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Abstract—We give some formal description for the cellular
automaton (CA) models applied in the traffic simulation of vehic-
ular and pedestrian dynamics in both one- and two-dimensional
cases. In the two-dimensional case, we present a new solution for
the step choice problemvmax > 1 on the local operational level,
with the aim of projecting the intended step exactly onto the
underlying geometry. This method can be used in combination
with the more advanced modeling techniques on higher levelsfor
better simulation results.

I. I NTRODUCTION

The last two decades witnessed substantial progresses in the
modeling and simulation of traffic and pedestrian dynamics.
Cellular automaton (CA) is an important category of the
modeling methods [6]. Its basic idea is that after mapping
the physical geometry onto a set of grid cells, we can employ
the state change of the cells to describe the dynamical aspects
of the traffic/pedestrian flow.

In the single-lane traffic simulation, many CA models
traced back to [5] (deterministic) and [11, 13] (probabilistic).
The single-lane model was extended later by [4] to include the
situation of multiple lanes. In contrast, pedestrian dynamics
have been studied mostly as a two-dimensional problem, due
to the lack of a unanimous flow direction in the general case.
The ansatz proposed by [2, 9] successfully reproduced many
human behavioral characteristics. However, these models do
not provide us with clearly defined local transition rules for
the CAs. A major purpose of our paper is to fill this gap
and we will see that the so-called conflict solution (which
is usually to be given attention separately) can be integrated
into the transition rules. In comparison to thevmax = 1
model [2, 9] (where the step size in each simulation cycle
was prescribed to be of single-cells), we propose in the
second part of this text a new method for the calculation
of stepsvmax ≥ 1 on the operational level. (Here we apply
the common notation for velocityv which is counted as the
number of grid cell length/width in the spatial setup, without
unit.)

For a good overview of CA, we refer to [14] and [8]. For
an overview of CAs in traffic modeling, please see [10].

II. N OTATION

An n-dimensional CA is a tuple(Ln, S, N, δ), whereLn

is the index set of grid cells by which the spatial setup
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is addressed,S the set of cell states,N = (~x1. . . . , ~x|N |)
is a vector of pairwise different elements inLn called
neighborhood (indicating position disparity in the spatial
setup) andδ : S|N | → S the transition function (also called
local transition rules). The elements ofN will be called
neighborhood patterns. When the CA is spatially infinite,L

can be written asZ (or N) explicitly.

A one-dimensional CA is called elementary when there are
exactly two states and the neighborhood is of radius1, we
write this asS = {0,1} and N = (−1, 0, 1). (Sincen =
1, the vector element~x ∈ Ln degenerates into a scalar in
L.) There are|S|8 = 28 = 256 different elementary CAs in
all, since |N | = 3 and there are|S|3 = 23 = 8 different
neighborhood patterns to be mapped into a new state inS

by δ. Applying a notation similar to that of [14], the local
transition ruleδ : {0,1}3 → {0,1} can be expressed as

l c r

s

with l, c, r representing the current states in the three grid cells
(“left”, “center” and “right”) which build up the neighborhood
pattern.s denotes the new state after the transition (also called
update) in the center cell.

Compiling the transition rules altogether, [14] suggestedthe
following encoding schema for the elementary CA

1 1 1

s7

1 1 0

s6

1 0 1

s5

1 0 0

s4

0 1 1

s3

0 1 0

s2

0 0 1

s1

0 0 0

s0

Associated with the enumerated neighborhood patterns, the
new states can be compressed into a binary string and further
interpreted as a binary number(s7 s6 s5 s4 s3 s2 s1 s0)2.
Accordingly, each of the256 elementary CAs can be
identified by a distinct integer from0 to 255.

III. O NE-DIMENSIONAL CASE

In the context of one-dimensional traffic modeling,1 can be
used to indicate that a simulation object is present at a certain
location, whereas0 indicates the “free” state of a location
(“unblocked” for the other objects). Without loss of generality,
the moving direction of the simulation objects is assumed to
be from left to right (i. e. in the positive order ofL). In general,
the one-dimensional models deal with the following problems.
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A. Single-Cell Step Choice

The single-cell step choice can be simulated by the follow-
ing elementary CA

1 1 1

1

1 1 0

0

1 0 1

1

1 0 0

1

0 1 1

1

0 1 0

0

0 0 1

0

0 0 0

0

encoded as(10111000)2 (named in [14] as Rule 184). The
transition can be interpreted in the following way: a grid cell
in current state1 retains this state if and only if its neighboring
cell on the right side has the state1 (i. e. the forward step is
impossible), and a cell in current state0 retains this state if
and only if its neighboring cell on the left side has the state
0 (i. e. no follower is present).

If the choice of the states0 and 1 does not affect the
transition rule, we may denote this by a meta-state− (also
called “don’t care”). This enables us to rewrite the above CA
as

− 1 1

1

− 1 0

0

1 0 −
1

0 0 −
0

B. Multiple-Cell Step Choice

To describe a multiple-cell step choice, we will need a larger
neighborhood (in terms of the size of neighborhood patterns).
Obviously, the transition rule of anr-cell step choice requests
a neighborhood of radius no smaller thanr (r ∈ N

+). Let the
neighborhood radius ber.

1) Variant 1: We first consider the case of strictlyr cells,
i. e. a step ofr cells will be carried out if all ther cells
concerned in the moving direction are in state0.

For a compact notation, we use the superscripti to address
a repetition of exactlyi times of a certain state. A successful
r-cell step at a location in state1 takes place exactly when

−r 1 0r

0

otherwise we have −r 1

1

(The empty partial neighborhood pattern on the right side
refers to the negation of the pattern0r, with m + n = r − 1,
m, n ∈ N this can be alternatively expressed as−m 1 −n

which prescribes that at least one1 comes up in the pattern.)
Similarly, at a location in state0 a follower comes up

exactly when
10r−10 −r

1

i. e. the follower is in the correct position and there is no
hindrance for this step, otherwise we have

0 −r

0

(The negation of the partial neighborhood pattern1 0l

on the left side is composed of0r and −m 1 −n with
m + n = r − 1, m ∈ N

+, n ∈ N.)

For r = 2, after a somehow tedious enumeration,
the local transition rules can be encoded as
(11100000111011111110000011100000)2 starting
with the neighborhood pattern1 1 1 1 1 as the
highest bit and descending to0 0 0 0 0 as the lowest
bit. We notice there are22r+1 (here32) neighborhood patterns
to be defined in the transition functionδ.

2) Variant 2: Another variant is that the multiple-cell step
should be carried out as far as possible. This can be understood
as conflict avoidance in the moving direction as well. The
simulation for this is generally impossible for synchronous
transition with |S| = 2. This is because sometimes the state
change in the current neighborhood pattern depends on the
information from outside, regardless of the neighborhood size.
A simple example would be

−r 1 1r

In a synchronous transition, the actual move of the simulation
object in the center depends on the moves of its neighbors
on the right side, which are further dependent of their own
neighbors on the right side. (On the other hand, applying a
sequential update on the cells, for example, in the order from
right to left, may serve the purpose.)

However, we can solve this problem by introducing a larger
state set, see the discussion in III-E.

C. Probabilistic Step Choice

Step choice of this kind prescribes rules in a way like
“perform a certain action with a probabilityp ∈ (0, 1)” (we
exclude the trivial casesp = 0, 1). We notice that rules of this
kind refer to simulation objects only, since a certain action is
to be performed probabilistically; in other words, this concerns
the locations in state1. We wish to point that it is generally
inappropriate to implement a probabilistic step by applying
the local transition rules independently on the cells with the
given probability. This can result in collision and undefined
situations.

On the other hand, a probabilistic action should always be
associated with a non-free state (which further differentiates
from the usual1 and 0 states) and only in this state the
local transition occurs with the prescribed probability. Our
suggestion is to introduce a new stateq and disintegrate the
transition into three substeps. First, all the cells in state 1

undergo a probabilistic transition

1 →
{

1 with probabilityp,

q with probability 1 − p.
(1)

Next, the usual local transition rules are to be applied on
the neighborhood patterns. For the normal states1 and0, no
further attention will be needed. For neighborhood patterns
containing the new stateq, we consider the following two
situations. If the center cell is in stateq, the transition should
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be understood as if this location were in the negative state0,
so that the possible action should not be carried out. Otherwise
(on the left or the right side of the neighborhood), it shouldbe
replaced by the positive state1, since the probabilistic nature
of the action in question would disturb other simulation objects
in the synchronous update procedure. In formal expression,

−r q −r −→ −r 0 −r (2)

−m q −n 0 −r −→ −m 1 −n 0 −r (3)

−r 0 −m q −n −→ −r 0 −m 1 −n (4)

with m + n = r − 1, m, n ∈ N. The “don’t care” state− is
now adapted to include the new stateq in addition. Finally,
the simulated free state0 in (2) should be recovered into the
normal state1

−r 0 −r −→ −r 1 −r (5)

D. Acceleration and Deceleration

Another frequently encountered problem is acceleration and
deceleration. In the context of CA modeling, it is to be
understood as integer velocity changes. Letvmax ∈ N

+ denote
the maximal attainable velocity, then the possible velocities
can be0, 1, . . . , vmax.

To this end, we need a larger set ofvmax+2 cell states. The
new set of states includes a new free stateǫ which corresponds
to the state0 in the previous paragraphs and a series ofvmax+
1 states0, . . . ,v∗ which correspond to the velocities from0
to vmax respectively. (0 now refers to the state in velocity0
instead of being free.) Obviously, a location in free stateǫ

retains its state and once the highest velocity is reached, the
velocity cannot be raised,

−r
ǫ −r

ǫ

−r v∗ −r

v∗

In between, for a statev associated with velocityv < vmax,
the increment of one unit in velocity results in a new statev+

associated with velocityv + 1,

−r v −r

v+

Again, − is the new “don’t care” state including all the
possible statesǫ,0, . . . ,v∗.

Deceleration can be treated in an analogous way. For a
location in free state or stationary state (i. e. with velocity 0)

−r
ǫ −r

ǫ

−r 0 −r

0

Otherwise, for a statev ∈ {1, . . . ,v∗},

−r v −r

v−

with v− denoting the state corresponding to the velocityv−1.

E. Multiple-Cell Step Choice Revisited

We notice that the velocity change can be further interpreted
as the change of step lengths in the simulation cycle. Thus,
the second variant of the multiple-cell step choice can be
implemented in a similar way. The implementation takes
two substeps. The first substep is a synchronous update to
determine the actual possible length for every potential move
and the second is the execution of the new step choice.

Similar to the situation of acceleration or deceleration,
let ǫ denote the free state and0, . . . , r the states of actual
steps of the lengths0, . . . , r, respectively. Let− be the new
“don’t care” meta-state including all states andl the meta-state
including all non-free states0, . . . , r, then the new actual step
can be determined by

−r
ǫ −r

ǫ

concerning the free state and

−r l ǫ
m l −n

m

with m + n = r − 1, m, n ∈ N. m is the maximum number
of successive free states starting from the right side of the
current position in the neighborhood pattern, which is also
the possible step length at the current position. The resultis
a new statem associated with the lengthm. In the second
substep, the statem prescribes the actual step size in the
current simulation cycle.

IV. T WO-DIMENSIONAL CASE

Unlike vehicular traffic where a dominant flow direction
is present, pedestrian dynamics are usually modeled in two
dimensions. In microscopic pedestrian simulation models,[7]
suggested the separation of pedestrians’ behaviors on three
different levels. These are a strategic level (choice of activity
pattern), a tactical level (for activity scheduling and route
choice) and an operational level (for local and temporary
actions). Once the pedestrian activity decision is made on the
other two levels, step choices are computed and executed on
the operational level.

Typical models like [2, 9] dealt with the casevmax = 1,
i. e. the move is limited to the immediate neighbors in the
simulation cycle. Sometimes diagonal moves (of one grid cell
in both dimensions) are allowed. Despite its simplicity and
clarity, this method introduces a much too large difference
between the intended and actual step lengths. (A move to the
relative position(1, 1), which is of physical length

√
2, is of

length2, if the diagonal move is not allowed, otherwise,1.)
On the other hand, it appears that we should not confine

the step choice to be single-cell ones. A plausible computing
model for multiple-cell step choices should, in return, allow us
not to limit the grid cell size to be fixed in the spatial setup a
priori (which has been commonly assumed to be0.4m ·0.4m),
if necessary. The necessity of a flexible (of course, within a
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reasonable range) cell size becomes self-evident, if we wish
to describe situations of (extremely) high and low object
densities in the models. For further discussion, we refer to
our earlier work [3].

For multiple-cell steps, i. e.vmax ≥ 1, it is possible to
apply J. E. Bresenham’s algorithm of line rastering [1].
This algorithm approximates the intended step in the two-
dimensional spatial setup (in most cases, a regular grid) and
the actual step is executed as a sequence of substeps. The
intended step is considered as a vector(∆x, ∆y) ∈ N

2,
representing the position differences in the two dimensions.
The step calculation is carried out in the dimension with the
larger difference. By looking for the closest position to the
vector (∆x, ∆y), we decide whether a position change in
the other dimension is needed. Obviously, in nontrivial cases
we encounter diagonal substeps. This method is, however,
not exactly what we want in two-dimensional simulation of
pedestrian dynamics, since a diagonal substep is considered
to be of equal length with a usual substep in just one
of the dimensions. In other words, a series of substeps
including diagonal moves may represent a much larger real
physical step length than a series of substeps in exactly one
dimension of the same number. Our concern is to minimize
the aforementioned diagonal length discrepancy.

Now in the context of pedestrian dynamics, we consider a
state setS = {ǫ,0,1} composed of a free stateǫ, a blocking
state0 (induced by stationary hindrances) and a dynamical
blocking state1 (manifesting the presence of a mobile sim-
ulation object). Analogous to the discussion in the previous
paragraphs, if we split a potential step ofvmax > 1 into single-
cell substeps (or substeps of a smaller size), we only have to
consider the cell states in the (relatively) small neighborhood
in the cell state transitions. The Moore neighborhood of radius
1 has the form

1

On the other hand, we notice that on the operational level,
certain route plan information (computed on the other higher
levels, according to [7]) is assigned to the moving objects.
For such an object, in fact only the information in its partial
neighborhood, e. g.

1

is substantial. Now we would like to construct a series of
single-cell substeps which should rebuild the intended step
choice in good approximation.

Let x and y denote the horizontal and vertical dimension
respectively. We consider an intended step of(∆x, ∆y).
Without loss of generality, we request∆x ∈ N

+, ∆y ∈ N. We
disintegrate this multiple-cell step into a series of substeps.

A possible substep can be(1, 0) (move in thex-direction),
(0, 1) (move in the y-direction) or (1, 1) (move in both
directions). These possible substep choices are given the
probabilitiespx, py, pxy ∈ [0, 1]. Naturally, there holds

px + py + pxy = 1,

in addition, we request

px · ∆y = py · ∆x,

since we can assume that the choice to take a substep in exactly
one dimension is also dependent of the components∆x and
∆y of the intended step. We can imagine that the larger the
step in one dimension is, the more likely a substep should be
undertaken in that direction.

px

py pxy

l

lx

ly

lxy

∆x

∆
y

Fig. 1. Substep choices. The step(∆x, ∆y) has a length ofl; the
remaining lengths after the three possible substeps are shown as lx, ly and
lxy respectively.

Next, we establish a further relationship amongpx, py and
pxy. Obviously, a diagonal substep covers considerable more
spatial distance than the other two choices. We consider the
physical lengths from the position(∆x, ∆y) to the current
position (l), to the position after a substep in thex-direction
(lx), to the position after a substep in they-direction (ly) and
to the position after a substep in both directions (lxy), which
can be written explicitly as

l =

√

(∆x)2 + (∆y)2, (6)

lx =

√

(∆x − 1)
2

+ (∆y)
2
,

ly =

√

(∆x)
2

+ (∆y − 1)
2
,

lxy =

√

(∆x − 1)2 + (∆y − 1)2.

Since we wish to make the number of the required substeps
as close as possible to the physical length of the intended step
choice, we may request

px(1 + lx) + py(1 + ly) + pxy(1 + lxy) = l. (7)

See Fig. 1. The solution of (7) is

px =
l − lxy − 1

lx + ∆y

∆x
ly −

(

1 + ∆y

∆x

)

lxy

,

py =
∆y

∆x
px,
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and if ∆y > 0,

py =
l − lxy − 1

ly + ∆x
∆y

lx −
(

1 + ∆x
∆y

)

lxy

, (8)

pxy = 1 − px − py.

In the next substep, we update∆x and ∆y according to the
last substep execution, calculate the new probabilitiespx,
py and pxy and make a decision according to these. This
procedure will be repeated until the destination is reached
(∆x = ∆y = 0).

In the trivial case∆x = ∆y = 1, (8) renderspx = py =√
2−1

2
, pxy = 2−

√
2. In the other trivial case∆x = 1, ∆y = 0,

the solution ispx = 1, py = pxy = 0, which meets the
expectation of a simple step in thex-direction exactly. Table I
lists a set of solutions ofpx in float numbers for the most usual
combinations of∆x and ∆y. In software implementation,
a similar lookup table can be employed in the program to
enhance efficiency.

TABLE I
LOOKUP TABLE OF THE SOLUTIONpx FOR SOME COMMON STEP CHOICE

CONFIGURATIONS.

∆x = 1 ∆x = 2 ∆x = 3 ∆x = 4 ∆x = 5

∆y = 0 1 1 1 1 1

∆y = 1 0.207 0.258 0.285 0.299 0.306

∆y = 2 0.129 0.252 0.305 0.335 0.354

∆y = 3 0.095 0.204 0.267 0.306 0.334

∆y = 4 0.075 0.168 0.230 0.273 0.305

∆y = 5 0.061 0.142 0.200 0.244 0.278

Technical Note 1: Obviously, (7) assumes that the substep
choice is indeed possible, i. e. the relevant cell positionsare in
the free stateǫ. If this requirement is only partially met, the
relationship (7) should be modified according to the available
substep options to deliver solutions similar to (8). In fact, all
combinations of the cell states in positions(1, 0), (0, 1) and
(1, 1) (respecting positive∆x and∆y) should be investigated.
For example, in case the vertical substep move is impossible,
we have

px + pxy = 1,

px(1 + lx) + pxy(1 + lxy) = l.

The solution (8) becomes

px =
l − lxy − 1

lx − lxy

,

and sincepxy = 1 − px,

pxy =
lx − l + 1

lx − lxy

.

This also solves the conflict problem on a local basis.

Technical Note 2: In the previous section of the one-
dimensional case we have discussed the implementation
(see (1)–(5)) of probabilistic step choices. A similar strict
implementation in the two-dimensional case is also possible.
However, in view of notational complexity, it suffices to
give a well-defined schema for the calculation of the substep
probabilities.

Experimental Results

Fig. 2. The cell position’s occurrences in the substep choices for different
combinations of∆x, ∆y = 1, . . . , 5. The cell with a relative position
(∆x, ∆y) is always drawn in black which indicates its contribution asthe
final substep in all configurations.

In Fig. 2 some of the experimental results are listed. For a
combination of∆x and∆y, the empirical occurrences of the
grid cell positions in the relevant substep choice for(∆x, ∆y)
are shown in a linear grayscale. The white and black color
refers to no occurrence and definite occurrence (i. e. with
a probability of 1) respectively. The start position(0, 0) is
left empty, since it is not to be counted as a substep in the
execution. In each of the configurations, the overall appearance
(in color) of the cells forms a virtual trail of the intended step.

V. CONCLUSIONS ANDFUTURE WORKS

In this paper, we considered the step choice problem in
one-dimensional and two-dimensional CA models for the
simulation of vehicular and pedestrian dynamics. Especially
in the two-dimensional case, we are of the opinion that a
step size larger than one grid cell in the simulation cycle
should generally be allowed in the CA modeling. Due to
the nature of the spatial setup of the CAs, larger step sizes
inevitably introduce diagonal moves which are of significantly
larger physical lengths than steps in the horizontal or vertical
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directions exclusively. By applying some simple techniques
of probabilistic substep calculations, we presented a new con-
structive method for the solution of step choice problem with
good approximation results. Although the proposed method is
merely aimed at the computations on the lowest simulation
level, it can be used in combination with arbitrary modules
on the higher levels (e. g. with route choice, user-defined
pedestrian characteristics/behavioral patterns).

Fig. 3. Simulation example showing two intersecting pedestrian streams,
recorded at different time points.

In Fig. 3 we provide a very rudimentary simulation
example in demonstration of our method. The spatial setup
is a rectangular area. At the two bottom corners of this area
we produce two groups of pedestrians (drawn as unfilled
circles and filled rhombuses in different colors) on a random
basis. The individual pedestrians are given very simple
instructions as route strategy namely a fixed moving direction
and the pedestrians will be dismissed once they reach the
other side of the rectangular region. In the step executions,
local conflicts are to be avoided (see Technical Note 1).
For repeated unsuccessful step executions, the pedestrians
in question are given the freedom to change or adjust their
moving directions temporarily to bypass the obstacles. The
simulation result is roughly satisfying for this simple test
case. With additional computation modules on the higher
simulation levels, we believe that more convincing results
in complicated situations can be achieved, this will be our
future work too. Another focus in our future work is the
high density situations, we wish to understand and describe
the typical behavioral patterns of pedestrians of large number
and possibly with different activity patterns, by means of
empirical data (e. g. video recordings of crowds), and use
them to construct computing modules on higher levels for

the simulation of more complicated scenarios, especially
when pedestrians form multiple intersecting flows and the
interacting aspects of the flows that disturb one another need
to be investigated.
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