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A Study of Step Calculations in
Traffic Cellular Automaton Models
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Abstract—We give some formal description for the cellular is addressedS the set of cell statesN = (Zi....,7|n))
automaton (CA) models applied in the traffic simulation of vénic-  js a vector of pairwise different elements ih” called

ular and pedestrian dynamics in both one- and two-dimensioal neighborhood (indicating position disparity in the splatia

cases. In the two-dimensional case, we present a new solutifor RN o :
the step choice problemuvmax > 1 on the local operational level, setup) and : 511 — S the transition function (also called

with the aim of projecting the intended step exactly onto the local transition rules). The elements @f will be called
underlying geometry. This method can be used in combination neighborhood patterns. When the CA is spatially infinite,
with the more advanced modeling techniques on higher leveler  can be written ag (or N) explicitly.

better simulation results.

A one-dimensional CA is called elementary when there are
I. INTRODUCTION exactly two states and the neighborhood is of radiusve
write this asS = {0,1} and N = (-1,0,1). (Sincen =

The last two decades witnessed substantial progressers.runlt,hthe vector elemenf ¢ L" degenerates into a scalar in

modeling and simulation of traffic and pedestrian dynamici..) There arelS|® — 2% — 256 different elementary CAS in
Cellular automaton (CA) is an important category of thgll since [N| — 3 and there ardS|® — 23 — g different

modeling methods [6]. Its basic idea is that after mappir}%’ighborhood patterns to be mapped into a new stat in
the physical geometry onto a set of grid cells, we can empl 5. Applying a notation similar to that of [14], the local

the state change of the cells to describe the dynamical mp? ansition rules : {0,1}% — {0,1} can be expressed as
of the traffic/pedestrian flow. TR ’

In the single-lane traffic simulation, many CA models l ¢cr
traced back to [5] (deterministic) and [11, 13] (probatitis S
The single-lane model was extended later by [4] to incluée th
situation of multiple lanes. In contrast, pedestrian dyl8Mm it | ¢ r representing the current states in the three grid cells
have been studied mostly as a two-dimensional problem, d{“%ft”, “center” and “right”) which build up the neighbodod

to the lack of a unanimous flow direction in the general casgaiern s denotes the new state after the transition (also called
The ansatz proposed by [2, 9] successfully reproduced m date) in the center cell.

human behavioral characteristics. However, these models Compiling the transition rules altogether, [14] suggested

not provide us with clearly defined local transition rules fofollowing encoding schema for the elementary CA
the CAs. A major purpose of our paper is to fill this gap

and we will see that the so-called conflict solution (which 1 1 1 110 1 01 100
is usually to be given attention separately) can be integrat S Se S5 Sa
into the transition rules. In comparison to thg,., = 1

model [2, 9] (where the step size in each simulation cycle 0 1 1 010 001 000
was prescribed to be of single-cells), we propose in the 83 S2 S1 So

second part of this text a new method for the calculation

of stepsvmax > 1 on the operational level. (Here we applyassociated with the enumerated neighborhood patterns, the
the common notation for velocity which is counted as the new states can be compressed into a binary string and further
number of grid cell length/width in the spatial setup, witho interpreted as a binary numbefsy se S5 5453 2 51 50)3.

unit.) Accordingly, each of the256 elementary CAs can be

identified by a distinct integer frorfi to 255.
For a good overview of CA, we refer to [14] and [8]. For

an overview of CAs in traffic modeling, please see [10].

1. ONE-DIMENSIONAL CASE

Il. NOTATION In the context of one-dimensional traffic modelingcan be
An n-dimensional CA is a tupléL™, S, N,d), where L™ used to indicate that a simulation object is present at aicert
is the index set of grid cells by which the spatial setulpcation, wheread) indicates the “free” state of a location
(“unblocked” for the other objects). Without loss of gerligya

Manuscript created April 19, 2010; revised July 9, 2010. the moving direction of the simulation objects is assumed to
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berlin.de the one-dimensional models deal with the following protdem
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A. Sngle-Cell Sep Choice (The negation of the partial neighborhood pattem 0

The single-cell step choice can be simulated by the follo@" the left side is cgmposed 00" and —™ 1 —" with
ing elementary CA m+n=r—1meN", neN)

111 110 101 100 For r = 2, after a somehow tedious enumeration,
1 0 1 1 the local transition rules can be encoded as
01 1 010 00 1 000 (11100000111011111110000011100000)2 starting
1 0 0 0 with the neighborhood pattern1 1 1 1 1 as the

highest bit and descendingt® 0 0 0 O as the lowest
bit. We notice there arg* t! (here32) neighborhood patterns

encoded a$10111000); (named in [14] as Rule 184). Theto be defined in the transition functicn

transition can be interpreted in the following way: a gridl ce
in current statd retains this state if and only if its neighboring 2) Variant 2 Another variant is that the multiple-cell step

_ceII on _the right side ha_s the state(i. e. the _forwa_rd step Is should be carried out as far as possible. This can be understo
impossible), and a cell in current staberetains this state if . . : : L
0 . . : s conflict avoidance in the moving direction as well. The
and only if its neighboring cell on the left side has the state . - . .
: ' Simulation for this is generally impossible for synchroeou
0 (i.e. no follower is present).

If the choice of the state® and 1 does not affect the transition with|S| = 2. Thl_s is because sometimes the state
" : change in the current neighborhood pattern depends on the
transition rule, we may denote this by a meta-stat€also

called “don’t care”). This enables us to rewrite the above wao.rma'uon from outside, regardless of the neighborhapel. s
as A simple example would be

1 — _ -1 1"

-1 10 1 0 — 00
1 0 1 0 In a synchronous transition, the actual move of the simuati
object in the center depends on the moves of its neighbors
B. Multiple-Cell Step Choice on.the right side, Whlch are further dependent of thelr_own
] _ ) ) neighbors on the right side. (On the other hand, applying a
To describe a multiple-cell step choice, we will need a larggequential update on the cells, for example, in the orden fro
neighborhood (in terms of the size of neighborhood patJernggnt to left, may serve the purpose.)
a neighborhood of radius no smaller thair € N*). Let the gtate set, see the discussion in IlI-E.
neighborhood radius be
_ 1) Variant 1: We flrst_con5|der t_he case of strictlycells, C. Probabilistic Step Choice
i.e. a step ofr cells will be carried out if all ther cells ) o ) ) )
concerned in the moving direction are in stéte Step choice Of thIS. k|nd- presc”bes .r_u|eS In a way like
For a compact notation, we use the supersariptaddress “Perform a certain action with a probability € (0,1)" (we
a repetition of exactly times of a certain state. A successfugxclude the trivial caseg = 0, 1). We notice that rules of this

r-cell step at a location in state takes place exactly when Kkind refer to simulation objects only, since a certain ati®
to be performed probabilistically; in other words, this cems

- o the locations in statd. We wish to point that it is generally

0 inappropriate to implement a probabilistic step by apmyin

i the local transition rules independently on the cells with t

otherwise we have 1 given probability. This can result in collision and undefine
1 situations.

On the other hand, a probabilistic action should always be

sociated with a non-free state (which further diffeants
(%Zm the usuall and O states) and only in this state the
local transition occurs with the prescribed probabilityurO
suggestion is to introduce a new stafeand disintegrate the
transition into three substeps. First, all the cells inestht
undergo a probabilistic transition

(The empty partial neighborhood pattern on the right si
refers to the negation of the pattedf, with m +n =r — 1,
m,n € N this can be alternatively expressed a% 1 —"
which prescribes that at least omecomes up in the pattern.)

Similarly, at a location in stat® a follower comes up
exactly when

r—1 T . .
1070 — 1 with probability p,
1 1— ) I (1)
q with probability 1 — p.

i.e. the follower is in the correct position and there is no Next, the usual local transition rules are to be applied on
hindrance for this step, otherwise we have the neighborhood patterns. For the normal statesid0, no

0 " further attention will be needed. For neighborhood pagtern

0 containing the new statg, we consider the following two

situations. If the center cell is in statg the transition should



PREPRINT
ALL RIGHTS RESERVED 2010

be understood as if this location were in the negative fiateE. Multiple-Cell Step Choice Revisited

so that the possible action should not be carried out. OiBerw \yg notice that the velocity change can be further intergrete
(on the left or the right side of the neighborhood), it shawéd 55 the change of step lengths in the simulation cycle. Thus,
replaced by the positive stale since the probabilistic natureine second variant of the multiple-cell step choice can be
of the action in question would disturb other simulationeuit$ implemented in a similar way. The implementation takes
in the synchronous update procedure. In formal expression,,q substeps. The first substep is a synchronous update to

determine the actual possible length for every potentiateno

_r _r 5 _r _r
d 0 (2) and the second is the execution of the new step choice.
_m q _n 0 _r SN _m 1 _n 0 _r (3) .. . . . R
Similar to the situation of acceleration or deceleration,
-T0-"q-" — —TO0-m1-" (4) let € denote the free state ar@l...,r the states of actual

. ~ steps of the lengths, ..., r, respectively. Let- be the new
with m +n =r — 1, m,n € N. The “don’t care” state- is  “don’'t care” meta-state including all states dritie meta-state

now adapted to include the new stajein addition. Finally, including all non-free states, . . ., r, then the new actual step
the simulated free stat in (2) should be recovered into thecan be determined by

normal statel
_r 0 _r SN T 1 -r (5)

concerning the free state and

_r l em 1 _n

Another frequently encountered problem is acceleratiah an m
deceleration. In the context of CA modeling, it is to be
understood as integer velocity changes. &g, € N denote with m +n = r — 1, m,n € N. m is the maximum number
the maximal attainable velocity, then the possible velesit of successive free states starting from the right side of the
can be0, 1, ..., Umax- current position in the neighborhood pattern, which is also

To this end, we need a larger setgf,. +2 cell states. The the possible step length at the current position. The résult
new set of states includes a new free statehich corresponds a new statem associated with the lengthu. In the second
to the stated in the previous paragraphs and a series,ofc + substep, the staten prescribes the actual step size in the
1 states0, ..., v* which correspond to the velocities froln current simulation cycle.
to vmax respectively. @ now refers to the state in velocity
instead of being free.) Obviously, a location in free state
retains its state and once the highest velocity is reaclned, t
velocity cannot be raised,

D. Acceleration and Deceleration

IV. Two-DIMENSIONAL CASE

Unlike vehicular traffic where a dominant flow direction
-"e " ="Vt — is present, pedestrian dynamics are usually modeled in two
v dimensions. In microscopic pedestrian simulation modéls,
suggested the separation of pedestrians’ behaviors oe thre

In between, for a state associated with velocity < vyax, different levels. _These are a stratggic level (chpice o/t
the increment of one unit in velocity results in a new state Pattern), a tactical level (for activity scheduling and teou

associated with velocity + 1, choice) and an operational level (for local and temporary
actions). Once the pedestrian activity decision is madéhen t
= v = other two levels, step choices are computed and executed on
\al the operational level.
Again, — is the new “don’t care” state including all the Typical models like [2, 9] dealt with the casg,.x = 1,
possible states, 0, ..., v*. i.e. the move is limited to the immediate neighbors in the

Deceleration can be treated in an analogous way. Forsimulation cycle. Sometimes diagonal moves (of one grid cel
location in free state or stationary state (i. e. with vep@) in both dimensions) are allowed. Despite its simplicity and
clarity, this method introduces a much too large difference
between the intended and actual step lengths. (A move to the
relative position(1, 1), which is of physical length/2, is of
length 2, if the diagonal move is not allowed, otherwide)
Otherwise, for a state € {1,...,v*}, On the other hand, it appears that we should not confine
the step choice to be single-cell ones. A plausible computin
model for multiple-cell step choices should, in returnpallus
not to limit the grid cell size to be fixed in the spatial setup a
priori (which has been commonly assumed tdbgn - 0.4m),
with v~ denoting the state corresponding to the velogityl. if necessary. The necessity of a flexible (of course, within a

_r € _r _r 0 _r

0
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reasonable range) cell size becomes self-evident, if wl wis A possible substep can le,0) (move in thez-direction),
to describe situations of (extremely) high and low objeqt, 1) (move in the y-direction) or (1,1) (move in both
densities in the models. For further discussion, we refer tlirections). These possible substep choices are given the
our earlier work [3]. probabilitiesp,, py, psy € [0,1]. Naturally, there holds

For multiple-cell steps, i.evy,.c > 1, it is possible to Pz + Py +poy = 1,
apply J. E. Bresenham’s algorithm of line rastering [1Jn addition, we request
This algorithm approximates the intended step in the two-
dimensional spatial setup (in most cases, a regular grid) an

the actual step is executed as a sequence of substers. SiR€e we can assume that the choice to take a substep inyexactl
intended step is considered as a vectdrr, Ay) € N°,  one dimension is also dependent of the compongatsand
representing the position differences in the two dimersionny of the intended step. We can imagine that the larger the

The step calculation is carried out in the dimension with tl"ﬁep in one dimension is, the more ||ke|y a substep should be
larger difference. By looking for the closest position t@ thyndertaken in that direction.

vector (Az, Ay), we decide whether a position change in
the other dimension is needed. Obviously, in nontrivialesas
we encounter diagonal substeps. This method is, however,
not exactly what we want in two-dimensional simulation of
pedestrian dynamics, since a diagonal substep is condidere
to be of equal length with a usual substep in just one 4 \f%“
of the dimensions. In other words, a series of substeps \y e
including diagonal moves may represent a much larger real ey \ A
physical step length than a series of substeps in exactly one 1 ’
dimension of the same number. Our concern is to minimize y, S
the aforementioned diagonal length discrepancy. p; ‘ “

; Az !

Pz'Ay:py'A%

v
5221

Ay

y ) pa;y s

Now in the context of pedestrian dynamics, we consider a
state setS = {¢,0,1} composed of a free statg a blocking Fig. 1.  Substep choices. The stép\z,Ay) has a length ofl; the
state 0 (induced by stationary hindrances) and a dynamic@maining lengths after the three possible substeps amenskel., I, and
blocking statel (manifesting the presence of a mobile simlv espectively
ulation object). Analogous to the discussion in the presiou . ) .
paragraphs, if we split a potential stepigf,, > 1 into single- ~ Next, we establish a further relationship amgng p, and
cell substeps (or substeps of a smaller size), we only havelto- Obviously, a diagonal substep covers considerable more
consider the cell states in the (relatively) small neighbod SPatial distance than the other two choices. We consider the

in the cell state transitions. The Moore neighborhood ofumd Physical lengths from the positiofAz, Ay) to the current
1 has the form position (), to the position after a substep in thedirection

(I3), to the position after a substep in thalirection (,) and
to the position after a substep in both directiohg,), which

1 can be written explicitly as
L= /(A2)" + (Ay)”, (6)
On the other hanq, we nqtice that on the operational _Ievel, I, = \/(A:v 1% 4 (Ay)
certain route plan information (computed on the other highe
levels, according to [7]) is assigned to the moving objects. l, = \/(Ax)z + (Ay — 1)2,

For such an object, in fact only the information in its pdrtia 5 5
neighborhood, e.g. loy = \/(Aa: -1+ (Ay —1)".

Since we wish to make the number of the required substeps
as close as possible to the physical length of the intenagd st

1 .
choice, we may request
is substantial. Now we.would like to construct a series of Pe(L4 1) + py(1+1y) + pay(1+ Lay) = L. @)
single-cell substeps which should rebuild the intendeg ste _ _ .
choice in good approximation. See Fig. 1. The solution of (7) is
B I—lgy—1
Let x andy denote the horizontal and vertical dimension Pz = Lo By (1 N &)l
respectively. We consider an intended step (dfz, Ay). T AzY Az ) Ty
Without loss of generality, we requestr € N*, Ay € N. We Ay

disintegrate this multiple-cell step into a series of sepst
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and if Ay > 0, Technical Note 2: In the previous section of the one-
dimensional case we have discussed the implementation

by = [=lgy—1 ®) (see (1)—(5)) of probabilistic step choices. A similar dtri
y I, + Az, (1 + g) lw’ implementation in the two-dimensional case is also possibl
‘ Y av) However, in view of notational complexity, it suffices to
Doy = 1 =Pz —py. give a well-defined schema for the calculation of the substep
probabilities.

In the next substep, we updater and Ay according to the
last substep execution, calculate the new probabilities )
p, and p,, and make a decision according to these. ThigPerimental Results
procedure will be repeated until the destination is reached

(Axz = Ay = 0).

In the trivial caseAz = Ay = 1, (8) rendergp, = p, =
Y21y, = 2—/2. Inthe other trivial casé\z = 1, Ay = 0,
the solution isp, = 1, p, = p.y = 0, which meets the
expectation of a simple step in thedirection exactly. Table |
lists a set of solutions qgf,, in float numbers for the most usual
combinations of Az and Ay. In software implementation,
a similar lookup table can be employed in the program to
enhance efficiency.

B

TABLE |
L OOKUP TABLE OF THE SOLUTIONp; FOR SOME COMMON STEP CHOICE
CONFIGURATIONS.

Ar =1 Ar =2 Az =3 Axr =14 Az =5

1
talts
ralts

Fig. 2. The cell position’s occurrences in the substep @wior different
) . combinations of Az,Ay = 1,...,5. The cell with a relative position
Technical Note 1: Obviously, (7) assumes that the substepyz, Ay) is always drawn in black which indicates its contribution the

choice is indeed possible, i. e. the relevant cell positamesin final substep in all configurations.

the free state. If this requirement is only partially met, the

relationship (7) should be modified according to the avéglab In Fig. 2 some of the experimental results are listed. For a
substep options to deliver solutions similar to (8). In fadt CcOmbination ofAz and Ay, the empirical occurrences of the
combinations of the cell states in positiofis 0), (0,1) and 9rid cell positions in the relevant substep choice(far, Ay)
(1,1) (respecting positive\z and Ay) should be investigated. '€ shown in a linear grayscale. The white and black color
For example, in case the vertical substep move is impossil:ﬂ%fers to no occurrence and definite occurrence (i.e. with

Ay =0 1 1 1 1 1
Ay=1 | o0.207 0.258 0.285 0.299 0.306
Ay=2 | 0.129 0.252 0.305 0.335 0.354

1170

T % %% -

Ay =3 0.095 0.204 0.267 0.306 0.334
Ay =14 0.075 0.168 0.230 0.273 0.305
Ay=5 0.061 0.142 0.200 0.244 0.278

411
<
s allTar,
7

1

we have a probability of 1) respectively. The start positiof0,0) is
left empty, since it is not to be counted as a substep in the

Do + Pzy = 1, execution. In each of the configurations, the overall ez

Pe(1+10) + pay(1 + Luy) = L. (in color) of the cells forms a virtual trail of the intende@s.

The solution (8) becomes
V. CONCLUSIONS ANDFUTURE WORKS

5 In this paper, we considered the step choice problem in
one-dimensional and two-dimensional CA models for the
simulation of vehicular and pedestrian dynamics. Esplgcial
in the two-dimensional case, we are of the opinion that a

Iy —1+1 step size larger than one grid cell in the simulation cycle

should generally be allowed in the CA modeling. Due to

the nature of the spatial setup of the CAs, larger step sizes

This also solves the conflict problem on a local basis. inevitably introduce diagonal moves which are of signifitan

larger physical lengths than steps in the horizontal oricart

and sincepyy = 1 — py,

R
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directions exclusively. By applying some simple techngjughe simulation of more complicated scenarios, especially
of probabilistic substep calculations, we presented a raaw c when pedestrians form multiple intersecting flows and the
structive method for the solution of step choice problenmhwitinteracting aspects of the flows that disturb one anothed nee
good approximation results. Although the proposed methodtd be investigated.

merely aimed at the computations on the lowest simulation

level, it can be used in combination with arbitrary modules

on the higher levels (e.g. with route choice, user-defined VI. ACKNOWLEDGMENT

pedestrian characteristics/behavioral patterns). The authors gratefully acknowledge the support of Deutsche

Forschungsgemeinschaft (German Research Foundation) for
the project SCHW548/5-1+BA1189/4-1.

REFERENCES

[1] J. E. Bresenham. Algorithm for computer control of a
digital plotter. IBM Systems Journal, 4(1):25-30, 1965.

[2] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zit-
tartz. Simulation of pedestrian dynamics using a two-
dimensional cellular automatonPhysica A, 295:507—
525, 2001.

[3] M.-J. Chen, G. Barwolff, and H. Schwandt. Automa-
ton model with variable cell size for the simulation
of pedestrian flow, 2008. An electronic version can
be retrieved at: http://www.math.tu-berlin.dehenmin/
pub/chs080331.pdf (accessed July 9, 2010).

[4] J. Esser and M. Schreckenberg. Microscopic simulation
of urban traffic based on cellular automatént. J. of
Mod. Phys. C, 8(5):1025-1036, 1997.

[5] M. Fukui and Y. Ishibash. Traffic flow in 1D cellular
automaton model including cars moving with high speed.
Journal of the Physical Society of Japan, 65(6):1868—

Fig. 3. Simulation example showing two intersecting petfststreams 1870, 1.996' . . .

recorded at different time points. " [6] D. Helbing. Traffic and related self-driven many-palic

systems. Reviews of Modern Physics, 73:1067-1141,
In Fig. 3 we provide a very rudimentary simulation 2001.

example in demonstration of our method. The spatial setup’] S. P. Hoogendoorn and P. H. L. Bovy. Pedestrian

is a rectangular area. At the two bottom corners of this area route-choice and activity scheduling theory and models.

we produce two groups of pedestrians (drawn as unfilled Transportation Research Part B, 38:169-190, 2004.

circles and filled rhombuses in different colors) on a randoni8] J. Kari. Theory of cellular automata: A survejheoret-

basis. The individual pedestrians are given very simple ical Computer Science, 334:3-33, 2005.

instructions as route strategy namely a fixed moving dioecti [9] A. KeRel, H. Klupfel, J. Wahle, and M. Schreckenberg.

and the pedestrians will be dismissed once they reach the Microscopic simulation of pedestrian crowd motion,

other side of the rectangular region. In the step executions pages 193-200. In Schreckenberg and Sharma [12],

local conflicts are to be avoided (see Technical Note 1). 2002. ISBN 978-3-540-42690-5.

For repeated unsuccessful step executions, the pedsstr[df] S. Maerivoet and B. De Moor. Cellular automata models

in question are given the freedom to change or adjust their of road traffic. Physics Reports, 419:1-64, 2005.

moving directions temporarily to bypass the obstacles. ThEL] K. Nagel and M. Schreckenberg. A cellular automaton

simulation result is roughly satisfying for this simple tes ~ model for freeway traffic. J. Phys. | France, 2:2221-

case. With additional computation modules on the higher 2229, 1992.

simulation levels, we believe that more convincing resulfd2] M. Schreckenberg and S. D. Sharma, editfeslestrian

in complicated situations can be achieved, this will be our and Evacuation Dynamics. Springer-Verlag Berlin Hei-

future work too. Another focus in our future work is the  delberg, 2002. ISBN 978-3-540-42690-5.

high density situations, we wish to understand and descril@] M. Schreckenberg, A. Schadschneider, K. Nagel, and

the typical behavioral patterns of pedestrians of large mem N. Ito. Discrete stochastic models for traffic flow.

and possibly with different activity patterns, by means of  Physical Review E, 51(4):2939-2949, 1995.

empirical data (e.g. video recordings of crowds), and u$&4] S. Wolfram. A New Kind of Science. Wolfram Media,

them to construct computing modules on higher levels for  Inc., 2002. ISBN 1-57955-008-8.




