Lagrange-Mechanik 3

Andreas Unterreiter

20. November 2020

Inhaltsverzeichnis

1	$\gamma^{\bullet \bullet} + \omega^2 \cdot \gamma = 0$ und Energiegleichung	2
	1.1 A posteriori. $E_{\circ} - \Phi(\gamma) = 0$ und nicht zweimal differenzierbar	2
2	$T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2)	4
	2.1 A posteriori. γ konstant und keine ODE	4
	2.2 A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I	5
	2.3 A posteriori. $E_{\circ} - \Phi(\gamma) \ge 0$ am Rand von $I. \Lambda. \ldots \ldots$	7
3	$T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+3). $0 = T''(0)$	
	und $E_{\circ} = \Phi(\eta)$ und $0 \neq \Phi'(\eta)$.	13
	3.1 A posteriori	13
	3.2 A priori	15
	3.3 A posteriori. Λ	16
4	$T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+4)	20
	4.1 A posteriori. γ bei $\pm \infty$ reell	20
	4.2 A posteriori. γ bei $\pm \infty$ reell. Λ	25
	4.3 A posteriori. γ bei $\pm \infty$ gleich $\pm \infty$	32
	4.4 A posteriori. γ bei $\pm \infty$ gleich $\pm \infty$. Λ	34
5	$T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+5)	35
	5.1 A posteriori. γ bei t_{\circ} gleich $\pm \infty$	35
	5.2 A posteriori. γ bei t_{\circ} gleich $\pm \infty$. Λ	37
	1 0	

1 $\gamma^{\bullet \bullet} + \omega^2 \cdot \gamma = 0$ und Energiegleichung

1.1 A posteriori. $E_{\circ} - \Phi(\gamma) = 0$ und nicht zweimal differenzierbar.

Satz lm3.1

$$\mbox{ V1. } 0 < m \in \mathbb{R} \mbox{ und } 0 < k \in \mathbb{R} \mbox{ und } \omega = \sqrt{\frac{k}{m}}.$$

V2.
$$\Phi: \mathbb{R} \to \mathbb{R}, \ \Phi(x) = \frac{k}{2} \cdot |x|^2$$
.

$$\text{V3. } T: \mathbb{R} \to \mathbb{R}, \, T(v) = \frac{1}{2} \cdot |v|^2 \text{ und } \tilde{T}: \mathbb{R} \to \mathbb{R}, \, \tilde{T}(v) = v \cdot T'(v) - T(v).$$

V4.
$$0 < E_{\circ} \in \mathbb{R}$$
.

$$\text{V5. } \gamma: \mathbb{R} \to \mathbb{R}, \quad \gamma(t) = \left\{ \begin{array}{ccc} -\frac{1}{\omega} \cdot \sqrt{\frac{2 \cdot E_{\circ}}{m}} &, & t \leq -\frac{\pi}{2 \cdot \omega} \\ \\ \frac{1}{\omega} \cdot \sqrt{\frac{2 \cdot E_{\circ}}{m}} \cdot \sin(\omega \cdot t) &, & -\frac{\pi}{2 \cdot \omega} < t < \frac{\pi}{2 \cdot \omega} \\ \\ \frac{1}{\omega} \cdot \sqrt{\frac{2 \cdot E_{\circ}}{m}} &, & \frac{\pi}{2 \cdot \omega} \leq t \end{array} \right.$$

 \Rightarrow

a)
$$\Phi \in C^1(\mathbb{R}:\mathbb{R})$$
.

b)
$$T \in C^2(]-\infty|+\infty[:\mathbb{R})$$
 und $\tilde{T}=T$.

c)
$$\gamma$$
 ist 1-Kurve in \mathbb{R} .

$$\mathbf{d}) \ \ \gamma^{\bullet} : \mathbb{R} \to \mathbb{R}, \quad \ \gamma^{\bullet}(t) = \left\{ \begin{array}{ccc} 0 & , & t \leq -\frac{\pi}{2 \cdot \omega} \\ \\ \sqrt{\frac{2 \cdot E_{\circ}}{m}} \cdot \cos(\omega \cdot t) & , & -\frac{\pi}{2 \cdot \omega} < t < \frac{\pi}{2 \cdot \omega} \\ 0 & , & \frac{\pi}{2 \cdot \omega} \leq t \end{array} \right.$$

$$\mathbf{e)} \ \forall t: t \in \mathbb{R} \quad \Rightarrow \quad |\gamma^{\bullet}(t)|^2 + \omega^2 \cdot |\gamma(t)|^2 = 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$$

- f) γ^{\bullet} nicht differenzierbar in $-\frac{\pi}{2\cdot\omega}$ und in $\frac{\pi}{2\cdot\omega}$.
- g) $\neg (\gamma \text{ ist } 2\text{-Kurve in } \mathbb{R}).$

h)
$$\gamma^{\bullet \bullet} : \mathbb{R} \setminus \left\{ \pm \frac{\pi}{2 \cdot \omega} \right\} \to \mathbb{R}$$
,

$$\gamma^{\bullet \bullet}(t) = \begin{cases} 0 & , & t < -\frac{\pi}{2 \cdot \omega} \\ -\omega \cdot \sqrt{\frac{2 \cdot E_{\circ}}{m}} \cdot \sin(\omega \cdot t) & , & -\frac{\pi}{2 \cdot \omega} < t < \frac{\pi}{2 \cdot \omega} \\ 0 & , & \frac{\pi}{2 \cdot \omega} < t \end{cases}$$

i)
$$\neg \Big(\forall t : t \in \mathbb{R} \implies T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t) = 0 \Big).$$

$$\mathsf{j)} \ \forall t: t \in \] - \tfrac{\pi}{2 \cdot \omega} \big[\quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \tfrac{1}{m} \cdot \Phi'(\gamma(t)) = 0.$$

$$\text{k)} \ \forall t: t \in \mathbb{R} \setminus \left] - \tfrac{\pi}{2 \cdot \omega} \right|_{\frac{\pi}{2 \cdot \omega}} \left[\quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \tfrac{1}{m} \cdot \Phi'(\gamma(t) \neq 0. \right]$$

Beweis a), b) trivial.

Beweis c), d), e), f) Rechnung.

Beweis g), h) trivial.

<u>Beweis</u> i) Es gilt $\frac{\pi}{2 \cdot \omega} \in \mathbb{R}$, jedoch $\frac{\pi}{2 \cdot \omega} \notin \mathsf{dom}(\gamma^{\bullet \bullet})$, so dass

$$\gamma^{\bullet \bullet} \left(\frac{\pi}{2 \cdot \omega} \right) = \mathcal{U},$$

wobei $\mathcal U$ das Universum ist. $\mathcal U$ ist eine Unmenge. Es folgt

$$T''\left(\gamma^{\bullet}\left(\frac{\pi}{2\cdot\omega}\right)\right)\cdot\gamma^{\bullet\bullet}\left(\frac{\pi}{2\cdot\omega}\right) + \frac{1}{m}\cdot\Phi'\left(\gamma\left(\frac{\pi}{2\cdot\omega}\right)\right)$$
$$= 2\cdot\mathcal{U} + \frac{1}{m}\cdot k\cdot\sqrt{\frac{2\cdot E_{\circ}}{m}} = \mathcal{U} + \omega^{2}\cdot\sqrt{\frac{2\cdot E_{\circ}}{m}} = \mathcal{U} \neq 0.$$

Beweis j), k) Rechnung.

2 $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2)

2.1 A posteriori. γ konstant und keine ODE

Satz

- $V1. \ 0 < m \in \mathbb{R}.$
- V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.
- V3. $0 < a \text{ und } 0 < b \text{ und } T \in \mathbb{C}^2(]-a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } \tilde{T}:]-a|b[\rightarrow \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) T(v).$
- V3. $E_{\circ} \in \mathbb{R}$.
- V4. $x_{\circ} \in O$ und $E_{\circ} = \Phi(x_{\circ})$ und $0 \neq \Phi'(x_{\circ})$.
- V5. J echtes reelles Intervall.

$$\text{V6. } \gamma = x_{\circ}^{on} J, \qquad \text{wobei } x_{\circ}^{on} J: J \to \mathbb{R}, \, x_{\circ}^{on} J(t) = x_{\circ}.$$

 \Rightarrow

- a) $0 = \tilde{T}(0)$.
- b) γ ist 2-Kurve in \mathbb{R} .

$$\mathrm{c)} \ \forall t: t \in \mathrm{dom} \, \gamma \quad \Rightarrow \quad 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$$

$$\mathrm{d)} \ \forall t: t \in \mathrm{dom}\, \gamma \quad \Rightarrow \quad \tilde{T}(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) \neq 0.$$

Beweis trivial. \Box

*

2.2 A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I

 \mathbf{Satz}

V1. $0 < m \in \mathbb{R}$.

V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.

- V3. $0 < a \text{ und } 0 < b \text{ und } T \in C^2(] a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] a|b[\setminus \{0\} \text{ und } \tilde{T}:] a|b[\to \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) T(v) \text{ und } w_{+1} = (\tilde{T} \mid [0|b[)^{-1} \text{ und } w_{-1} = (\tilde{T} \mid] a|0])^{-1}.$
- V4. γ ist 1-Kurve in \mathbb{R} und $\operatorname{ran} \gamma \subseteq O$ und $-a < \gamma^{\bullet} < b$ auf $\operatorname{dom} \gamma$.
- V5. $E_{\circ} \in \mathbb{R} \text{ und } \forall t : t \in \text{dom } \gamma \implies 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$
- V6. $t_{\circ} \in I \subseteq \text{dom } \gamma \text{ und } I \text{ echtes reelles Intervall und } t_{\circ} \text{ ist Randpunkt von } I \text{ und } E_{\circ} \Phi \circ \gamma > 0 \text{ auf } I \setminus \{t_{\circ}\}.$
- V7. $\lambda \in \{\pm 1\}$ und $\lambda = \operatorname{sgn}(\gamma^{\bullet})$ auf $I \setminus \{t_{\circ}\}$.

 \Rightarrow

- a) $w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig und $\neq 0$ auf $I\setminus\{t_{\circ}\}$.
- b) Falls $s \in I \setminus \{t_{\circ}\}$, dann

$$\int_{\gamma(s)}^{\gamma(t_{\circ})} \frac{dx}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)} \in \mathbb{R},$$

und

$$\forall t : t \in I \quad \Rightarrow \quad \int_{\gamma(t)}^{\gamma(t_{\circ})} \frac{dx}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)} = t_{\circ} - t.$$

- c) γ ist zweimal stetig differenzierbar auf $I \setminus \{t_{\circ}\}$.
- d) $\forall t: t \in I \setminus \{t_o\} \implies T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0.$
- e) $\lim_{t \to t_0} T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\gamma(t_0)).$

Beweis a) Via T konvex und \tilde{T} und $w_{\pm 1}$ evident.

Beweis b), c), d), e) $I \setminus \{t_o\}$ ist ein echtes reelles Intervall $\subseteq \text{dom } \gamma$ und es gilt $E_o - \Phi \circ \gamma > 0$ auf $I \setminus \{t_o\}$. Somit gilt via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ (+1) A posteriori

$$\forall t : t \in I \setminus \{t_{\circ}\} \quad \Rightarrow \quad \int_{\gamma(s)}^{\gamma(t)} \frac{dx}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)} = t - s.$$

Da $t_{\circ} \in \operatorname{\mathsf{dom}} \gamma$ und da γ stetig ist folgt hieraus

$$\int_{\gamma(s)}^{\gamma(t_{\circ})} \frac{dx}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)} = \lim_{t \uparrow t_{\circ}} \int_{\gamma(s)}^{\gamma(t)} \frac{dx}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)} = t_{\circ} - s \in \mathbb{R},$$

so dass nun auch

$$\forall t : t \in I \quad \Rightarrow \quad \int_{\gamma(s)}^{\gamma(t)} \frac{dx}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)} = t - s,$$

und somit

$$\forall t : t \in I \quad \Rightarrow \quad \int_{\gamma(t)}^{\gamma(t_{\circ})} \frac{dx}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)}$$

$$= \left(\int_{\gamma(s)}^{\gamma(t_{\circ})} \frac{dx}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)}\right) - \left(\int_{\gamma(s)}^{\gamma(t)} \frac{dx}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)}\right)$$

$$= (t_{\circ} - s) - (t - s) = t_{\circ} - t.$$

Weiterhin folgt aus $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ (+1) A posteriori, dass γ auf $I \setminus \{t_{\circ}\}$ zweimal stetig differenzierbar ist und

$$\forall t: t \in I \setminus \{t_{\circ}\} \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0,$$

so dass

$$\forall t: t \in I \setminus \{t_{\circ}\} \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\gamma(t)).$$

Wegen der Stetigkeit von Φ' und γ folgt hieraus

$$\lim_{t \uparrow t_o} T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) = \lim_{t \uparrow t_o} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(\gamma(t_o)).$$

2.3 A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von $I. \Lambda$.

Satz

- V1. $0 < m \in \mathbb{R}$.
- V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.
- V3. $x_{\circ} \in J \subseteq O$. J echtes reelles Intervall. $J \subseteq [x_{\circ}] + \infty$
- V4. $0 < a \text{ und } 0 < b \text{ und } T \in \mathbb{C}^{2}(] a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] a|b[\setminus \{0\} \text{ und } \tilde{T}:] a|b[\to \mathbb{R}, \, \tilde{T}(v) = v \cdot T'(v) T(v) \text{ und } w_{+1} = \left(\tilde{T} \mid [0|b[\right)^{-1} \text{ und } w_{-1} = \left(\tilde{T} \mid] a|0]\right)^{-1}.$
- V5. $\lambda \in \{\pm 1\}$.
- V6. $E_{\circ} \in \mathbb{R}$
- V7. $\forall x : x \in J \setminus \{x_{\circ}\} \implies E_{\circ} > \Phi(x)$ und $(\lambda = +1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\beta} \text{ auf } J, \text{ wobei } \overline{\beta} = \lim_{v \uparrow b} \tilde{T}(v))$ und $(\lambda = -1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\alpha} \text{ auf } J, \text{ wobei } \overline{\alpha} = \lim_{v \downarrow -a} \tilde{T}(v)).$
- V8. $\tilde{x} \in J \setminus \{x_{\circ}\}$ und $\int_{x_{\circ}}^{\tilde{x}} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} \Phi(z))\right)} \in \mathbb{R}$.
- $\text{V9. } \Lambda = \left\{ \left(x, \int_{x_{\circ}}^{x} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} \Phi(z)) \right)} \right) : x \in J \right\}.$
- V10. $t_{\circ} \in \mathbb{R} \text{ und } \gamma = \{(t, \Lambda^{-1}(t t_{\circ})) : t t_{\circ} \in \operatorname{ran} \Lambda\}.$

 \Rightarrow

- a) $\forall x: x \in J \implies \frac{1}{m} \cdot (E_{\circ} \Phi(x)) \in \operatorname{dom} w_{\lambda} \text{ und } w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} \Phi(.))\right)$ stetig auf $J \setminus \{x_{\circ}\}$ und $\forall x: x \in J \implies \Lambda(x) = \int_{x_{\circ}}^{x} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)}$ und $\Lambda \in C(J: \mathbb{R})$ und $0 = \Lambda(x_{\circ})$ und $\operatorname{ran} \Lambda \text{ echtes reelles Intervall}$ und $(\lambda = +1 \Rightarrow \Lambda \text{ streng wachsend und } \operatorname{ran} \Lambda \subseteq [0] + \infty[)$ und $(\lambda = -1 \Rightarrow \Lambda \text{ streng fallend und } \operatorname{ran} \Lambda \subseteq] - \infty[0]$).
- b) Λ stetig differenzierbar auf $J \setminus \{x_{\circ}\}$

und
$$\forall x : x \in J \setminus \{x_{\circ}\} \implies \Lambda'(x) = \frac{1}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)}$$

und
$$(\lambda = +1 \Rightarrow \lim_{x \downarrow x_0} \Lambda'(x) \in]0| + \infty]$$
)
und $(\lambda = -1 \Rightarrow \lim_{x \downarrow x_0} \Lambda'(x) \in [-\infty|0[).$

- c) $\Lambda^{-1} \in C(\operatorname{ran} \Lambda : \mathbb{R})$ und $\Lambda^{-1} : \operatorname{ran} \Lambda \to J$ bijektiv und $x_{\circ} = \Lambda^{-1}(0)$ und $(\lambda = +1 \Rightarrow \Lambda^{-1} \text{ streng wachsend})$ und $(\lambda = -1 \Rightarrow \Lambda^{-1} \text{ streng fallend}).$
- d) $\Lambda^{-1} \in C^1(\operatorname{ran} \Lambda : \mathbb{R})$ $\operatorname{und} \forall t : t \in \operatorname{ran} \Lambda \implies (\Lambda^{-1})^{\bullet}(t) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\Lambda^{-1}(t)))\right)$ $\operatorname{und} \forall x : x \in J \implies (\Lambda^{-1})^{\bullet}(\Lambda(x)) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right).$
- e) $\operatorname{\mathsf{dom}} \gamma$ echtes reelles Intervall und $\gamma: \operatorname{\mathsf{dom}} \gamma \to J$ bijektiv und $x_\circ = \gamma(t_\circ)$ und $t_\circ \in \operatorname{\mathsf{dom}} \gamma = \{\tau + t_\circ : \tau \in \operatorname{\mathsf{ran}} \Lambda\}$

und $(\lambda = +1 \Rightarrow \gamma \text{ streng wachsend und } \mathsf{dom} \, \gamma \subseteq [t_{\circ}| + \infty[)]$

und $(\lambda = -1 \Rightarrow \gamma \text{ streng fallend und dom } \gamma \subseteq] - \infty |t_{\circ}])$ und

$$\forall t: t \in \operatorname{dom} \gamma \quad \Rightarrow \quad \gamma(t) = \Lambda^{-1}(t-t_\circ) \wedge \Lambda(\gamma(t)) = t-t_\circ,$$

$$\forall t: t \in \operatorname{dom} \gamma \quad \Rightarrow \quad \int_{x_0}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = t - t_{\circ}.$$

f) γ ist 1-Kurve in \mathbb{R} und

$$\forall t: t \in \operatorname{dom} \gamma \quad \Rightarrow \quad \gamma^{\bullet}(t) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right),$$

und $(\lambda=+1\Rightarrow 0\leq \gamma^{\bullet}< b \text{ auf dom }\gamma)$ und $(\lambda=-1\Rightarrow -a<\gamma^{\bullet}\leq 0 \text{ auf dom }\gamma)$ und

$$\forall t: t_{\circ} \neq t \in \operatorname{dom} \gamma \quad \Rightarrow \quad 0 \neq \gamma^{\bullet}(t).$$

- g) $\forall t: t \in \text{dom } \gamma \implies 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$
- h) γ zweimal stetig differenzierbar auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ und

$$\forall t: t_{\circ} \neq t \in \operatorname{dom} \gamma \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0,$$

und

$$\lim_{t \to t_{\circ}} T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(x_{\circ}).$$

Beweis a), b), c) Via T konvex und \tilde{T} und $w_{\pm 1}$ evident.

Beweis d) Stetige Differenzierbarkeit von Λ^{-1} auf $(\operatorname{ran} \Lambda) \setminus \{0\}$ und Formeln auf $(\operatorname{ran} \Lambda) \setminus \{0\}$ / auf $J \setminus \{x_\circ\}$ via T konvex und \tilde{T} und $w_{\pm 1}$ klar. Aus der Stetigkeit von Φ und Λ^{-1} folgt dann

$$\lim_{t\to 0} (\Lambda^{-1})^{\bullet}(t) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\Lambda^{-1}(0))) \right) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x_{\circ})) \right) \in \mathbb{R},$$

so dass, da Λ^{-1} stetig ist, die stetige Differenzierbarkeit von Λ^{-1} in 0 und die Gültigkeit der Formel für $(\Lambda^{-1})^{\bullet}(t)$ für alle $t \in \operatorname{ran} \Lambda$ folgt. Via $0 = \Lambda(x_{\circ})$ folgt nun die Gültigkeit der zweiten Formel für alle $x \in J$.

Beweis e) trivial.

Beweis f) Lediglich die letzte Aussage ist nicht trivial. Wegen $\gamma: \operatorname{dom} \gamma \to J$ bijektiv und $x_{\circ} = \gamma(t_{\circ})$ gilt für alle $t \in (\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ die Aussage $x_{\circ} \neq \gamma(t)$. Nach Voraussetzung ist x_{\circ} die einzige Stelle $\in J$, in der $E_{\circ} = \Phi(x_{\circ})$, also $0 = E_{\circ} - \Phi(x_{\circ})$ gelten könnte. In den Stellen $x_{\circ} \neq x \in J$ gilt $E_{\circ} - \Phi(x) > 0$, so dass $0 \neq w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)$. Da γ auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ Werte in J ungleich x_{\circ} annimmt, folgt dort via T konvex und \tilde{T} und $w_{\pm 1}$, $\gamma^{\bullet}(t) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \neq 0$.

Beweis g) Via f) und T konvex und \tilde{T} und $w_{\pm 1}$ evident.

Beweis h) Die stetige Differenzierbarkeit von Φ und γ und die via T konvex und \tilde{T} und $w_{\pm 1}$ für Argumente $\neq 0$ bestehende stetige Differenzierbarkeit von w_{λ} impliziert, da $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ ein $\operatorname{dom} \gamma$ -relativ offenes, echtes reelles Intervall ist, die stetige Differenzierbarkeit von γ^{\bullet} auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$. Es folgt, dass γ zweimal stetig differenzierbar auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ ist und für alle $t \in (\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ gilt via T konvex und \tilde{T} und w_{\pm} ,

$$T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t))$$

$$= T''(\gamma^{\bullet}(t)) \cdot w'_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \cdot \left(-\frac{1}{m} \cdot \Phi'(\gamma(t))\right) \cdot \gamma^{\bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t))\right)$$

$$= T''(\gamma^{\bullet}(t)) \cdot w'_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \cdot \left(-\frac{1}{m} \cdot \Phi'(\gamma(t))\right) \cdot w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \cdot w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t)))\right) \cdot w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t)))\right)$$

$$= T''\left(w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \cdot \left(-\frac{1}{m} \cdot \Phi'(\gamma(t))\right) + \frac{1}{m} \cdot \Phi'(\gamma(t))\right) - w'_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \cdot \left(-\frac{1}{m} \cdot \Phi'(\gamma(t))\right) + \frac{1}{m} \cdot \Phi'(\gamma(t))\right)$$

$$= 1 \cdot \left(-\frac{1}{m} \cdot \Phi'(\gamma(t)) \cdot \frac{1}{m} \cdot \Phi'(\gamma(t))\right) = 0.$$

Wegen der Stetigkeit von Φ' und γ folgt hieraus

$$\lim_{t \to t_0} T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) = \lim_{t \to t_0} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(\gamma(t_0)) = -\frac{1}{m} \cdot \Phi(x_0).$$

*

Satz*

V1. $0 < m \in \mathbb{R}$.

V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.

 $\forall 3. \ x_{\circ} \in J \subseteq O. \ J \text{ echtes reelles Intervall. } J \subseteq] - \infty |x_{\circ}].$

V4. $0 < a \text{ und } 0 < b \text{ und } T \in \mathbb{C}^2(] - a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] - a|b[\setminus \{0\} \text{ und } \tilde{T}:] - a|b[\to \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) - T(v) \text{ und } w_{+1} = \left(\tilde{T} \mid [0|b[\right)^{-1} \text{ und } w_{-1} = \left(\tilde{T} \mid] - a|0]\right)^{-1}.$

V5. $\lambda \in \{\pm 1\}$.

V6. $E_{\circ} \in \mathbb{R}$.

V7. $\forall x : x \in J \setminus \{x_{\circ}\} \implies E_{\circ} > \Phi(x)$ und $(\lambda = +1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\beta} \text{ auf } J, \text{ wobei } \overline{\beta} = \lim_{v \uparrow b} \tilde{T}(v))$ und $(\lambda = -1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\alpha} \text{ auf } J, \text{ wobei } \overline{\alpha} = \lim_{v \downarrow -a} \tilde{T}(v))$ -

V8.
$$\tilde{x} \in J \setminus \{x_{\circ}\}$$
 und $\int_{\tilde{x}}^{x_{\circ}} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} \in \mathbb{R}$.

$$\text{V9. } \Lambda = \left\{ \left(x, \int_x^{x_\circ} \frac{dz}{w_\lambda \left(\frac{1}{m} \cdot (E_\circ - \Phi(z)) \right)} \right) : x \in J \right\}.$$

V10. $t_{\circ} \in \mathbb{R} \text{ und } \gamma = \{(t, \Lambda^{-1}(t_{\circ} - t)) : t_{\circ} - t \in \operatorname{ran} \Lambda\}.$

 \rightarrow

a) $\forall x : x \in J \implies \frac{1}{m} \cdot (E_{\circ} - \Phi(x)) \in \text{dom } w_{\lambda} \text{ und } w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(.))\right) \text{ stetig}$ auf $J \setminus \{x_{\circ}\}$ und $\forall x : x \in J \implies \Lambda(x) = \int_{x}^{x_{\circ}} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)}$

und $\Lambda \in C(J : \mathbb{R})$ und $0 = \Lambda(x_{\circ})$ und ran Λ echtes reelles Intervall

und
$$(\lambda = +1 \Rightarrow \Lambda \text{ streng fallend und } \operatorname{\mathsf{ran}} \Lambda \subseteq [0| + \infty[)$$

und $(\lambda = -1 \Rightarrow \Lambda \text{ streng wachsend und } \operatorname{\mathsf{ran}} \Lambda \subseteq] - \infty[0]).$

b) Λ stetig differenzierbar auf $J \setminus \{x_{\circ}\}$

und
$$\forall x : x \in J \setminus \{x_{\circ}\} \implies \Lambda'(x) = -\frac{1}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)}$$

und $(\lambda = +1 \Rightarrow \lim_{x \uparrow x_{\circ}} \Lambda'(x) \in [-\infty|0[)$
und $(\lambda = -1 \Rightarrow \lim_{x \uparrow x_{\circ}} \Lambda'(x) \in]0| + \infty]$.

- c) $\Lambda^{-1} \in C(\operatorname{ran} \Lambda : \mathbb{R})$ und $\Lambda^{-1} : \operatorname{ran} \Lambda \to J$ bijektiv und $x_{\circ} = \Lambda^{-1}(0)$ und $(\lambda = +1 \Rightarrow \Lambda^{-1} \text{ streng fallend})$ und $(\lambda = -1 \Rightarrow \Lambda^{-1} \text{ streng wachsend})$.
- d) $\Lambda^{-1} \in \mathrm{C}^1(\operatorname{ran}\Lambda : \mathbb{R})$ $\operatorname{und} \ \forall t : t \in \operatorname{ran}\Lambda \quad \Rightarrow \quad (\Lambda^{-1})^{\bullet}(t) = -w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ} \Phi(\Lambda^{-1}(t)))\right)$ $\operatorname{und} \ \forall x : x \in J \quad \Rightarrow \quad (\Lambda^{-1})^{\bullet}(\Lambda(x)) = -w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ} \Phi(x))\right).$
- e) $\operatorname{dom} \gamma$ echtes reelles Intervall und $\gamma : \operatorname{dom} \gamma \to J$ bijektiv und $x_{\circ} = \gamma(t_{\circ})$ und $t_{\circ} \in \operatorname{dom} \gamma = \{t_{\circ} \tau : \tau \in \operatorname{ran} \Lambda\}$

und
$$(\lambda = +1 \Rightarrow \gamma \text{ streng wachsend und } \mathsf{dom} \, \gamma \subseteq] - \infty | t_{\circ}])$$

und $(\lambda = -1 \Rightarrow \gamma \text{ streng fallend und } \mathsf{dom} \, \gamma \subseteq [t_{\circ}| + \infty[) \text{ und}]$
 $\forall t : t \in \mathsf{dom} \, \gamma \Rightarrow \gamma(t) = \Lambda^{-1}(t_{\circ} - t) \wedge \Lambda(\gamma(t)) = t_{\circ} - t,$
 $\forall t : t \in \mathsf{dom} \, \gamma \Rightarrow \int_{\gamma(t)}^{x_{\circ}} \frac{dz}{w_{\circ} \left(\frac{1}{z} \cdot (F_{\circ} - \Phi(z))\right)} = t_{\circ} - t.$

f) γ ist 1-Kurve in \mathbb{R} und

$$\forall t : t \in \operatorname{dom} \gamma \quad \Rightarrow \quad \gamma^{\bullet}(t) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right),$$

$$= +1 \Rightarrow 0 < \gamma^{\bullet} < b \text{ auf dom } \gamma) \text{ und } (\lambda = -1 \Rightarrow -a < \gamma^{\bullet} < b \text{ auf dom } \gamma)$$

und $(\lambda=+1\Rightarrow 0\leq \gamma^{\bullet}< b \text{ auf dom }\gamma)$ und $(\lambda=-1\Rightarrow -a<\gamma^{\bullet}\leq 0 \text{ auf dom }\gamma)$ und

$$\forall t: t_{\circ} \neq t \in \operatorname{dom} \gamma \quad \Rightarrow \quad 0 \neq \gamma^{\bullet}(t).$$

- $\mathsf{g)} \ \forall t: t \in \mathsf{dom}\, \gamma \quad \Rightarrow \quad 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$
- h) γ zweimal stetig differenzierbar auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ und

$$\forall t: t_{\circ} \neq t \in \operatorname{dom} \gamma \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0,$$

und

$$\lim_{t \to t_{\circ}} T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(x_{\circ}).$$

Beweis* a), b), c) Via T konvex und \tilde{T} und $w_{\pm 1}$ evident.

Beweis* d) Stetige Differenzierbarkeit von Λ^{-1} auf $(\operatorname{ran} \Lambda) \setminus \{0\}$ und Formeln auf $(\operatorname{ran} \Lambda) \setminus \{0\}$ / auf $J \setminus \{x_o\}$ via T konvex und \tilde{T} und $w_{\pm 1}$ klar. Aus der Stetigkeit von Φ und Λ^{-1} folgt dann

$$\lim_{t\to 0} (\Lambda^{-1})^{\bullet}(t) = -w_{\lambda}\left(\frac{1}{m}\cdot (E_{\circ} - \Phi(\Lambda^{-1}(0)))\right) = -w_{\lambda}\left(\frac{1}{m}\cdot (E_{\circ} - \Phi(x_{\circ}))\right) \in \mathbb{R},$$

so dass, da Λ^{-1} stetig ist, die stetige Differenzierbarkeit von Λ^{-1} in 0 und die Gültigkeit der Formel für $(\Lambda^{-1})^{\bullet}(t)$ für alle $t \in \operatorname{ran} \Lambda$ folgt. Via $0 = \Lambda(x_{\circ})$ folgt nun die Gültigkeit der zweiten Formel für alle $x \in J$.

Beweis* e) trivial.

Beweis* f) Lediglich die letzte Aussage ist nicht trivial. Wegen $\gamma: \operatorname{dom} \gamma \to J$ bijektiv und $x_{\circ} = \gamma(t_{\circ})$ gilt für alle $t \in (\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ die Aussage $x_{\circ} \neq \gamma(t)$. Nach Voraussetzung ist x_{\circ} die einzige Stelle $\in J$, in der $E_{\circ} = \Phi(x_{\circ})$, also $0 = E_{\circ} - \Phi(x_{\circ})$ gelten könnte. In den Stellen $x_{\circ} \neq x \in J$ gilt $E_{\circ} - \Phi(x) > 0$, so dass $0 \neq w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x))\right)$. Da γ auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ Werte in J ungleich x_{\circ} annimmt, folgt dort via T konvex und \tilde{T} und $w_{\pm 1}$, $\gamma^{\bullet}(t) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \neq 0$.

Beweis* g) Via f) und T konvex und \tilde{T} und $w_{\pm 1}$ evident.

Beweis* h) Die stetige Differenzierbarkeit von Φ und γ und die via T konvex und \tilde{T} und $w_{\pm 1}$ für Argumente $\neq 0$ bestehende stetige Differenzierbarkeit von w_{λ} impliziert, da $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ ein $\operatorname{dom} \gamma$ -relativ offenes, echtes reelles Intervall ist, die stetige Differenzierbarkeit von γ^{\bullet} auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$. Es folgt, dass γ zweimal stetig differenzierbar auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ ist und für alle $t \in (\operatorname{dom} \gamma) \setminus \{t_{\circ}\}$ gilt via T konvex und \tilde{T} und w_{\pm} ,

$$T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t))$$

$$= T''(\gamma^{\bullet}(t)) \cdot w'_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \cdot \left(-\frac{1}{m} \cdot \Phi'(\gamma(t))\right) \cdot \gamma^{\bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t))\right)$$

$$= T''(\gamma^{\bullet}(t)) \cdot w'_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \cdot \left(-\frac{1}{m} \cdot \Phi'(\gamma(t))\right) \cdot w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \cdot \left(-\frac{1}{m} \cdot \Phi'(\gamma(t))\right) + \frac{1}{m} \cdot \Phi'(\gamma(t))\right)$$

$$= 1 \cdot \left(-\frac{1}{m} \cdot \Phi'(\gamma(t)) \cdot w'_{\lambda} \cdot \Phi'(\gamma(t)) = 0.$$

Wegen der Stetigkeit von Φ' und γ folgt hieraus

$$\lim_{t \to t_o} T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) = \lim_{t \to t_o} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(\gamma(t_o)) = -\frac{1}{m} \cdot \Phi(x_o).$$

3 $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+3). 0 = T''(0) und $E_{\circ} = \Phi(\eta)$ und $0 \neq \Phi'(\eta)$.

3.1 A posteriori

Satz

V1. $0 < m \in \mathbb{R}$.

V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.

V3. $0 < a \text{ und } 0 < b \text{ und } T \in \mathbb{C}^2(] - a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T'' \text{ auf }] - a|b[\setminus \{0\} \text{ und } \tilde{T}:] - a|b[\to \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) - T(v).$

V4. 0 = T''(0).

V5. γ ist 1-Kurve in \mathbb{R} und $\operatorname{ran} \gamma \subseteq O$ und $-a < \gamma^{\bullet} < b$ auf $\operatorname{dom} \gamma$.

V6. $E_{\circ} \in \mathbb{R}$.

$$\forall 7. \ \forall t: t \in \operatorname{dom} \gamma \quad \Rightarrow \quad 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$$

V8. $I \subseteq \operatorname{dom} \gamma$ und I echtes reelles Intervall und $E_{\circ} - \Phi \circ \gamma > 0$ auf I und τ Randpunkt von I und $\eta = \lim_{I \ni t \to \tau} \gamma(t) \in O$ und $E_{\circ} = \Phi(\eta)$.

 \Rightarrow

- a) γ zweimal stetig differenzierbar auf I.
- b) $\tau \notin I$.

c)
$$0 = \lim_{I \ni t \to \tau} \gamma^{\bullet}(t)$$
.

d) Falls
$$0 < \Phi'(\eta)$$
, dann $\lim_{I \ni t \to \tau} \gamma^{\bullet \bullet}(t) = -\infty$.

e) Falls
$$\Phi'(\eta) < 0$$
, dann $\lim_{I \ni t \to \tau} \gamma^{\bullet \bullet}(t) = +\infty$.

<u>Beweis</u> a) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori evident.

Beweis b) Falls $\tau \in I$, dann $(E_{\circ} - \Phi \circ \gamma)(\tau) = E_{\circ} - \Phi(\gamma(\tau)) = E_{\circ} - \Phi(\eta) = E_{\circ} - E_{\circ} = 0$. Auf I gilt $E_{\circ} - \Phi \circ \gamma > 0$.

Beweis c) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori gibt es $\lambda \in \{\pm 1\}$ mit

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet}(t) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right),$$

wobei $w_{+1} = \left(\tilde{T} \mid [0|b[\right)^{-1} \text{ und } w_{-1} = \left(\tilde{T} \mid] - a|0]\right)^{-1} \text{ via } T \text{ konvex und } \tilde{T}$ und $w_{\pm 1}$ stetige Funktionen auf $[0|\overline{\beta}[/]]$ auf $[0|\overline{\alpha}[]]$ mit $0 = w_{\lambda}(0)$ sind. Es folgt via der Stetigkeit von Φ und $\eta = \lim_{L \ni t \to \tau} \gamma(t)$,

$$\lim_{I\ni t\to \tau} \gamma^{\bullet}(t) = \lim_{I\ni t\to \tau} w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\eta)) \right) \\
= w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - E_{\circ}) \right) = w_{\lambda}(0) = 0.$$

Beweis d), e) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori gilt

$$\forall t: t \in I \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0,$$

und $0 \neq \gamma^{\bullet}$ auf I, so dass via Voraussetzung $0 < T''(\gamma^{\bullet}(t))$ auf I die Aussage

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\gamma(t)) \cdot \frac{1}{T''(\gamma^{\bullet}(t))},$$

folgt. Aus der Stetigkeit von T'', aus $0 < T'' \circ \gamma^{\bullet}$ auf I und aus c) folgt

$$\lim_{I\ni t\to \tau}\frac{1}{T''(\gamma^{\bullet}(t))}=+\infty,$$

und aus Voraussetzung V8. und der Stetigkeit von Φ folgt

$$\lim_{I \ni t \to \tau} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(\eta),$$

so dass

$$\lim_{I\ni t\to \tau} \gamma^{\bullet\bullet}(t) = \lim_{I\ni t\to \tau} -\frac{1}{m} \cdot \Phi'(\gamma(t)) \cdot \frac{1}{T''(\gamma^{\bullet}(t))} = \left\{ \begin{array}{cc} -\infty &, & 0<\Phi'(\eta) \\ +\infty &, & \Phi'(\eta)>0 \end{array} \right.$$

3.2 A priori

\mathbf{Satz}

V1. $0 < m \in \mathbb{R}$.

V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.

V3. $0 < a \text{ und } 0 < b \text{ und } T \in \mathbb{C}^2(] - a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T'' \text{ auf }] - a|b[\setminus \{0\} \text{ und } \tilde{T}:] - a|b[\to \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) - T(v).$

V4. 0 = T''(0).

V5. γ ist 2-Kurve in \mathbb{R} und $\operatorname{ran} \gamma \subseteq O$ und $-a < \gamma^{\bullet} < b$ auf $\operatorname{dom} \gamma$.

 $\forall 6. \ \forall t: t \in \operatorname{dom} \gamma \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0.$

V7. $s \in \operatorname{dom} \gamma \text{ und } E_{\circ} = m \cdot \tilde{T}(\gamma^{\bullet}(s)) + \Phi(\gamma(s)).$

V8. $I \subseteq \operatorname{dom} \gamma$ und I echtes reelles Intervall und $E_{\circ} - \Phi \circ \gamma > 0$ auf I und τ Randpunkt von I und $\eta = \lim_{I \ni t \to \tau} \gamma(t) \in O$ und $E_{\circ} = \Phi(\eta)$.

 \Rightarrow

a) $E_{\circ} \in \mathbb{R} \text{ und } \forall t : t \in \text{dom } \gamma \implies 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$

b) $\tau \notin I$.

c) $0 = \lim_{t \to \tau} \gamma^{\bullet}(t)$.

d) Falls $0 < \Phi'(\eta)$, dann $\lim_{I \ni t \to \tau} \gamma^{\bullet \bullet}(t) = -\infty$.

e) Falls $\Phi'(\eta) < 0$, dann $\lim_{I \ni t \to \tau} \gamma^{\bullet \bullet}(t) = +\infty$.

f) Falls $0 \neq \Phi'(\eta)$, dann $\tau \notin \text{dom } \gamma$.

Beweis a) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung. A posteriori und Voraussetzungen, insbesondere V7. evident.

Beweis b), c), d), e) Via a) und $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2). A posteriori. 0 = T''(0) und $E_{\circ} = \Phi(\eta)$ und $0 \neq \Phi'(\eta)$ evident.

Beweis f) Via V5. und d), e) evident.

3.3 A posteriori. Λ

Satz

V1. $0 < m \in \mathbb{R}$.

V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.

V3. $x_{\circ} \in J \subseteq O$. J echtes reelles Intervall. $J \subseteq [x_{\circ}] + \infty[$.

V4. $0 < a \text{ und } 0 < b \text{ und } T \in C^{2}(] - a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] - a|b[\setminus \{0\} \text{ und } \tilde{T}:] - a|b[\to \mathbb{R}, \, \tilde{T}(v) = v \cdot T'(v) - T(v) \text{ und } w_{+1} = (\tilde{T} \mid [0|b[)^{-1} \text{ und } w_{-1} = (\tilde{T} \mid] - a|0])^{-1}.$

V5. 0 = T''(0).

V6. $\lambda \in \{\pm 1\}$.

V7. $E_{\circ} \in \mathbb{R} \text{ und } E_{\circ} = \Phi(x_{\circ}).$

V8. $\forall x : x \in J \setminus \{x_{\circ}\} \implies E_{\circ} > \Phi(x)$ und $(\lambda = +1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\beta} \text{ auf } J, \text{ wobei } \overline{\beta} = \lim_{v \uparrow b} \tilde{T}(v))$

und $(\lambda = -1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\alpha} \text{ auf } J, \text{ wobei } \overline{\alpha} = \lim_{v \downarrow -a} \tilde{T}(v)),$

V9. $\tilde{x} \in J \setminus \{x_{\circ}\}$ und $\int_{x_{\circ}}^{\tilde{x}} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} \in \mathbb{R}$.

V10. $\Lambda = \left\{ \left(x, \int_{x_o}^x \frac{dz}{w_\lambda \left(\frac{1}{m} \cdot (E_o - \Phi(z)) \right)} \right) : x \in J \right\}.$

 $\text{V11. } t_{\circ} \in \mathbb{R} \text{ und } \gamma = \left\{ \left(t, \Lambda^{-1}(t - t_{\circ}) \right) : t - t_{\circ} \in \operatorname{ran} \Lambda \right\}.$

 \Rightarrow

a) γ ist 1-Kurve in $\mathbb R$ und $\operatorname{ran} \gamma \subseteq O$ und $-a < \gamma^{\bullet} < b$ auf $\operatorname{dom} \gamma$.

 $\text{b)} \ \forall t: t \in \operatorname{dom} \gamma \quad \Rightarrow \quad 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$

c) $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \subseteq \operatorname{dom} \gamma \text{ und } (\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \text{ echtes reelles Intervall und } E_{\circ} - \Phi \circ \gamma > 0 \text{ auf } (\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \text{ und } t_{\circ} \text{ ist Randpunkt von } (\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \text{ und } x_{\circ} = \lim_{(\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \ni t \to t_{\circ}} \gamma(t) \in O \text{ und } E_{\circ} = \Phi(x_{\circ}).$

d) γ zweimal stetig differenzierbar auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}.$

- e) $0 = \lim_{t \to t_0} \gamma^{\bullet}(t)$.
- f) Falls $0 < \Phi'(x_\circ)$, dann $\lim_{t_\circ \neq t \to t_\circ} \gamma^{\bullet \bullet}(t) = -\infty$.
- g) Falls $\Phi'(x_\circ) < 0$, dann $\lim_{t_\circ \neq t \to t_\circ} \gamma^{\bullet \bullet}(t) = +\infty$.

Beweis a) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2). A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. Λ ist γ eine 1-Kurve in $\mathbb R$ und $\gamma: \operatorname{dom} \gamma \to J$ bijektiv, so dass im Speziellen via $J \subseteq O$ die Aussage $\operatorname{ran} \gamma = J \subseteq O$ folgt. Auch gelten via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$. A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. Λ die Abschätzungen $-a < \gamma^{\bullet} < b$ auf dom γ .

Beweis b) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2). A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. A posteriori. Λ evident.

Beweis c) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2). A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. Λ gilt $(t_{\circ} \in \text{dom } \gamma \subseteq [t_{\circ}| + \infty[$ oder $t_{\circ} \in \text{dom } \gamma \subseteq] - \infty|t_{\circ}]$). Somit ist $(\text{dom } \gamma) \setminus \{t_{\circ}\}$ ein echtes reelles Intervall und t_{\circ} ist Randpunkt von $\text{dom } \gamma$, Klarer Weise gilt $(\text{dom } \gamma) \setminus \{t_{\circ}\} \subseteq \text{dom } \gamma$. Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2). A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. Λ gilt

$$\forall t: t_{\circ} \neq t \in \operatorname{dom} \gamma \quad \Rightarrow \quad 0 \neq \gamma^{\bullet}(t),$$

woraus via der Voraussetzungen, a) und b) und via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori

$$\forall t: t \in (\mathsf{dom}\,\gamma) \setminus \{t_{\circ}\} \quad \Rightarrow \quad E_{\circ} - \Phi(\gamma(t)) > 0,$$

folgt. Da $t_{\circ} \in \operatorname{\mathsf{dom}} \gamma$ und da γ stetig ist, folgt

$$\lim_{(\operatorname{dom} \gamma)\backslash\{t_{\circ}\}\ni t\to t_{\circ}}\gamma(t)=\lim_{t\to t_{\circ}}\gamma(t)=\gamma(t_{\circ})=x_{\circ},$$

aus $t_{\circ} \in \operatorname{dom} \gamma$ und $\operatorname{ran} \gamma \subseteq O$ folgt $x_{\circ} = \gamma(t_{\circ}) \in O$ und via V7. gilt $E_{\circ} = \Phi(x_{\circ})$.

Beweis d), e), f), g) Via der Voraussetzungen, via a), b), c) und insbesondere via V7., wonach $E_{\circ} = \Phi(x_{\circ})$, kommt $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+3). 0 = T''(0) und $E_{\circ} = \Phi(\eta)$ und $0 \neq \Phi'(\eta)$. A posteriori mit $I = (\text{dom } \gamma) \setminus \{t_{\circ}\}$ zur Anwendung.

*

Satz*

- $V1. \quad 0 < m \in \mathbb{R}.$
- V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.
- V3. $x_{\circ} \in J \subseteq O$. J echtes reelles Intervall. $J \subseteq]-\infty|x_{\circ}|$.
- V4. $0 < a \text{ und } 0 < b \text{ und } T \in C^2(] a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] a|b[\setminus \{0\} \text{ und } \tilde{T}:] a|b[\to \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) T(v) \text{ und } w_{+1} = \left(\tilde{T} \mid [0|b[\right)^{-1} \text{ und } w_{-1} = \left(\tilde{T} \mid] a|0]\right)^{-1}.$
- V5. 0 = T''(0).
- V6. $\lambda \in \{\pm 1\}$.
- V7. $E_{\circ} \in \mathbb{R} \text{ und } E_{\circ} = \Phi(x_{\circ}).$
- V8. $\forall x : x \in J \setminus \{x_{\circ}\} \implies E_{\circ} > \Phi(x)$ und $(\lambda = +1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\beta} \text{ auf } J, \text{ wobei } \overline{\beta} = \lim_{v \uparrow b} \tilde{T}(v))$

und
$$(\lambda = -1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\alpha} \text{ auf } J, \text{ wobei } \overline{\alpha} = \lim_{v \downarrow -a} \tilde{T}(v)),$$

V9.
$$\tilde{x} \in J \setminus \{x_{\circ}\}$$
 und $\int_{\tilde{x}}^{x_{\circ}} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} \in \mathbb{R}$.

$$\text{V10. } \Lambda = \left\{ \left(x, \int_x^{x_\circ} \frac{dz}{w_\lambda \left(\frac{1}{m} \cdot (E_\circ - \Phi(z)) \right)} \right) : x \in J \right\}.$$

$$\text{V11. } t_{\circ} \in \mathbb{R} \text{ und } \gamma = \left\{ \left(t, \Lambda^{-1}(t_{\circ} - t) \right) : t_{\circ} - t \in \operatorname{ran} \Lambda \right\}.$$

 \Rightarrow

- a) γ ist 1-Kurve in \mathbb{R} und $\operatorname{ran} \gamma \subseteq O$ und $-a < \gamma^{\bullet} < b$ auf $\operatorname{dom} \gamma$.
- $\text{b)} \ \forall t: t \in \operatorname{dom} \gamma \quad \Rightarrow \quad 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$
- c) $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \subseteq \operatorname{dom} \gamma \text{ und } (\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \text{ echtes reelles Intervall und } E_{\circ} \Phi \circ \gamma > 0 \text{ auf } (\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \text{ und } t_{\circ} \text{ ist Häufungspunkt von } (\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \text{ und } x_{\circ} = \lim_{(\operatorname{dom} \gamma) \setminus \{t_{\circ}\} \ni t \to t_{\circ}} \gamma(t) \in O \text{ und } E_{\circ} = \Phi(x_{\circ}).$
- d) γ zweimal stetig differenzierbar auf $(\operatorname{dom} \gamma) \setminus \{t_{\circ}\}.$
- e) $0 = \lim_{t \to t_0} \gamma^{\bullet}(t)$.

- f) Falls $0 < \Phi'(x_\circ)$, dann $\lim_{t_\circ \neq t \to t_\circ} \gamma^{\bullet \bullet}(t) = -\infty$.
- g) Falls $\Phi'(x_\circ) < 0$, dann $\lim_{t_\circ \neq t \to t_\circ} \gamma^{\bullet \bullet}(t) = +\infty$.

Beweis* a) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2). A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. Λ ist γ eine 1-Kurve in \mathbb{R} und γ : dom $\gamma \to J$ bijektiv, so dass im Speziellen via $J \subseteq O$ die Aussage ran $\gamma = J \subseteq O$ folgt. Auch gelten via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$. A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. Λ die Abschätzungen $-a < \gamma^{\bullet} < b$ auf dom γ .

Beweis* b) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2). A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. A posteriori. Λ evident.

Beweis* c) Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2). A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. Λ gilt $(t_{\circ} \in \text{dom } \gamma \subseteq [t_{\circ}] + \infty[$ oder $t_{\circ} \in \text{dom } \gamma \subseteq] - \infty[t_{\circ}]$). Somit ist $(\text{dom } \gamma) \setminus \{t_{\circ}\}$ ein echtes reelles Intervall und t_{\circ} ist Randpunkt von $\text{dom } \gamma$, Klarer Weise gilt $(\text{dom } \gamma) \setminus \{t_{\circ}\} \subseteq \text{dom } \gamma$. Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+2). A posteriori. $E_{\circ} - \Phi(\gamma) \geq 0$ am Rand von I. Λ gilt

$$\forall t: t_{\circ} \neq t \in \operatorname{dom} \gamma \quad \Rightarrow \quad 0 \neq \gamma^{\bullet}(t),$$

woraus via der Voraussetzungen, a) und b) und via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori

$$\forall t: t \in (\mathsf{dom}\,\gamma) \setminus \{t_{\circ}\} \quad \Rightarrow \quad E_{\circ} - \Phi(\gamma(t)) > 0,$$

folgt. Da $t_{\circ} \in \mathsf{dom}\,\gamma$ und da γ stetig ist, folgt

$$\lim_{(\operatorname{dom} \gamma)\backslash\{t_{\circ}\}\ni t\to t_{\circ}}\gamma(t)=\lim_{t\to t_{\circ}}\gamma(t)=\gamma(t_{\circ})=x_{\circ},$$

aus $t_{\circ} \in \operatorname{dom} \gamma$ und $\operatorname{ran} \gamma \subseteq O$ folgt $x_{\circ} = \gamma(t_{\circ}) \in O$ und via V7. gilt $E_{\circ} = \Phi(x_{\circ})$.

Beweis* d), e), f), g) Via der Voraussetzungen, via a), b), c) und insbesondere via V7., wonach $E_{\circ} = \Phi(x_{\circ})$, kommt $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+3). 0 = T''(0) und $E_{\circ} = \Phi(\eta)$ und $0 \neq \Phi'(\eta)$. A posteriori mit $I = (\text{dom } \gamma) \setminus \{t_{\circ}\}$ zur Anwendung.

4 $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+4)

4.1 A posteriori. γ bei $\pm \infty$ reell

Satz

- V1. $0 < m \in \mathbb{R}$.
- V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.
- V3. $0 < a \text{ und } 0 < b \text{ und } T \in C^2(] a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] a|b[\setminus \{0\} \text{ und } \tilde{T}:] a|b[\to \mathbb{R}, \, \tilde{T}(v) = v \cdot T'(v) T(v) \text{ und } w_{+1} = \left(\tilde{T} \mid [0|b[\right)^{-1} \text{ und } w_{-1} = \left(\tilde{T} \mid] a|0]\right)^{-1}.$
- V4. γ ist 1-Kurve in \mathbb{R} und $\operatorname{ran} \gamma \subseteq O$ und $-a < \gamma^{\bullet} < b$ auf $\operatorname{dom} \gamma$.
- $\text{V5. } E_{\circ} \in \mathbb{R} \text{ und } \forall t: t \in \operatorname{dom} \gamma \quad \Rightarrow \quad 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$
- V6. $s \in I \subseteq \operatorname{dom} \gamma$ und I unbeschränktes reelles Intervall und $E_{\circ} \Phi \circ \gamma > 0$ auf I.

 \Rightarrow

a) Falls $+\infty = \sup I$ und $\eta = \lim_{t\uparrow +\infty} \gamma(t) \in \mathbb{R}$ und $J = \gamma[I]$ und $\lambda = \operatorname{sgn}(\gamma^{\bullet})$ auf I mit $\lambda \in \{\pm 1\}$, dann ist η Randpunkt von J und Häufungspunkt von O und

$$E_{\circ} = \limsup_{J \ni x \to \eta} \Phi(x),$$

und

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)) \right)} = +\infty,$$

und

$$0 = \liminf_{t \uparrow + \infty} |\gamma^{\bullet}(t)|.$$

b) Falls $+\infty=\sup I$ und $\eta=\lim_{t\uparrow+\infty}\gamma(t)\in O$ und $\lambda=\operatorname{sgn}(\gamma^{\bullet})$ auf I mit $\lambda\in\{\pm 1\},$ dann

$$E_{\circ} = \Phi(\eta)$$
 und $0 = \Phi'(\eta)$,

und

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)) \right)} = +\infty,$$

und

$$0 = \lim_{t \uparrow + \infty} \gamma^{\bullet}(t).$$

c) Falls $-\infty = \inf I$ und $\eta = \lim_{t \downarrow -\infty} \gamma(t) \in \mathbb{R}$ und $J = \gamma[I]$ und $\lambda = \operatorname{sgn}(\gamma^{\bullet})$ auf I mit $\lambda \in \{\pm 1\}$, dann ist η Randpunkt von J und Häufungspunkt von O und

$$E_{\circ} = \limsup_{J \ni x \to \eta} \Phi(x),$$

und

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = -\infty,$$

und

$$0 = \liminf_{t \to -\infty} |\gamma^{\bullet}(t)|.$$

d) Falls $-\infty = \inf I$ und $\eta = \lim_{t \downarrow -\infty} \gamma(t) \in O$ und $\lambda = \operatorname{sgn}(\gamma^{\bullet})$ auf I mit $\lambda \in \{\pm 1\}$, dann

$$E_{\circ} = \Phi(\eta)$$
 und $0 = \Phi'(\eta)$,

und

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)) \right)} = -\infty,$$

und

$$0 = \lim_{t \uparrow +\infty} \gamma^{\bullet}(t).$$

Beweis a) I ist ein echtes reelles Intervall $\subseteq \text{dom } \gamma$ und es gilt $E_{\circ} - \Phi \circ \gamma > 0$ auf I. Somit gilt via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ (+1) A posteriori

$$\forall t : t \in I \quad \Rightarrow \quad \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = t - s,$$

wobei $w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig und $\neq 0$ auf $\gamma[I]$ ist, so dass via $\eta=\lim_{t\uparrow+\infty}\gamma(t)$ die Gleichung

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = \lim_{t \uparrow + \infty} \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = \lim_{t \uparrow + \infty} (t - s) = +\infty,$$

folgt. Wegen $J = \gamma[I]$ und $\eta = \lim_{t\uparrow + \infty} \gamma(t) \in \mathbb{R}$ und der via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori bestehenden strengen Monotonie von γ auf I, ist η Randpunkt von J. Wegen $J = \gamma[I] \subseteq \operatorname{ran} \gamma \subseteq O$ ist η Häufungspunkt von O. Gemäß T konvex und \tilde{T} und $w_{\pm 1}$ ist w_{λ} streng monoton und nimmt nur an der Stelle 0 den Wert 0 an. Deswegen muss es via

 $\gamma(s), \eta \in \mathbb{R}$ und der Unendlichkeit des Integrals eine Folge $\xi : \mathbb{N} \to J = \gamma[I]$ geben, so dass

$$\eta = \lim_{n \uparrow + \infty} \xi_n \quad \text{und} \quad 0 = \lim_{n \uparrow + \infty} \frac{1}{m} \cdot (E_{\circ} - \Phi(\xi_n)),$$

woraus, da $E_{\circ} - \Phi \circ \gamma > 0$ auf I, also auch $E_{\circ} - \Phi > 0$ auf $J = \gamma[I]$,

$$E_{\circ} = \limsup_{J \ni x \to \eta} \Phi(x),$$

gelten muss. Aus $\lim_{t\uparrow+\infty}\gamma(t)\in\mathbb{R}$ und der Differenzierbarkeit von γ folgt $0=\liminf_{t\uparrow+\infty}|\gamma^{\bullet}(t)|$.

Beweis b) Via a) gilt

$$E_{\circ} = \limsup_{J \in x \to \eta} \Phi(x),$$

woraus via der Stetigkeit von Φ und $\eta \in O = \text{dom } \Phi$ die Aussage

$$\Phi(\eta) = \lim_{x \to \eta} \Phi(x) = \limsup_{J \in x \to \eta} \Phi(x) = E_{\circ},$$

folgt. Via a) gilt die Unendlichkeit des angegebenen Integrals. Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori gilt

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet}(t) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) \neq 0,$$

wobei $w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig auf $\gamma[I]$, woraus via der Stetigkeit von w_{λ} und Φ und wegen $\eta=\lim_{t\uparrow+\infty}\gamma(t)$ und $E_{\circ}=\Phi(\eta)$ die Aussage

$$\lim_{t\uparrow+\infty} \gamma^{\bullet}(t) = \lim_{t\uparrow+\infty} w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\eta)) \right)$$
$$= w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - E_{\circ}) \right) = w_{\lambda}(0),$$

folgt. Gemäss T konvex und \tilde{T} und $w_{\pm 1}$ gilt $0 = w_{\lambda}(0)$. Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori ist γ zweimal stetig differenzierbar auf I und es gilt

$$\forall t: t \in I \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0,$$

so dass sich via der Positivität von T'' auf] $-a|b[\setminus \{0\}]$ die Aussage

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\gamma(t)) \cdot \frac{1}{T''(\gamma^{\bullet}(t))},$$

ergibt. Wegen der Stetigkeit von Φ' gilt $\lim_{t\uparrow+\infty} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(\eta)$ und falls $0 \neq \Phi'(\eta)$ gilt, folgt aus der Stetigkeit und Nicht-Negativität von T'',

$$\lim_{t\uparrow +\infty} \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\eta) \cdot \lim_{v \to 0} \frac{1}{T''(v)} \in [-\infty] \setminus \{0\},$$

was $0 = \lim_{t \uparrow +\infty} \gamma^{\bullet}(t)$ widerspricht. Konsequenter Weise muss $0 = \Phi'(\eta)$ gelten.

Beweis c*) I ist ein echtes reelles Intervall $\subseteq \text{dom } \gamma \text{ und es gilt } E_{\circ} - \Phi \circ \gamma > 0$ auf I. Somit gilt via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ (+1) A posteriori

$$\forall t : t \in I \quad \Rightarrow \quad \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = t - s,$$

wobei $w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig und $\neq 0$ auf $\gamma[I]$ ist, so dass via $\eta=\lim_{t\downarrow-\infty}\gamma(t)$ die Gleichung

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = \lim_{t \downarrow -\infty} \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = \lim_{t \downarrow -\infty} (t - s) = -\infty,$$

folgt. Wegen $J = \gamma[I]$ und $\eta = \lim_{t \downarrow -\infty} \gamma(t) \in \mathbb{R}$ und der via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori bestehenden strengen Monotonie von γ auf I, ist η Randpunkt von J. Wegen $J = \gamma[I] \subseteq \operatorname{ran} \gamma \subseteq O$ ist η Häufungspunkt von O. Gemäß T konvex und \tilde{T} und $w_{\pm 1}$ ist w_{λ} streng monoton und nimmt nur an der Stelle 0 den Wert 0 an. Deswegen muss es via $\gamma(s), \eta \in \mathbb{R}$ und der Unendlichkeit des Integrals eine Folge $\xi : \mathbb{N} \to J = \gamma[I]$ geben, so dass

$$\eta = \lim_{n \uparrow + \infty} \xi_n \quad \text{und} \quad 0 = \lim_{n \uparrow + \infty} \frac{1}{m} \cdot (E_{\circ} - \Phi(\xi_n)),$$

woraus, da $E_{\circ} - \Phi \circ \gamma > 0$ auf I, also auch $E_{\circ} - \Phi > 0$ auf $J = \gamma[I]$,

$$E_{\circ} = \limsup_{J \ni x \to n} \Phi(x),$$

gelten muss. Aus $\lim_{t\uparrow+\infty}\gamma(t)\in\mathbb{R}$ und der Differenzierbarkeit von γ folgt $0=\liminf_{t\uparrow+\infty}|\gamma^{\bullet}(t)|$.

Beweis d*) Via c) gilt

$$E_{\circ} = \limsup_{J \in x \to \eta} \Phi(x),$$

woraus via der Stetigkeit von Φ und $\eta \in O = \operatorname{\mathsf{dom}} \Phi$ die Aussage

$$\Phi(\eta) = \lim_{x \to \eta} \Phi(x) = \limsup_{J \in x \to \eta} \Phi(x) = E_{\circ},$$

folgt. Via a) gilt die Unendlichkeit des angegebenen Integrals. Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori gilt

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet}(t) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) \neq 0,$$

wobei $w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig auf $\gamma[I]$, woraus via der Stetigkeit von w_{λ} und Φ und wegen $\eta=\lim_{t\downarrow-\infty}\gamma(t)$ und $E_{\circ}=\Phi(\eta)$ die Aussage

$$\lim_{t\uparrow +\infty} \gamma^{\bullet}(t) = \lim_{t\uparrow +\infty} w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) = w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\eta)) \right)$$
$$= w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - E_{\circ}) \right) = w_{\lambda}(0),$$

folgt. Gemäss T konvex und \tilde{T} und $w_{\pm 1}$ gilt $0 = w_{\lambda}(0)$. Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori ist γ zweimal stetig differenzierbar auf I und es gilt

$$\forall t: t \in I \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0,$$

so dass sich via der Positivität von T''auf] $-a|b\big[\setminus\{0\}$ die Aussage

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\gamma(t)) \cdot \frac{1}{T''(\gamma^{\bullet}(t))},$$

ergibt. Wegen der Stetigkeit von Φ' gilt $\lim_{t\downarrow -\infty} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(\eta)$ und falls $0 \neq \Phi'(\eta)$ gilt, folgt aus der Stetigkeit und Nicht-Negativität von T'',

$$\lim_{t\downarrow -\infty} \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\eta) \cdot \lim_{v\to 0} \frac{1}{T''(v)} \in [-\infty] \setminus \{0\},$$

was $0 = \lim_{t \downarrow -\infty} \gamma^{\bullet}(t)$ widerspricht. Konsequenter Weise muss $0 = \Phi'(\eta)$ gelten. \square

4.2 A posteriori. γ bei $\pm \infty$ reell. Λ

Satz

- V1. $0 < m \in \mathbb{R}$.
- V2. $0 \neq O \subseteq \mathbb{R}$ offen und $\Phi \in C^1(O : \mathbb{R})$.
- V3. $J \subseteq O$ und J echtes reelles Intervall und $x_o \in \mathbb{R} \setminus J$ und $(x_o = \sup J \text{ oder } x_o = \inf J)$.
- V4. $0 < a \text{ und } 0 < b \text{ und } T \in C^2(] a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T'' \text{ auf }] a|b[\setminus \{0\} \text{ und } \tilde{T}:] a|b[\to \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) T(v).$
- V5. $E_{\circ} \in \mathbb{R}$.

$$\text{V6. } \forall x: x \in J \quad \Rightarrow \quad E_{\circ} > \Phi(x) > E_{\circ} - m \cdot \overline{\beta}, \qquad \text{wobei } \overline{\beta} = \lim_{v \uparrow b} \tilde{T}.$$

- V7. A Stammfunktion von $\frac{1}{w_{+1}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)}$ auf J, wobei $w_{+1}=\left(\tilde{T}\mid \left[0|b\right]\right)^{-1}$.
- $\text{V8.} \quad \lim_{x \to x_0} \Lambda(x) \in \{\pm \infty\}.$
- V9. $\gamma = \Lambda^{-1}$.

 \Rightarrow

a) Falls $x_{\circ} = \sup J$, dann

$$+\infty = \sup(\operatorname{\mathsf{dom}} \gamma) \quad \text{und} \quad x_{\circ} = \lim_{t \uparrow + \infty} \gamma(t) \quad \text{und} \quad 0 = \liminf_{t \uparrow + \infty} |\gamma^{\bullet}(t)|.$$

b) Falls $x_{\circ} = \inf J$, dann

$$-\infty = \inf(\operatorname{\mathsf{dom}} \gamma) \quad \text{und} \quad x_\circ = \lim_{t \downarrow +\infty} \gamma(t) \quad \text{und} \quad 0 = \liminf_{t \downarrow -\infty} |\gamma^\bullet(t)|.$$

- c) x_{\circ} Häufungspunkt von O und $E_{\circ} = \limsup_{I \in r \to x_{\circ}} \Phi(x)$.
- i) Falls $x_{\circ} \in O$, dann

$$E_{\circ} = \Phi(x_{\circ}) \quad \text{und} \quad 0 = \Phi'(x_{\circ}),$$

$$\text{und } x_{\circ} = \sup J \quad \Rightarrow \quad 0 = \lim_{t \uparrow + \infty} \gamma^{\bullet}(t)$$

$$\text{und } x_{\circ} = \inf J \quad \Rightarrow \quad 0 = \lim_{t \downarrow - \infty} \gamma^{\bullet}(t).$$

Beweis a), b) Via $\gamma = \Lambda^{-1}$ und $x_{\circ} \in \mathbb{R}$ evident.

Beweis c) Nach Voraussetzung und via T konvex und \tilde{T} und $w_{\pm 1}$ ist die Funktion $w_{\pm 1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(.)) \right)$ stetig und $\neq 0$ auf J.

<u>1.Fall</u> $x_{\circ} = \sup J$. Sei $s \in \operatorname{dom} \gamma$. Dann via a) und via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma^{\bullet}) = 0$ und Energiegleichung (+1). A posteriori gilt

$$\int_{\gamma(s)}^{x_{\circ}} \frac{dz}{w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)\right)} = \lim_{t \uparrow + \infty} \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)\right)} = +\infty.$$

Wegen $J \subseteq O$ und $x_{\circ} = \sup J$ ist x_{\circ} Häufungspunkt von O. Gemäß T konvex und \tilde{T} und $w_{\pm 1}$ ist w_{+1} streng wachsend und nimmt nur an der Stelle 0 den Wert 0 an. Deswegen muss es via $\gamma(s), x_{\circ} \in \mathbb{R}$ und der Unendlichkeit des Integrals eine Folge $\xi : \mathbb{N} \to [\gamma(s)|x_{\circ}[$ geben, so dass

$$x_{\circ} = \lim_{n \uparrow + \infty} \xi_n \quad \text{und} \quad 0 = \lim_{n \uparrow + \infty} \frac{1}{m} \cdot (E_{\circ} - \Phi(\xi_n)),$$

woraus, da $E_{\circ} - \Phi > 0$ auf J und $[\gamma(s)|x_{\circ}] \subseteq J$,

$$E_{\circ} = \lim \sup_{J \ni x \to x_{\circ}} \Phi(x),$$

folgt.

<u>2.Fall</u> $x_{\circ} = \inf J$. Sei $s \in \text{dom } \gamma$. Dann via b) und $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma^{\bullet}) = 0$ und Energiegleichung (+1). A posteriori

$$\int_{\gamma(s)}^{x_{\circ}} \frac{dz}{w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)\right)} = \lim_{t \downarrow -\infty} \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)\right)} = -\infty.$$

Wegen $J \subseteq O$ und $x_{\circ} = \inf J$ ist x_{\circ} Häufungspunkt von O. Gemäß T konvex und \tilde{T} und $w_{\pm 1}$ ist w_{λ} streng monoton und nimmt nur an der Stelle 0 den Wert 0 an. Deswegen muss es via $\gamma(s), x_{\circ} \in \mathbb{R}$ und der Unendlichkeit des Integrals eine Folge $\xi : \mathbb{N} \to \mathbb{T}_{x_{\circ}}[\gamma(s)]$ geben, so dass

$$x_{\circ} = \lim_{n \uparrow + \infty} \xi_n \quad \text{und} \quad 0 = \lim_{n \uparrow + \infty} \frac{1}{m} \cdot (E_{\circ} - \Phi(\xi_n)),$$

woraus, da $E_{\circ} - \Phi > 0$ auf J und $]x_{\circ}|\gamma(s)] \subseteq J$,

$$E_{\circ} = \lim \sup_{J \ni x \to x_{\circ}} \Phi(x),$$

folgt.

Beweis d) Via c) gilt

$$E_{\circ} = \lim \sup_{J \in x \to x_{\circ}} \Phi(x),$$

woraus via der Stetigkeit von Φ und $x_{\circ} \in O = \operatorname{dom} \Phi$ die Aussage

$$\Phi(x_{\circ}) = \lim_{x \to x_{\circ}} \Phi(x) = \lim_{x \to x_{\circ}} \Phi(x) = E_{\circ},$$

folgt. Via $T''(\gamma^{\bullet})\cdot \gamma^{\bullet \bullet} + \frac{1}{m}\cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori gilt

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet}(t) = w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) \neq 0,$$

wobei $w_{+1}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig auf $\gamma[I]$, woraus im Fall $x_{\circ}=\sup J$ via der Stetigkeit von w_{+1} und Φ und wegen $x_{\circ}=\lim_{t\uparrow+\infty}\gamma(t)$ und $E_{\circ}=\Phi(x_{\circ})$ die Aussage

$$\lim_{t\uparrow+\infty} \gamma^{\bullet}(t) = \lim_{t\uparrow+\infty} w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) = w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x_{\circ})) \right)$$
$$= w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - E_{\circ}) \right) = w_{+1}(0),$$

und im Fall $x_{\circ} = \inf J$ via der Stetigkeit von w_{+1} und Φ und wegen $x_{\circ} = \lim_{t \downarrow -\infty} \gamma(t)$ und $E_{\circ} = \Phi(x_{\circ})$ die Aussage

$$\lim_{t\downarrow -\infty} \gamma^{\bullet}(t) = \lim_{t\downarrow -\infty} w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) = w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x_{\circ})) \right)$$
$$= w_{+1} \left(\frac{1}{m} \cdot (E_{\circ} - E_{\circ}) \right) = w_{+1}(0),$$

folgt. Gemäss T konvex und \tilde{T} und $w_{\pm 1}$ gilt $0 = w_{+1}(0)$. Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori ist γ zweimal stetig differenzierbar auf I und es gilt

$$\forall t: t \in I \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0,$$

so dass sich via der Positivität von T'' auf] $-a|b[\setminus \{0\}]$ die Aussage

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\gamma(t)) \cdot \frac{1}{T''(\gamma^{\bullet}(t))},$$

ergibt. Wegen der Stetigkeit von Φ' gilt im Fall $x_{\circ} = \sup J$ die Aussage $\lim_{t\uparrow+\infty} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(x_{\circ})$ und falls $0 \neq \Phi'(x_{\circ})$ gilt, folgt aus der Stetigkeit und Nicht-Negativität von T'',

$$\lim_{t\uparrow+\infty} \gamma^{\bullet\bullet}(t) = -\frac{1}{m} \cdot \Phi'(\eta) \cdot \lim_{v\to 0} \frac{1}{T''(v)} \in [-\infty|+\infty] \setminus \{0\},$$

was $0 = \lim_{t\uparrow +\infty} \gamma^{\bullet}(t)$ widerspricht. Konsequenter Weise muss $0 = \Phi'(x_{\circ})$ gelten. Wegen der Stetigkeit von Φ' gilt im Fall $x_{\circ} = \inf J$ die Aussage $\lim_{t\downarrow -\infty} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(x_{\circ})$ und falls $0 \neq \Phi'(x_{\circ})$ gilt, folgt aus der Stetigkeit und Nicht-Negativität von T'',

$$\lim_{t\downarrow -\infty} \gamma^{\bullet\bullet}(t) = -\frac{1}{m} \cdot \Phi'(\eta) \cdot \lim_{v\to 0} \frac{1}{T''(v)} \in [-\infty|+\infty] \setminus \{0\},$$

was $0 = \lim_{t \downarrow -\infty} \gamma^{\bullet}(t)$ widerspricht. Konsequenter Weise muss $0 = \Phi'(x_{\circ})$ gelten. \square

*

Satz*

V1. $0 < m \in \mathbb{R}$.

V2. $0 \neq O \subseteq \mathbb{R}$ offen und $\Phi \in C^1(O : \mathbb{R})$.

V3. $J \subseteq O$ und J echtes reelles Intervall und $x_o \in \mathbb{R} \setminus J$ und $(x_o = \sup J \text{ oder } x_o = \inf J)$.

 $\begin{array}{ll} {\tt V4.} & 0 < a \text{ und } 0 < b \text{ und } T \in {\tt C}^2(\clim{1}{c} - a|b\clim{1}{c} : \clim{1}{c}) \text{ und } 0 = T(0) \text{ und } 0 < T'' \text{ auf } 1 - a|b\clim{1}{c} \setminus \{0\} \text{ und } \tilde{T} : \clim{1}{c} - a|b\clim{1}{c} \to \clim{1}{c}, \clim{1}{c} \tilde{T}(v) = v \cdot T'(v) - T(v). \end{array}$

V5. $E_{\circ} \in \mathbb{R}$.

V6. $\forall x : x \in J \implies E_{\circ} > \Phi(x) > E_{\circ} - m \cdot \overline{\alpha},$ wobei $\overline{\alpha} = \lim_{v \downarrow -a} \tilde{T}.$

V7. A Stammfunktion von $\frac{1}{w_{-1}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)}$ auf J, wobei $w_{-1}=\left(\tilde{T}\mid J-a|0J\right)^{-1}$.

 $\text{V8.} \ \lim_{x\to x_{\circ}}\Lambda(x)\in\{\pm\infty\}.$

 ${\rm V9.} \ \ \gamma = \Lambda^{-1}.$

 \Rightarrow

a) Falls $x_{\circ} = \sup J$, dann $-\infty = \inf(\operatorname{dom} \gamma) \quad \text{und} \quad x_{\circ} = \lim_{t \downarrow -\infty} \gamma(t) \quad \text{und} \quad 0 = \liminf_{t \downarrow -\infty} |\gamma^{\bullet}(t)|.$

b) Falls $x_{\circ} = \inf J$, dann $+\infty = \sup(\operatorname{dom} \gamma) \quad \text{und} \quad x_{\circ} = \lim_{t \uparrow + \infty} \gamma(t) \quad \text{und} \quad 0 = \liminf_{t \uparrow + \infty} |\gamma^{\bullet}(t)|.$

- c) x_{\circ} Häufungspunkt von O und $E_{\circ} = \limsup_{J \in x \to x_{\circ}} \Phi(x)$.
- i) Falls $x_{\circ} \in O$, dann

$$E_{\circ} = \Phi(x_{\circ}) \quad \text{und} \quad 0 = \Phi'(x_{\circ}),$$

$$\text{und } x_{\circ} = \sup J \quad \Rightarrow \quad 0 = \lim_{t \downarrow -\infty} \gamma^{\bullet}(t)$$

$$\text{und } x_{\circ} = \inf J \quad \Rightarrow \quad 0 = \lim_{t \uparrow +\infty} \gamma^{\bullet}(t).$$

Beweis* a), b) Via $\gamma = \Lambda^{-1}$ und $x_{\circ} \in \mathbb{R}$ evident.

<u>Beweis*</u> c) Nach Voraussetzung und via T konvex und \tilde{T} und $w_{\pm 1}$ ist die Funktion $w_{-1}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig und $\neq 0$ auf J.

<u>1.Fall</u> $x_{\circ} = \sup J$. Sei $s \in \operatorname{dom} \gamma$. Dann via a) und via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma^{\bullet}) = 0$ und Energiegleichung (+1). A posteriori gilt

$$\int_{\gamma(s)}^{x_{\circ}} \frac{dz}{w_{-1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)\right)} = \lim_{t \downarrow -\infty} \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{-1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)\right)} = -\infty.$$

Wegen $J \subseteq O$ und $x_{\circ} = \sup J$ ist x_{\circ} Häufungspunkt von O. Gemäß T konvex und \tilde{T} und $w_{\pm 1}$ ist w_{-1} streng fallend und nimmt nur an der Stelle 0 den Wert 0 an. Deswegen muss es via $\gamma(s), x_{\circ} \in \mathbb{R}$ und der Unendlichkeit des Integrals eine Folge $\xi : \mathbb{N} \to [\gamma(s)|x_{\circ}[$ geben, so dass

$$x_{\circ} = \lim_{n \uparrow + \infty} \xi_n \quad \text{und} \quad 0 = \lim_{n \uparrow + \infty} \frac{1}{m} \cdot (E_{\circ} - \Phi(\xi_n)),$$

woraus, da $E_{\circ} - \Phi > 0$ auf J und $\lceil \gamma(s) | x_{\circ} \rceil \subseteq J$,

$$E_{\circ} = \limsup_{I \ni x \to x_{\circ}} \Phi(x),$$

folgt.

<u>2.Fall</u> $x_{\circ} = \inf J$. Sei $s \in \text{dom } \gamma$. Dann via b) und $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma^{\bullet}) = 0$ und Energiegleichung (+1). A posteriori

$$\int_{\gamma(s)}^{x_\circ} \frac{dz}{w_{-1}\left(\frac{1}{m}\cdot(E_\circ - \Phi(z)\right)} = \lim_{t\uparrow + \infty} \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{+1}\left(\frac{1}{m}\cdot(E_\circ - \Phi(z)\right)} = +\infty.$$

Wegen $J \subseteq O$ und $x_{\circ} = \inf J$ ist x_{\circ} Häufungspunkt von O. Gemäß T konvex und \tilde{T} und $w_{\pm 1}$ ist w_{λ} streng monoton und nimmt nur an der Stelle 0 den Wert 0 an. Deswegen muss es via $\gamma(s), x_{\circ} \in \mathbb{R}$ und der Unendlichkeit des Integrals eine Folge $\xi : \mathbb{N} \to]x_{\circ}|\gamma(s)]$ geben, so dass

$$x_{\circ} = \lim_{n \uparrow + \infty} \xi_n \quad \text{und} \quad 0 = \lim_{n \uparrow + \infty} \frac{1}{m} \cdot (E_{\circ} - \Phi(\xi_n)),$$

woraus, da $E_{\circ} - \Phi > 0$ auf J und $]x_{\circ}|\gamma(s)] \subseteq J$,

$$E_{\circ} = \lim \sup_{J \ni x \to x_{\circ}} \Phi(x),$$

folgt.

Beweis* d) Via c) gilt

$$E_{\circ} = \lim \sup_{J \in x \to x_{\circ}} \Phi(x),$$

woraus via der Stetigkeit von Φ und $x_{\circ} \in O = \text{dom } \Phi$ die Aussage

$$\Phi(x_{\circ}) = \lim_{x \to x_{\circ}} \Phi(x) = \lim_{x \to x_{\circ}} \Phi(x) = E_{\circ},$$

folgt. Via $T''(\gamma^{\bullet})\cdot \gamma^{\bullet \bullet} + \frac{1}{m}\cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori gilt

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet}(t) = w_{-1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) \neq 0,$$

wobei $w_{-1}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig auf $\gamma[I]$, woraus im Fall $x_{\circ}=\sup J$ via der Stetigkeit von w_{-1} und Φ und wegen $x_{\circ}=\lim_{t\downarrow-\infty}\gamma(t)$ und $E_{\circ}=\Phi(x_{\circ})$ die Aussage

$$\lim_{t \downarrow -\infty} \gamma^{\bullet}(t) = \lim_{t \downarrow -\infty} w_{-1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) = w_{-1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x_{\circ})) \right)$$
$$= w_{-1} \left(\frac{1}{m} \cdot (E_{\circ} - E_{\circ}) \right) = w_{-1}(0),$$

und im Fall $x_\circ = \inf J$ via der Stetigkeit von w_{+1} und Φ und wegen $x_\circ = \lim_{t\uparrow +\infty} \gamma(t)$ und $E_\circ = \Phi(x_\circ)$ die Aussage

$$\lim_{t\uparrow+\infty} \gamma^{\bullet}(t) = \lim_{t\uparrow+\infty} w_{-1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(\gamma(t))) \right) = w_{-1} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(x_{\circ})) \right)$$
$$= w_{-1} \left(\frac{1}{m} \cdot (E_{\circ} - E_{\circ}) \right) = w_{-1}(0),$$

folgt. Gemäss T konvex und \tilde{T} und $w_{\pm 1}$ gilt $0 = w_{-1}(0)$. Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori ist γ zweimal stetig differenzierbar auf I und es gilt

$$\forall t: t \in I \quad \Rightarrow \quad T''(\gamma^{\bullet}(t)) \cdot \gamma^{\bullet \bullet}(t) + \frac{1}{m} \cdot \Phi'(\gamma(t)) = 0,$$

so dass sich via der Positivität von T'' auf] $-a|b[\setminus \{0\}]$ die Aussage

$$\forall t: t \in I \quad \Rightarrow \quad \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\gamma(t)) \cdot \frac{1}{T''(\gamma^{\bullet}(t))},$$

ergibt. Wegen der Stetigkeit von Φ' gilt im Fall $x_{\circ} = \sup J$ die Aussage $\lim_{t \downarrow -\infty} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(x_{\circ})$ und falls $0 \neq \Phi'(x_{\circ})$ gilt, folgt aus der Stetigkeit und Nicht-Negativität von T'',

$$\lim_{t \downarrow -\infty} \gamma^{\bullet \bullet}(t) = -\frac{1}{m} \cdot \Phi'(\eta) \cdot \lim_{v \to 0} \frac{1}{T''(v)} \in [-\infty] \setminus \{0\},$$

was $0 = \lim_{t \downarrow \infty} \gamma^{\bullet}(t)$ widerspricht. Konsequenter Weise muss $0 = \Phi'(x_{\circ})$ gelten. Wegen der Stetigkeit von Φ' gilt im Fall $x_{\circ} = \inf J$ die Aussage $\lim_{t \uparrow + \infty} -\frac{1}{m} \cdot \Phi'(\gamma(t)) = -\frac{1}{m} \cdot \Phi'(x_{\circ})$ und falls $0 \neq \Phi'(x_{\circ})$ gilt, folgt aus der Stetigkeit und Nicht-Negativität von T'',

$$\lim_{t\uparrow+\infty}\gamma^{\bullet\bullet}(t)=-\frac{1}{m}\cdot\Phi'(\eta)\cdot\lim_{v\to0}\frac{1}{T''(v)}\in\big[-\infty|+\infty\big]\setminus\{0\},$$

was $0 = \lim_{t \uparrow +\infty} \gamma^{\bullet}(t)$ widerspricht. Konsequenter Weise muss $0 = \Phi'(x_{\circ})$ gelten. \square

4.3 A posteriori. γ bei $\pm \infty$ gleich $\pm \infty$

Satz

V1. $0 < m \in \mathbb{R}$.

V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.

- V3. $0 < a \text{ und } 0 < b \text{ und } T \in C^2(] a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] a|b[\setminus \{0\} \text{ und } \tilde{T}:] a|b[\to \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) T(v) \text{ und } w_{+1} = \left(\tilde{T} \mid [0|b[\right)^{-1} \text{ und } w_{-1} = \left(\tilde{T} \mid] a|0]\right)^{-1}.$
- $\mbox{ V4. } \gamma \mbox{ ist 1-Kurve in } \mathbb{R} \mbox{ und } \mbox{ran} \, \gamma \subseteq O \mbox{ und } -a < \gamma^{\bullet} < b \mbox{ auf } \mbox{dom} \, \gamma.$
- V5. $E_{\circ} \in \mathbb{R} \text{ und } \forall t : t \in \text{dom } \gamma \implies 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}$.
- V6. $s \in I \subseteq \operatorname{\mathsf{dom}} \gamma$ und I unbeschränktes reelles Intervall und $E_{\circ} \Phi \circ \gamma > 0$ auf I.

 \Rightarrow

a) Falls $+\infty = \sup I$ und $\eta = \lim_{t\uparrow +\infty} \gamma(t) \in \{\pm\infty\}$ und $J = \gamma[I]$ und $\lambda = \operatorname{sgn}(\gamma^{\bullet})$ auf I mit $\lambda \in \{\pm 1\}$, dann ist J unbeschränktes reelles Intervall mit $J \subseteq O$ und

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)) \right)} = +\infty$$

b) Falls $-\infty = \inf I$ und $\eta = \lim_{t \downarrow +\infty} \gamma(t) \in \{\pm \infty\}$ und $J = \gamma[I]$ und $\lambda = \operatorname{sgn}(\gamma^{\bullet})$ auf I mit $\lambda \in \{\pm 1\}$, dann ist J unbeschränktes reelles Intervall mit $J \subseteq O$ und

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)) \right)} = -\infty$$

Beweis a) I ist ein echtes reelles Intervall $\subseteq \operatorname{dom} \gamma$ und es gilt $E_{\circ} - \Phi \circ \gamma > 0$ auf I. Somit gilt via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ (+1) A posteriori

$$\forall t : t \in I \quad \Rightarrow \quad \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = t - s,$$

wobei $w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig und $\neq 0$ auf $\gamma[I]$ ist, so dass via $\eta=\lim_{t\uparrow+\infty}\gamma(t)$ die Gleichung

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = \lim_{t \uparrow + \infty} \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = \lim_{t \uparrow + \infty} (t - s) = +\infty,$$

folgt. Wegen $J=\gamma[I]$ und $\eta=\lim_{t\uparrow+\infty}\gamma(t)\in\{\pm\infty\}$ ist J unbeschränkt. Da γ stetig ist und I ein reelles Intervall ist, ist J ein reelles Intervall. Auch gilt $J=\gamma[I]\subseteq \operatorname{ran}\gamma\subseteq O$.

Beweis b*) I ist ein echtes reelles Intervall $\subseteq \operatorname{dom} \gamma$ und es gilt $E_{\circ} - \Phi \circ \gamma > 0$ auf I. Somit gilt via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ (+1) A posteriori

$$\forall t : t \in I \quad \Rightarrow \quad \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = t - s,$$

wobei $w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig und $\neq 0$ auf $\gamma[I]$ ist, so dass via $\eta=\lim_{t\downarrow-\infty}\gamma(t)$ die Gleichung

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = \lim_{t \downarrow +\infty} \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = \lim_{t \downarrow +\infty} (t - s) = -\infty,$$

folgt. Wegen $J=\gamma[I]$ und $\eta=\lim_{t\downarrow-\infty}\gamma(t)\in\{\pm\infty\}$ ist J unbeschränkt. Da γ stetig ist und I ein reelles Intervall ist, ist J ein reelles Intervall. Auch gilt $J=\gamma[I]\subseteq \operatorname{ran}\gamma\subseteq O$.

4.4 A posteriori. γ bei $\pm \infty$ gleich $\pm \infty$. Λ

Satz

- $V1. \ 0 < m \in \mathbb{R}.$
- V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.
- V3. $x_{\circ} \in J \subseteq O$. J unbeschränktes reelles Intervall. $\eta \in \{\inf J, \sup J\} \cap \{\pm \infty\}$.
- V4. $0 < a \text{ und } 0 < b \text{ und } T \in C^{2}(] a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] a|b[\setminus \{0\} \text{ und } \tilde{T}:] a|b[\to \mathbb{R}, \, \tilde{T}(v) = v \cdot T'(v) T(v) \text{ und } w_{+1} = \left(\tilde{T} \mid [0|b[\right)^{-1} \text{ und } w_{-1} = \left(\tilde{T} \mid] a|0]\right)^{-1}.$
- V5. $\lambda \in \{\pm 1\}$.
- V6. $E_{\circ} \in \mathbb{R}$.
- V7. $\forall x: x \in J \implies E_{\circ} > \Phi(x)$ und $(\lambda = +1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\beta} \text{ auf } J, \text{ wobei } \overline{\beta} = \lim_{v \uparrow b} \tilde{T}(v))$ und $(\lambda = -1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\alpha} \text{ auf } J, \text{ wobei } \overline{\alpha} = \lim_{v \downarrow -a} \tilde{T}(v)),$

- V8. A Stammfunktion von $\frac{1}{w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)}$ auf J,
- $\text{V9. } \tau = \lim_{x \to \eta} \Lambda(\eta) \in \{\pm \infty\}.$
- V10. $\gamma=\Lambda^{-1}$.

 \Rightarrow

- a) dom $\gamma = \operatorname{ran} \Lambda$ unbeschränktes Intervall.
- b) $\tau = \sup(\operatorname{dom} \gamma) \text{ oder } \tau = \inf(\operatorname{dom} \gamma).$
- c) $\eta = \lim_{t \to \tau} \gamma(t) \in \{\pm \infty\}.$

Beweis trivial.

5
$$T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$$
 und Energiegleichung (+5)

5.1 A posteriori. γ bei t_{\circ} gleich $\pm \infty$

Satz

- $V1. \ 0 < m \in \mathbb{R}.$
- V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.
- V3. $0 < a \text{ und } 0 < b \text{ und } T \in C^2(] a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] a|b[\setminus \{0\} \text{ und } \tilde{T}:] a|b[\to \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) T(v) \text{ und } w_{+1} = (\tilde{T} \mid [0|b[)^{-1} \text{ und } w_{-1} = (\tilde{T} \mid] a|0])^{-1}.$
- V4. γ ist 1-Kurve in \mathbb{R} und $\operatorname{ran} \gamma \subseteq O$ und $-a < \gamma^{\bullet} < b$ auf $\operatorname{dom} \gamma$.
- V5. $E_{\circ} \in \mathbb{R} \text{ und } \forall t : t \in \text{dom } \gamma \implies 2 \cdot \tilde{T}(\gamma^{\bullet}(t)) + \frac{2}{m} \cdot \Phi(\gamma(t)) = \frac{2 \cdot E_{\circ}}{m}.$
- V6. $s \in I \subseteq \operatorname{dom} \gamma$ und I echtes reelles Intervall und $E_{\circ} \Phi \circ \gamma > 0$ auf I und t_{\circ} ist Randpunkt von I und $t_{\circ} \in \mathbb{R} \setminus I$.
- $\text{V7. } \eta = \lim_{t \to t_0} \gamma(t) \in \{\pm \infty\}.$
- V8, $\lambda \in \{\pm 1\}$ und $\lambda = \operatorname{sgn}(\gamma^{\bullet})$ auf I.

 \Rightarrow

a)
$$(\eta = \sup \gamma[I] \text{ oder } \eta = \inf \gamma[I]) \text{ und } \int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = t_{\circ} - s \in \mathbb{R}.$$

b) Falls $\lambda = +1$, dann $b = +\infty$ und $\liminf_{cdz \to \eta} \Phi(z) = E_{\circ} - m \cdot \overline{\beta}$, wobei $\overline{\beta} = \lim_{cdz} \tilde{T}(v)$.

c) Falls
$$\lambda=-1$$
, dann $a=+\infty$ und $\liminf_{z\to\eta}\Phi(z)=E_\circ-m\cdot\overline{\alpha},$ wobei $\overline{\alpha}=\lim_{v\downarrow-a}\tilde{T}(v).$

<u>Beweis</u> a) Da $\gamma[I]$ ein reelles Intervall ist, ist η via V7. Supremum oder Infimum von $\gamma[I]$. Via $T''(\gamma^{\bullet}) \cdot \gamma^{\bullet \bullet} + \frac{1}{m} \cdot \Phi'(\gamma) = 0$ und Energiegleichung (+1). A posteriori gilt via $s \in I$,

$$\forall t: t \in I \quad \Rightarrow \quad \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = t - s,$$

wobei $w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)$ stetig und $\neq 0$ auf $\gamma[I]$ ist, so dass via V7.,

$$\int_{\gamma(s)}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} = \lim_{t \to t_{\circ}} \int_{\gamma(s)}^{\gamma(t)} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)}$$
$$= \lim_{t \to t_{\circ}} t - s = t_{\circ} - s,$$

und $t_{\circ}, s \in \mathbb{R}$.

Beweis b), c) Wegen der via T konvex und \tilde{T} und $w_{\pm 1}$ bestehenden Vorzeichenbeständigkeit von w_{λ} und da das Integrationsintervall in a) unbeschränkt ist und $\eta \in \{\pm \infty\}$ gilt, muss

$$0 = \liminf_{z \to \eta} \left| \frac{1}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)) \right)} \right|,$$

gelten, so dass

$$+\infty = \limsup_{z \to \eta} \left| w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)) \right) \right|,$$

woraus im Fall $\lambda = +1$ einerseits via T konvex und \tilde{T} und $w_{\pm 1}$ via w_{+1} : $\left[0|\overline{\beta}\right[\to \left[0|b\right[$ bijektiv, die Aussage $b = +\infty$, andererseits $\limsup_{z \to \eta} \frac{1}{m} \cdot (E_{\circ} - \Phi(z)) = \overline{\beta}$, folgt, und sich im Fall $\lambda = -1$ einerseits via T konvex und \tilde{T} und $w_{\pm 1}$ via $w_{-1}: \left[0|\overline{\alpha}\right[\to] - a|0\right]$ bijektiv, die Aussage $a = +\infty$ ergibt und andererseits $\limsup_{z \to \eta} \frac{1}{m} \cdot (E_{\circ} - \Phi(z)) = \overline{\alpha}$ folgt.

5.2 A posteriori. γ bei t_{\circ} gleich $\pm \infty$. Λ

Satz

V1. $0 < m \in \mathbb{R}$.

V2. $0 \neq O \subseteq \mathbb{R}$ offen. $\Phi \in C^1(O : \mathbb{R})$.

V3. $x_{\circ} \in J \subseteq O$. J unbeschränktes reelles Intervall. $\eta \in \{\inf J, \sup J\} \cap \{\pm \infty\}$.

V4. $0 < a \text{ und } 0 < b \text{ und } T \in \mathbb{C}^2(] - a|b[:\mathbb{R}) \text{ und } 0 = T(0) \text{ und } 0 < T''$ auf $] - a|b[\setminus \{0\} \text{ und } \tilde{T}:] - a|b[\to \mathbb{R}, \tilde{T}(v) = v \cdot T'(v) - T(v) \text{ und } w_{+1} = \left(\tilde{T} \mid [0|b[\right)^{-1} \text{ und } w_{-1} = \left(\tilde{T} \mid] - a|0]\right)^{-1}.$

V5. $\lambda \in \{\pm 1\}$.

V6. $E_{\circ} \in \mathbb{R}$.

V7. $\forall x : x \in J \implies E_{\circ} > \Phi(x)$ und $(\lambda = +1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\beta} \text{ auf } J, \text{ wobei } \overline{\beta} = \lim_{v \uparrow b} \tilde{T}(v))$ und $(\lambda = -1 \Rightarrow \Phi > E_{\circ} - m \cdot \overline{\alpha} \text{ auf } J, \text{ wobei } \overline{\alpha} = \lim_{v \downarrow -a} \tilde{T}(v)),$

V8. A Stammfunktion von $\frac{1}{w_{\lambda}\left(\frac{1}{m}\cdot(E_{\circ}-\Phi(.))\right)}$ auf J,

V9. $t_{\circ} = \lim_{x \to \eta} \Lambda(\eta) \in \mathbb{R}$.

V10. $\gamma=\Lambda^{-1}$.

 \Rightarrow

a) t_{\circ} Häufungspunkt von $\operatorname{dom} \gamma$ und $\eta = \lim_{t \to t_{\circ}} \gamma(t) \in \{\pm \infty\}.$

b) Falls $\lambda=+1$, dann $b=+\infty$ und $\liminf_{z\to\eta}\Phi(z)=E_\circ-m\cdot\overline{\beta}$, wobei $\overline{\beta}=\lim_{v\uparrow b}\tilde{T}(v)=+\infty$

c) Falls $\lambda=-1$, dann $a=+\infty$ und $\liminf_{z\to\eta}\Phi(z)=E_\circ-m\cdot\overline{\alpha}$, wobei $\overline{\alpha}=\lim_{v\downarrow-a}\tilde{T}(v)=+\infty$.

Beweis a) trivial.

Beweis b), c) Via T konvex und \tilde{T} und $w_{\pm 1}$ ist $w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(.))\right)$ stetig und $\neq 0$ auf J. Da J unbeschränktes Intervall ist, gibt es $\tilde{x} \in J$. Es folgt für alle $x \in J$,

$$\Lambda(x) - \Lambda(\tilde{x}) = \int_{\tilde{x}}^{x} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)},$$

und somit

$$\lim_{x \to \eta} \Lambda(\eta) = t_{\circ} = \Lambda(\tilde{x}) + \int_{\tilde{x}}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z))\right)} \in \mathbb{R},$$

wobei $\Lambda(\tilde{x}) \in \mathbb{R}$, so dass

$$\int_{\tilde{x}}^{\eta} \frac{dz}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z) \right)} \in \mathbb{R}.$$

Wegen der via T konvex und \tilde{T} und $w_{\pm 1}$ bestehenden Vorzeichenbeständigkeit von w_{λ} und da hier das Integrationsintervall unbeschränkt ist und $\eta \in \{\pm \infty\}$ gilt, muss

$$0 = \liminf_{z \to \eta} \left| \frac{1}{w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)) \right)} \right|,$$

gelten, so dass

$$+\infty = \limsup_{z \to \eta} \left| w_{\lambda} \left(\frac{1}{m} \cdot (E_{\circ} - \Phi(z)) \right) \right|,$$

woraus im Fall $\lambda = +1$ einerseits via T konvex und \tilde{T} und $w_{\pm 1}$ via w_{+1} : $\left[0\middle|\overline{\beta}\right[\to \left[0\middle|b\right[$ bijektiv, die Aussage $b=+\infty$ s, andererseits $\limsup_{z\to\eta}\frac{1}{m}\cdot(E_\circ-\Phi(z))=\overline{\beta}$, folgt, und sich im Fall $\lambda=-1$ einerseits via T konvex und T und $w_{\pm 1}$ via $w_{-1}:\left[0\middle|\overline{\alpha}\right[\to\right]-a\middle|0\right]$ bijektiv, die Aussage $a=+\infty$ ergibt und andererseits $\limsup_{z\to\eta}\frac{1}{m}\cdot(E_\circ-\Phi(z))=\overline{\alpha}$ folgt. \square