a linear force function (lewptio a so-called Barbashin operator)
are considered but with a focus that is outside of our scopeeRly, Emmrich and Weckner
[19] have provided a mathematical setting for the treatroé(it) in the linear one-dimensional
case that allows to prove existence, uniqueness, andigtaegults, including the stability with
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respect to the perturbation of the pairwise force functiamch justifies its reconstruction from
experimental data.

There is also very few known on the numerical solution of @jth respect to space, one
might try to adopt methods known for the approximate sofutibintegral equations of the sec-
ond kind (cf. e.g. [6, 13] and the references cited therétiowever, there is even less known on
the solution of nonlinear integral equations (cf. the suimeAtkinson [7]). The approximation
of the integral part leads to an initial value problem for@écoupled system of second-order
ordinary differential equations. Beside classical methsuach as the Newmark scheme or the
leap-frog method, many other methods might be applicalslthfotime discretisation as much
progress has been made in the construction of especialigtste-preserving time integrators
(cf. e.qg. [27, 45, 46] and the references cited therein).

The computational code called Emu (cf. [41]) behind the miraéstudies by Silling and
co-authors is a quadrature formula method relying on thepamite midpoint rule for the ap-
proximation of the integral. It uses equidistant cubes pfita Ax ~ §/3. The discretisation in
time is an explicit leap-frog method using the central daddlifference of second-order with
constant time steps. The method falls into the class of meslajpproximations. Moreover, the
Emu code uses parallelisation.

For other meshfree methods and similar discrete problemsefer to the papers in [25, 26].
Meshfree methods applied to problems with cracking or mgotan also be found e.g. in [9, 16,
34, 37].

For the peridynamic equation of motion in a one-dimensiamélounded domain, Weckner
and Emmrich [19, 51, 52] have suggested the approximatidheofntegral, possibly splitted
with respect ta priori known discontinuities in the initial values or right-handes by means
of the Gaul3-Hermite and composite midpoint quadrature. tik@itime discretisation, linear
multistep methods with changing order and changing stephsize been employed. Moreover,
linear finite elements have been considered.

After spatial discretisation, the peridynamic equatiomotion resembles the equations aris-
ing in molecular dynamics (cf. e.g. [24]). Although peridynic modelling is meant to describe
length scales between those of classical and moleculamuigsait is a very interesting ques-
tion whether in the limit — 0 the classical elasticity theory is recovered and how th&éapa
discretised peridynamic equation for lar@és related to molecular dynamics. The discussion
of the limit behaviour is also very topical. We refer in peauiar to the work by Arndt, Blanc,
Griebel, Le Bris, Legoll, and Lions (cf. e.g. [5, 10, 32]) oigher-order gradient continuum
models, the coupling of atomistic and continuum mechanycsnbltiscale methods, and the
modelling of crystalline structures.

The aim of this paper is to give a short overview of the peraiyit theory. We introduce
the peridynamic equation of motion and its correspondingatianal formulation and address
the question of energy conservation. We then discuss pesdilbices of the pairwise force
function and establish a relation of material paramatetherperidynamic and in the classical
local theory. For the linear case with damping, we furtheerarove well-posedness as well
as stability with respect to the data and against a pertiorbaf the integral kernel. Finally,
we suggest the numerical solution via the quadrature fameéthod based upon a composite
Gaul3 quadrature and present some numerical simulations.
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2 MODELLING DIFFERENT MATERIAL BEHAVIOUR

Due to the balance of the linear as well as angular momentuheahassfree bond between
x andx,

(X +u(k, 1)) x f(x,%x,u(x,t),u(X,t),t)
= (x+u(x,t)) x f(x, %, u(x,t),u(x,t),t), Vx,xe€V,te(0,7),

the pairwise force functioti in (1) has always the direction of the vector pointing frore th
current positiorx + u(x, t) to the reference positiok + u(%, t). We can, therefore, write

(@)

with a scalar functiory.
If the system is assumed to be invariant against a rigid boolyom and if the internal forces
are independent of time then

f(x,%x,u,0,t) = f(x,%X,0 — u) (3)
with
f()'\(, X, _77> = _f<X7 5\(7 77)

for all x, X, n because of Newton’s laactio et reactio
If the material is microelastic in the sense of Silling [40éh there exists a pairwise potential
w such that
f(x,%x,1n) =V,w(x,X,n).

The equation of motion (1) then follows from the variatiopedbblem
T
find u=argminJ(u) with J(u):= / / l(x,u(x,t),t)dVdt,
0 %
wherel = e, — eq — eext IS the Lagrangian density and incorporates the density

X
i = " 1, )P
of the kinetic energy, the elastic energy density

A~

1
€el = 5 / w(xv }27 u(ia t) - u(x, t)) dy ’ (4)
H(x)

and the density
Cext = —h(x,t) - u(x,t)

due to the external force densityas is shown in [52].

We are now going to present some simple choices for the paerferce function describing
different material behaviour which have been suggestedaériterature so far.

A Taylor expansion of justifies thelinear ansatz

f(X> Xa 77) = fO (Xv }A{) + C(X> )A() i (5)

4
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with a stiffness tenso€ = C(x, X) andf, denoting forces in the prestressed reference config-
uration. For convenience, we only considige= 0. The linear ansatz (5) is the simplest model
we can employ.

In general, the stiffness tens@ris neither definite nor depending on the length of the dif-
ference||x — x||, only. It is, however, assumed to be symmetric with respedstarguments
(actio et reactig as well as symmetric with respect to its tensor structure,

C(x,x) = C(x,%), C(xx)" =C(x,%).
The corresponding micropotential is then given by

1 .
w(X>X>77) = 577C(X>X)77

In this linear case, the peridynamic equation of motion €Rds as
p(x)07u(x, t) = / C(x,%) - (u(%,t) —u(x,t)) dV + h(x.t), (x,t) € V x (0,T). (6)
H(x)

As we have shown in [52], the total energy is conservdddbes not depend an

d
T (Exin(t) + Ea(t) + Eext(t)) =0,

where&;(t) = [, ei(x,u(x,t),t)dV (i € {kin, el ext}). In the non-autonomous case, the
energy inequality

t
En(t) + Ealt) + v / =9, (s) ds
0

1 t el/(t—S)
< e’ (&g — Sam—) 2
<o Eanl0) + Ea0) + 5 [ [ S e plPavas

holds true for alt € (0,7") and arbitrary > 0. A similar result can also be found in [39].
If we assume a linear microelastic material then the strtensor can be shown to read as

Cx, %) = A(x —x|)) ® =x) ® (X =), (7)

cf. also [39], where\ depends on the specific material model and is e.g. given by
A& =3 (8)

cf. also [43]. Herec denotes a constant that depends again on the material bubrlthe
dimension of the problem. We are going to determitelow.

In order to incorporate nonlinear effects, thwportional microelastic materiahas been
proposed by Silling. Remembering (2) and (3), we suppode tha

wheres denotes the bond stretch that is the relative change of tiggHeof a bond (see also
Figure 1),
_ & +u® 1) - x+uxb)| - [[%—x|

1% — x| '

5
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Figure 1: New and old bond and displacements within the gaechic horizon

Note that

If necessary we annotate explicitly the arguments. of

The constant of proportionalitydepends on the radius of the peridynamic horizon but also
on the dimension of the domain. It can be determined in such a way that the deformation
energy of a homogeneous body under isotropic expansiongfiem the peridynamic model
coincides with the energy known from the classical theorprd/precisely, ify := u(x,t) —
u(x,t) = s(x — x) (with s > 0) then the micropotentiab is (up to some additive constant)
given by

. cn-n ostx—x|

w(x, X, 77) = 2H5~( - XH - 2

This is easily justified since
Vow(x, X,n) = cs||X —x[|V,s = csV, ||k —x+n|| = cse = f(x,%,n) .

From (4), we conclude in the three-dimensional case

2 ) 21 T 254
g = 2 / / / 3 sin 0dddodr — 0T
4 0 0 0 4

(we assume that the horizon is a full ball). In the classicadr elasticity theory, we have
Oks? 3Es?

T Ty T o1 —2)
wherek denotes the bulk modulus,the Poisson number, ard the Young modulus. As one
can also show that = 1/4 in the peridynamic theory, we obtain

12E 18k
C=—— = —.
wot  wot
In the two-dimensional case, we find analogously
T2k
T B

(10)

6
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and in the one-dimensional case m

562

A linearisation of the pairwise force function (9) of the pootional microelastic material
gives exactly the linear model (5) with the stiffness ten€bgiven by (7) and (8) and the
constant of proportionality (depending on the dimension Bj as above.

A next step in the modelling is to incorporate breaking boindsrder to describe damage
and fracture. The simplest approach is the so-calletbtype microelastic brittle materigtf.
[42, 43, 44]) that relies upon the idea of the proportionatnoelastic material but allows bond
breakage (see also Figure 2),

c

cs(x, %k, u(x,t),u(x,t)) if x € H(x) and
f(x, %, u(x,t),u(x,t),t) = s(x, %, u(x,7),u(X, 7)) < sovV7 < ¢,
0 else.

Heres = s(x,%,u(x,t),u(x,t)) again denotes the bond stretch but note that it implicitly
depends on time. Moreovet, is some given critical bond stretch that might be determined

from experimental data. In [43],
oo [
7V oks

is suggested for the three-dimensional case with the gniequired to break all the bonds per
unit fracture area (energy release rate). If a bond is brttkem it remains broken for all future
time.

So S

Figure 2: Prototype microelastic brittle material

Further material models such as the proportional micrdiplase have also been suggested
in the literature.

3 MATHEMATICAL ANALYSISIN THE LINEAR CASE

Recently, we have proven well-posedness in the linear,dimensional, unbounded case
(cf. [19]). In the following, we employ the same techniquepobof to establish existence,
uniqueness, and stability results as wellaagriori estimates in the linear case with damping
for a bounded domain of arbitrary dimension.

More precisely, we consider fd@k,t) € V x (0,7) the initial-value problem for the more
general PIDE

otu(x,t) + royu(x,t) = / K(x,%) - u(X,t)dV + Ko(x) - u(x,t) + b(x,t)  (11)
%

7
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with a bounded domaiy ¢ R? (d € {1,2,3}), the time interval0, T), and a damping pa-
rameterr > 0. Here, K : V x V — R4 Ky : V — R¥™> andb : V x [0,7] — R? are
given matrix- and vector-valued functions, respectlvEJquatlon (11) coincides with the linear
peridynamic equation of motion (6)if= 0 and

{ Clx %) if % € H(x)

0 else

h(x,t)
p(x)

, Ko(x /KXXdV b(x,t) =

but it also includes the more general case whHerdoes not vanish outside the peridynamic
horizon. Whether the assumptions imposedikomnd K in the following are fulfilled for a
stiffness tenso€ given by (7) and (8) will be discussed at the end of this sactio

Let X be a suitable Banach space of functions depending en) mapping intoR¢ that
will be specified below. With th&®?-valued functionsu = u(x,t) : V x [0,7] — R? and
b = b(x,t) : V x [0,7] — R?, we can associate th€-valued abstract functions = u(t) :
[0,7] — X andb = b(t) : [0,7] — X. Equation (11) can then be rewritten as the second-order
operator-differential equation N’

w(t) +ru(t) = Au(t) +b(t), t € (0,1, (12)

or as the first-order operator-differential equatiomXink X

2) a0 () () e a=(4 ). e

Here,id denotes the identity iX and A = K + K, is the sum of the integral operatér and
the multiplication operatoK, which are given by

/ K(x %) dV, (Kov)(x) = Ko(x) - v(x), ve X.

Moreover, a dot means the derivative of an abstract funetitimrespect to time.

In order to justify (12) and (13), we show thatmapsX into X. This, however, depends on
the choice of the spack. In the following, we consider the casé= LP(V)? (p € [1, o)), the
space ofR?-valued functions o’ whose components are Lebesgue-measurable and for which
the p-th power of the absolute value of the components is intégridld < p < oo and the
absolute value of the components is essentially boundeéd-ito, respectively, equipped with

the norm
1/p
</ Hv(x)deV) it 1< p< oo,
,

esssup || v(x)]| if p=o00.
xeV

HVHLP(V)d

We make also use of othéP-spaces whose definition is analogous.
Here and in the following] - || denotes again the Euclidean length but also the correspondi
spectral matrix norm. Note that by definition

A - v < [|A][[[v]|
holds for all matricesA € R%*? and vectorss € R“.

8
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Proposition 3.1. LetK, € L>(V)¥?, letK be Lebesgue-measurable bnx V, and assume
that for somep € [1, co] (with the conjugated exponeptl/p + 1/q = 1)

Ko = esssup || Ko(x)|| < 00, k< o0,

xey
where )
/esssup 1K (x, %) dV if p=1,
Vv Rev
p/a 1/p
k= /(/ ||K(x,§<)quV) dy if 1<p<oo,
v \Jv
esssup/ 1K (x,%)||dV if p=o0.
xeV Jy

Then the operatorg, K, and K, are linear bounded mappings it¥(V)?, and the operatord
is a linear bounded mapping ib* (V)¢ x LP(V).

Proof. Let v € LP(V)¢ (p € (1,00)). Itis clear that(x,X) — K(x,%) - v(x) as well as
x — Ko (x) - v(x) are Lebesgue-measurable functions. With Holder’s inkiyua holds

1/p
VK |y = ( dv)

(/ (/ 1K %) )”dV) dV)l/pS (/ (/ ||KXX/)p|| Iv(x )Ildv) dv)l/p
</ <</ IK(x |qu) /||v |pdv> ) vl

SinceK is obviously linear, this not only shows that mapsZ?(V)? into itself but also thaf
is bounded. The cases= 1 andp = oo are analogous although somewhat simpler.
Similarly, we have

%) dy

1/p
1Kol oy = ( [ 1o -v<x>||pdv) < rol[Vll e
y

which proves the assertion féf,.
It immediately follows thatd : LP(V)? — LP(V)? is linear and bounded with

[AV][Loye < al[VliLepye, @ =K+ ko (14)
If we equip the function spack”(V)? x L?(V)¢ with the standard norm
H(VaW)THLP Vydx Lp(V)d = ||V||LP yd + ||W||LP(V
we find
[ A(v, W>THLP(V)d><LP(V)d = [[(w, Av — TW)THLP(V)deP(V)d
< a|[vllzraya + (1 + 1) [Wllowye < max(a, 1+7) [(v, W) [ owyixrow)a

that finally shows the boundedness of the linear opetdtorL?(V)? x LP(V)¢ — LP(V)? x
PV Ol
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By standard arguments (cf. e.g. Amann [3, pp. 151ff.] or Erah8, pp. 173ff.]), it follows
that A generates the uniformly continuous one-parameter gfesp(t.A)}icr in LP(V)4 x

LP(V)? with
e8] n 0 id n
oo =0 (4 )
n=0

and the solution to (12) and (13), respectively, is given mh&mel’s principle. Note that the
representation afxp(t.4) simplifies ifr = 0:

t2nAn t2n+1An
Z (2n E 2n+1

exp(tA) =

t2n+1An+1 t2nAn
E (2n+1)! Z (2n)!
We thus come up with the following theorem:

Theorem 3.1. Under the assumptions of Proposition 3.1, there is for gingnve € LP(V)4,
b€ L0, T; L*(V)?) a unique mild solutiom, € C*([0, T]; L?(V)?) to the initial-value problem
for (12) and (13), respectively, with0) = ug and«(0) = vo, which is given by

( Zgg ) = exp (tA) < 32 ) +/Ote><p((t— 5).A) ( b(os> )ds, te(0,T).  (15)

If r = 0thenforallt € (0,7)
u(t) = cosh(tvVA) ug + NI sinh(tV/A) vo + va /t sinh((t — s)VA)b(s)ds, (16)

with the suggestive notation

e t2nAn e t2n+1An

@)l \/A smht\/_ Z

If b € C([0,T]; LP(V)%) thenu € C2([0, T]; L*(V)%).

Here, L1(0,T; L*(V)¢) denotes the Banach space of Bochner-integrable abstractidns
with values inL?(V)? (roughly spoken the space of functions that are integraliterespect to
time and square-integrable with respect to spaceyan{), 7; LP(V)¢) (m € N) is the Banach
space ofn-times continuously differentiable abstract functionshwialues inL?(V)? (cf. e.g.
[18] for more details).

Also regularity results may be obtained which then show thistence and uniqueness of a
classical solution to (11).

Regarding the representation (15) as wellagsriori estimates in the case of damping, it
might be useful to transform the damped system into a systémowt damping: Let

h(tVA) =
cosh(tvA) Gn 1)

2

a(t) == ™ 2u(t), b(t) == e"?b(t), A= A+ 1 id .
A short calculation shows that (12) then is equivalent to

u(t) = Aa(t) + b(t), t € (0,7). (17)

10
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Hence, the representation (16) applieditpields

u(t) =e cosh | ¢ A+41d up +e A+41d sinh | ¢ A—|—41d Vo
r2 o r2
+\/A+Zid /e-’”<t—8>/2smh (t—s)\/A%—Zid b(s)ds, te (0,T).  (18)
0

We are now going to establish arpriori estimate for the solution. Since the problem under
consideration is linear, this estimate also proves stghilith respect to the the initial data and
right-hand side.

Theorem 3.2. Under the assumptions of Proposition 3.1 and Theorem 34 falowing a
priori estimate holds true for alt € (0, 7):

r2
[u(®) | rya < e”""/? cosh (t\/ a+ Z) o] r ()«
-1
L, r2 [ 2

+e 12 o + Z sinh (t o+ Z) ||V0HLp(y)d

Tz_l t r2
Fyfat D / e =92 ginh | (¢ — )1/ a + T 16(8)|| rya ds . (19)

0

Proof. The estimate is a direct consequence of the representa@pmogether with (14). Ll

Thea priori estimate above shows indeed the damping effect of thetéym

As we have described in [19], it might be possible to deteentine integral kernel from ex-
perimental data. Itis, therefore, the question whethesdthation is stable against perturbations
of K andK,. This can be answered in the affirmative by the following teen

Theorem 3.3. Letb € L'(0,T; LP(V)?) and let, for arbitrarye > 0, K, Ko, K., K., which
are assumed to fulfill the assumptions of Proposition 3.&h shat

A + esssup || Ko(x) — Ko (x)|| < €,

xeV
where
)
/ esssup || K(x, %) — K (x,X)|| dV ifp=1,
Vv ReV
p/q L/p
A= (/ (/ K (x, %) —Kg(x,f()quV) dV) if 1<p<oo,

v \Jy

ess sup/ 1K (x,%) — K.(x, %)|| dV if p=o0.
xeV Jy

11
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The corresponding mild solutions u. to equation (12) with initial dataiy, vo € LP(V)¢ then
satisfy for allt € (0,7') the estimate

-1
712
[u(t) — ue(®)]|Lovye < 5@ %
t —
X/e—r(t—s)/zsinh (t—s) Oz—i-z—i—g HU(S>HLP(V)ddS.
0

Proof. The proof follows the same lines as in [19, Thm. 3.2] if ondaegs the solution space
L>=(R) used there by.*(V)?. Moreover, the damping term has to be incorporated here |

Let us consider now the linear peridyamic equation (6) wihstant density and with a
stiffness tenso€ given by (7) and, in particular, (8). Since

C G0 E-x)=

1% = x|

ICx ) = 7m——

5= [?
the corresponding integral kernKl is weakly singular ifd € {2,3} but strongly singular if
d=1.

Unfortunately, we cannot apply the mathematical settirmyabn the one-dimensional case
since thenK(x, X) is not integrable and the assumptions of Proposition 3.Inatdulfilled.
Note that we have considered different integral kernelslB] gatisfying the assumptions of
Proposition 3.1 withp = oo andq = 1. These integral kernels describe, however, a different
material behaviour.

In the two-dimensional case, we can apply the above settittgamyp > 2 as theny < 2
and (without loss of generality for a horizé6(x) that is a full ball)

fmeanar= () [ ptmer=() [ [T rao<e

as well as ) _y
C ~ T C

Kot <& [ —mray = T2
P JH(x) [% — x|| P

Analogously, the mathematical setting above works finelferthree-dimensional case with
anyp > 3/2 as theny < 3 (andr*~7 is integrable). In particular, we then haté-solvability
(i.e.p = g = 2) of the initial-value problem for (6) with (7) and (8).

4 NUMERICAL SOLUTION AND SIMULATIONS

For the numerical solution of (1), we suggest a quadraturadita method. Let us suppose
we are givenV € N quadrature pointg; € V (i = 1,2, ..., N). Any quadrature then reads as

N
/ O(R)dV ~ Y 0;0(x;)
with suitable quadrature weights. For: € {1,2,..., N}, let
I(i) :={je{l,2,...,N} :x; € H(x;)}

12
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be the set of indices describing the quadrature pointsaotierg withx;. It follows
/ RV~ Y 0;0(x;). (20)
H(xi) JEI(d)

In the quadrature formula method, we now solve the origigab¢ion (1) only at the quadra-
ture points which leads to a large coupled system of nonlioedinary differential equations.
To be precise, we look for approximationgt) ~ u(x;,t) (i = 1,2,..., N) satisfying

p(xl)ul(t) = Z O'jf(Xi,Xj, ui(t), U.j(t),t) + h(Xl,t) y t € (0, T) . (21)

JEI(3)

In [52], we have proven the conservation of the discretd &nargy in the autonomous,
linear, one-dimensional case for any quadrature formuaGalerkin-type (e.g. finite element)
method.

Possible choices for the quadrature are e.g. the composiigont rule or a composite
Gaul3 quadrature on tetrahedrons or cuboids. For simphedyconfine ourselves to the two-
dimensional case and the composite midpointapdint-Gauld rule relying on rectangles. Both
guadratures can take place at the same time. The midpagrisrekact for bilinear polynomials.
The4-point-Gaul3 quadrature is a cross-product rule relyindherone-dimensional quadrature

1
/ B(z)dz ~ <—§> + <§> |
1 3 3
It is exact for bicubic polynomials. For the quadrature oravitrary rectangle, we only have
to map affine-linearly the four GauR poiritsy/3/3, £v/3/3).

We assume that the rectangular domais partitioned into the (non-overlapping) rectangles
T,(l=1,2,...,M; N < M) with area|T;|. On one rectangle, we have the quadrature

/be(fc) Wr ) opd(xy)

xR €Ty

with
|T;| if the midpoint rule is used off;,
Ok =9 || . : :
1 if the 4-point-Gaul} rule is used dh.
Summing up over all quadrature points lying in the peridyitanorizon gives the composite
guadrature. A possible covering of the peridynamic horitagyether with the Gaul3 points is
shown in Figure 3.

As an example, we have solved numerically the peridynami@aton of motion with the
proportional microelastic material model (without outerdes and without damping) based
upon the composité-point-Gaul3 quadrature @ x 8 equidistantly distributed rectangles. We
have considered a steel plate with dengity 8000 kgm 2, Young modulust = 210 - 10° Pa,
and Poisson number = 1/4 of dimensionl m x 0.3m. As the constant of proportionality,
(10) has been employed (with= E/3(1 — 2v)). The initial displacement is zero whereas the
y-component of the initial velocity vanishes and theomponent of the initial velocity is given
by 10(x — 0.5) ms—!. This models an initial tension in-direction. Figures 4 and 5 show the
results with a total of 768 quadrature points. The peridyicdmarizon is§ = 0.1.

13
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Figure 4: Displacement in- (above) and;-direction (below) at time = 0.001 s

In the following, we show two simulations done with Sillisgemu code (cf. [41]) that is
based upon the composite midpoint rule and employs the nafdbe prototype microelastic
brittle material.

The first simulation shows a rubber plage£ 1000 kgm =3, F = 3 - 10° Pa, v = 1/4) with
a slit under constant tension. We have uséc 50 x 5 quadrature points.

The next simulation shows the evolution of a defect in a dteelp = 8000 kgm =3, £ =
2.43 - 10" Pa, v = 1/4) under tension at the front edge. For the simulatikinx 60 x 30,
guadrature points have been used.

14
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Figure 5:z- (left) andy-component (right) of the movement of the first Gaul’ pointie lower left corner over
time

Figure 6: Displacement ip-direction at different times
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