Inflection Points of Real and Tropical Curves

Sarah B. Brodsky UC Berkeley

November 29, 2011
Real Algebraic Curves and Their Inflection Points

Real Algebraic Curves and Their Inflection Points

References
Understanding the singularities, tangent lines, and inflection points of an algebraic curve helps us better understand the geometry and behavior of the curve itself.

The inflection points of an algebraic curve C are precisely the points at which the sign of the curvature of C changes.
Understanding the singularities, tangent lines, and inflection points of an algebraic curve helps us better understand the geometry and behavior of the curve itself.

The inflection points of an algebraic curve C are precisely the points at which the sign of the curvature of C changes.

Inflection points of real algebraic curves can be difficult to count.
Understanding the singularities, tangent lines, and inflection points of an algebraic curve helps us better understand the geometry and behavior of the curve itself.

The inflection points of an algebraic curve C are precisely the points at which the sign of the curvature of C changes.

Inflection points of real algebraic curves can be difficult to count.
Consider a plane algebraic curve
\[C = \{ (x : y : z) \in \mathbb{P}_k^2 : f(x, y, z) = 0 \} \], where \(k \) is any field of characteristic 0.

The **Hessian** \(H_f(x, y, z) \) is the polynomial

\[
H_f(x, y, z) := \text{det} \begin{pmatrix}
\frac{\partial^2 P}{\partial x^2} & \frac{\partial^2 P}{\partial x \partial y} & \frac{\partial^2 P}{\partial x \partial z} \\
\frac{\partial^2 P}{\partial x \partial y} & \frac{\partial^2 P}{\partial y^2} & \frac{\partial^2 P}{\partial y \partial z} \\
\frac{\partial^2 P}{\partial x \partial z} & \frac{\partial^2 P}{\partial y \partial z} & \frac{\partial^2 P}{\partial z^2}
\end{pmatrix}.
\]
Consider a plane algebraic curve
\[C = \{(x : y : z) \in \mathbb{P}_k^2 : f(x, y, z) = 0\}, \]
where \(k \) is any field of characteristic 0.

The **Hessian** \(H_f(x, y, z) \) is the polynomial

\[
H_f(x, y, z) := \text{det} \begin{pmatrix}
\frac{\partial^2 P}{\partial^2 x} & \frac{\partial^2 P}{\partial x \partial y} & \frac{\partial^2 P}{\partial x \partial z} \\
\frac{\partial^2 P}{\partial x \partial y} & \frac{\partial^2 P}{\partial^2 y} & \frac{\partial^2 P}{\partial y \partial z} \\
\frac{\partial^2 P}{\partial x \partial z} & \frac{\partial^2 P}{\partial y \partial z} & \frac{\partial^2 P}{\partial^2 z}
\end{pmatrix}.
\]

We have that \(H_f(x, y, z) = 0 \) defines the curve \(\text{Hess}_C \), known as the **Hessian** of \(C \). The set \(C \cap \text{Hess}_C \) is then defined as the set of **Inflection Points** of \(C \).
Consider a plane algebraic curve
\[C = \{(x : y : z) \in \mathbb{P}^2_k : f(x, y, z) = 0\}, \] where \(k \) is any field of characteristic 0.

The **Hessian** \(H_f(x, y, z) \) is the polynomial

\[
H_f(x, y, z) := \det \begin{pmatrix}
\frac{\partial^2 P}{\partial x^2} & \frac{\partial^2 P}{\partial x \partial y} & \frac{\partial^2 P}{\partial x \partial z} \\
\frac{\partial^2 P}{\partial x \partial y} & \frac{\partial^2 P}{\partial y^2} & \frac{\partial^2 P}{\partial y \partial z} \\
\frac{\partial^2 P}{\partial x \partial z} & \frac{\partial^2 P}{\partial y \partial z} & \frac{\partial^2 P}{\partial z^2}
\end{pmatrix}.
\]

We have that \(H_f(x, y, z) = 0 \) defines the curve \(\text{Hess}_C \), known as the **Hessian** of \(C \). The set \(C \cap \text{Hess}_C \) is then defined as the set of **Inflection Points** of \(C \).
If our field k is algebraically closed: Bézout’s theorem implies that a reducible algebraic curve of degree $d \geq 2$ has exactly $3d(d - 2)$ inflection points (counting multiplicity).

If k is not algebraically closed: The number of inflection points of an algebraic curve is dependent on both its degree and on the coefficients of its defining equation.
If our field k is algebraically closed: Bézout’s theorem implies that a reducible algebraic curve of degree $d \geq 2$ has exactly $3d(d - 2)$ inflection points (counting multiplicity).

If k is not algebraically closed: The number of inflection points of an algebraic curve is dependent on both its degree and on the coefficients of its defining equation.

Theorem

(Klein) A non-singular real algebraic curve in \mathbb{P}^2_R of degree $d \geq 3$ cannot have more than $d(d - 2)$ real inflection points.
If our field k is algebraically closed: Bézout’s theorem implies that a reducible algebraic curve of degree $d \geq 2$ has exactly $3d(d - 2)$ inflection points (counting multiplicity).

If k is not algebraically closed: The number of inflection points of an algebraic curve is dependent on both its degree and on the coefficients of its defining equation.

Theorem

(Klein) A non-singular real algebraic curve in \mathbb{P}^2_R of degree $d \geq 3$ cannot have more than $d(d - 2)$ real inflection points.
Let us call a non-singular real algebraic curve of degree d in \mathbb{P}^2_R maximally inflected if it has $d(d - 2)$ distinct real inflection points.

Klein showed that maximally inflected plane algebraic curves in \mathbb{P}^2_R exist.
Let us call a non-singular real algebraic curve of degree d in \mathbb{P}^2_R **maximally inflected** if it has $d(d - 2)$ distinct real inflection points.

Klein showed that maximally inflected plane algebraic curves in \mathbb{P}^2_R exist.

Finding maximally inflected real algebraic curves is difficult.
Let us call a non-singular real algebraic curve of degree d in \mathbb{P}^2_R maximally inflected if it has $d(d-2)$ distinct real inflection points.

Klein showed that maximally inflected plane algebraic curves in \mathbb{P}^2_R exist.

Finding maximally inflected real algebraic curves is difficult.

Brugallé and López de Medrano use tropical methods to construct real algebraic curves which are maximally inflected.
Let us call a non-singular real algebraic curve of degree d in $\mathbb{P}^2_\mathbb{R}$ **maximally inflected** if it has $d(d - 2)$ distinct real inflection points.

Klein showed that maximally inflected plane algebraic curves in $\mathbb{P}^2_\mathbb{R}$ exist.

Finding maximally inflected real algebraic curves is difficult.

Brugallé and López de Medrano use tropical methods to construct real algebraic curves which are maximally inflected.
Tropical Geometry: A Lightning-Speed Introduction

Inflection Points of Real and Tropical Curves
Sarah B. Brodsky

Real Algebraic Curves and Their Inflection Points

Tropical Geometry: A Lightning-Speed Introduction

Tropical Shadows of Real Inflection Points

References
\[\mathbb{K} := \{ \text{field of locally convergent generalized Puiseux series} \}. \]

A locally convergent generalized Puiseux series is a formal series of the form

\[a(t) = \sum_{r \in R} \alpha_r t^r \]

where \(R \subset \mathbb{R} \) is a well-ordered set, \(\alpha_r \in \mathbb{C} \), and the series \(a(t) \) is convergent for \(t > 0 \) small enough.
Tropical Geometry: A Lightning-Speed Introduction

\[\mathbb{K} := \{ \text{field of locally convergent generalized Puiseux series} \}. \]

A locally convergent generalized Puiseux series is a formal series of the form

\[a(t) = \sum_{r \in R} \alpha_r t^r \]

where \(R \subseteq \mathbb{R} \) is a well-ordered set, \(\alpha_r \in \mathbb{C} \), and the series \(a(t) \) is convergent for \(t > 0 \) small enough.

The field \(\mathbb{K} \) is of characteristic 0 and is algebraically closed.
\(\mathbb{K} := \{ \text{field of locally convergent generalized Puiseux series} \} \).

A **locally convergent generalized Puiseux series** is a formal series of the form

\[
a(t) = \sum_{r \in R} \alpha_r t^r
\]

where \(R \subset \mathbb{R} \) is a well-ordered set, \(\alpha_r \in \mathbb{C} \), and the series \(a(t) \) is convergent for \(t > 0 \) small enough.

The field \(\mathbb{K} \) is of characteristic 0 and is algebraically closed.

\(\mathbb{R} \mathbb{K} := \{ f \in \mathbb{K} : \alpha_r \in \mathbb{R} \text{ for all } r \in R \} \)
The field \mathbb{K} is of characteristic 0 and is algebraically closed.

$$\mathbb{K} := \{\text{field of locally convergent generalized Puiseux series}\}.$$
\(\mathbb{K} \) has a natural non-archimedean valuation

\[
val: \mathbb{K} \to \mathbb{T}
\]

such that

\[
val(x) := \begin{cases}
-\infty & \text{if } x = 0 \\
- \min \{ r : \alpha_r \neq 0 \} & \text{if } x \neq 0
\end{cases}
\]

Example: \(a(t) = t^5 + \pi t^{13} \mapsto -5 \).
\(\mathbb{K} \) has a natural non-archimedean valuation

\[
\text{val} : \mathbb{K} \to \mathbb{T}
\]

such that

\[
\text{val}(x) := \begin{cases}
-\infty & \text{if } x = 0 \\
- \min \{ r : \alpha_r \neq 0 \} & \text{if } x \neq 0
\end{cases}
\]

Example: \(a(t) = t^5 + \pi t^{13} \mapsto -5 \).
Consider the polynomial

\[f = \sum_{i=1}^{k} a_i(t) \cdot x_1^{b_{i1}} \cdots x_n^{b_{in}} \in \mathbb{K}[x_1, ..., x_n], \]

Define \(f_t \) as the \textit{tropicalization} of \(f \), obtained by replacing + with \(\oplus := \max\{x, y\} \), \cdot with \(\odot := + \), and all coefficients with their valuation.

\textbf{Note:} that all tropical objects will be denoted by a subscript \(t \).
Given a tropical polynomial f_t, a **tropical hypersurface** $\mathcal{H}(f_t)$ is the set of all points in \mathbb{R}^n at which the maximum is attained by at least two of the linear functions defining f_t.

Example: Consider $f = x + y + t^{-1}$. Its tropicalization is $f_t = x \oplus y \oplus 1 = \max\{x, y, 1\}$.
Given a tropical polynomial f_t, a **tropical hypersurface** $\mathcal{H}(f_t)$ is the set of all points in \mathbb{R}^n at which the maximum is attained by at least two of the linear functions defining f_t.

Example: Consider $f = x + y + t^{-1}$. Its tropicalization is $f_t = x \oplus y \oplus 1 = \max\{x, y, 1\}$.
Tropical Shadows of Real Inflection Points
Given an algebraic curve X over \mathbb{K}, Brugallé and López de Medrano construct a method for determining where the tropicalizations of the inflection points q of X lie on X_t by determining where the tropicalizations of the tangent lines of q intersect X_t.
Tropical Shadows of Real Inflection Points

Let's consider the example (on the board):
Tropical Shadows of Real Inflection Points

There are four possibilities for $E := X_t \cap T_t \cap \{q_t\}$:

Theorem

The vertex v is a common vertex of X_t and T_t and is contained in E. Moreover, E is one of the following:
Tropical Shadows of Real Inflection Points

We can further pinpoint the exact edge σ of E_{q_t} lies on:

Theorem

1. If $E = \{v\}$, then $\sigma = \{v\}$.
2. If E is the union of two bounded edges e_1, e_2 and one unbounded edge e_3, then

 1. If $\ell(e_1) > \ell(e_2)$, then $\sigma = \{p_{e_1}\}$ where p_{e_1} is the point of distance $\frac{\ell(e_1) - \ell(e_2)}{3}$ from v.
 2. If $\ell(e_1) = \ell(e_2)$, then $\sigma = e_3$
3. If E is the union of 3 bounded edges e_1, e_2, e_3, then

 1. If $\ell(e_1) \geq \ell(e_2) > \ell(e_3)$, then $\sigma = \{p_{e_1}, p_{e_2}\}$, where p_{e_i} is the point on e_i of distance $\frac{\ell(e_i) - \ell(e_3)}{3}$ from v.
 2. If $\ell(e_1) > \ell(e_2) = \ell(e_3)$, then $\sigma = [v; p_{e_1}]$, where p_{e_1} is the point on e_1 of distance $\frac{\ell(e_1) - \ell(e_2)}{3}$ from v.
 3. If $\ell(e_1) = \ell(e_2) = \ell(e_3)$, then $\sigma = \{v\}$.
Tropical Shadows of Real Inflection Points

How does pinpointing where inflection points of real algebraic curves tropicalize?

Theorem

(Brugallé and López de Medrano) Let X_t be a non-singular tropical curve in \mathbb{R}^2 defined by the tropical polynomial f_t. Suppose that the three edges of every vertex v of X_t have distinct lengths. Then the real algebraic curve defined by f has exactly $d(d-2)$ inflection points in $\mathbb{P}^2_\mathbb{R}$ for $t > 0$ small enough.
Maximally inflected curves with all inflection points on a single component.
Maximally inflected quartics.
References

