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The theory of Riemann surfaces is a classical field of mathematics where geom-
etry and analysis play equally important roles. The purpose of these notes is to
present some basic facts of this theory to make this book more self contained.
In particular we will deal with classical descriptions of Riemann surfaces,
Abelian differentials, periods on Riemann surfaces, meromorphic functions,
theta functions, and uniformization techniques.

Motivated by the concrete point of view on Riemann surfaces of this book
we choose essentially an analytic presentation. Concrete analytic tools and
constructions available on Riemann surfaces and their applications to the
theory are explained in detail. Most of them are proven or accompanied with
sketches of proofs. For the same reason, difficult non-constructive proofs of
some classical existence results in the theory of Riemann surfaces (such as the
existence of conformal coordinates, of holomorphic and Abelian differentials,
of meromorphic sections of holomorphic line bundles) are omitted. The lan-
guage of the geometric approach is explained in the section on holomorphic
line bundles.

This chapter is based on the notes of a graduate course given at the Tech-
nische Universität Berlin. There exists a huge literature on Riemann surfaces
including many excellent classical monographs. Our list [FK92, Jos06, Bos,
Bea78, AS60, Gu66, Lew64, Spr81] for further reading is by no means com-
plete.

1.1 Definition of a Riemann surface and basic examples

Let R be a two-dimensional real manifold, and let {Uα}α∈A be an open cover
of R, i.e., ∪α∈AUα = R. A local parameter (local coordinate, coordinate chart)
is a pair (Uα, zα) of Uα with a homeomorphism zα : Uα → Vα to an open subset
Vα ⊂ C. Two coordinate charts (Uα, zα) and (Uβ , zβ) are called compatible if
the mapping
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fβ,α = zβ ◦ z−1
α : zα(Uα ∩ Uβ)→ zβ(Uα ∩ Uβ) , (1.1)

which is called a transition function is holomorphic. The local parameter
(Uα, zα) will be often identified with the mapping za if its domain is clear
or irrelevant.
If all the local parameters {Uα, zα}α∈A are compatible, they form a complex
atlas A of R. Two complex atlases A = {Uα, zα} and Ã = {Ũβ, z̃β} are

compatible if A ∪ Ã is a complex atlas. An equivalence class Σ of complex
atlases is called a complex structure. It can be identified with a maximal atlas
A∗, which consists of all coordinate charts, compatible with an atlas A ⊂ Σ.

Definition 1. A Riemann surface is a connected one-dimensional complex
analytic manifold, that is, a connected two-dimensional real manifold R with
a complex structure Σ on it.

When it is clear which complex structure is considered, we use the notation
R for the Riemann surface.

If {U, z} is a coordinate on R then for every open set V ⊂ U and every
function f : C→ C, which is holomorphic and bijective on z(V ), {V, f ◦ z} is
also a local parameter on R.

The coordinate charts establish homeomorphisms of domains in R with
domains in C. This means that locally the Riemann surface is just a domain
in C. But for any point P ∈ R there are many possible choices of these
homeomorphisms. Therefore one can associate to R only the notions from the
theory of analytic functions in C that are invariant with respect to biholo-
morphic maps, i.e. those that one can define without choosing a specific local
parameter. For example, one can talk about the angle between two smooth
curves γ and γ̃ on R intersecting at some point P ∈ R. This angle is equal
to the one between the curves z(γ) and z(γ̃) that lie in C and intersect at the
point z(P ), where z is some local parameter at P . This definition is invariant
with respect to the choice of z.

If (R, Σ) is a Riemann surface, then the manifold R is oriented.
The simplest examples of Riemann surfaces are any domain (connected

open subset) U ⊂ C in the complex plane, the whole complex plane C, and
the extended complex plane (or Riemann sphere) Ĉ = CIP1 = C ∪ {∞}. The
complex structures on U and C are defined by single coordinate charts (U, id)
and (C, id). The extended complex plane is the simplest compact Riemann sur-
face. To define the complex structure on it we use two charts (U1, z2), (U2, z2)
with

U1 = C , z1 = z ,

U2 = (C\{0}) ∪ {∞} , z2 = 1/z .

The transition functions

f1,2 = z1 ◦ z−1
2 , f2,1 = z2 ◦ z−1

1 : C\{0} → C\{0}
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are holomorphic
f1,2(z) = f2,1(z) = 1/z .

To a large extent the beauty of the theory of Riemann surfaces is due to
the fact that Riemann surfaces can be described in many completely different
ways. Interrelations between these descriptions make up an essential part of
the theory. The basic examples of Riemann surfaces we are going to discuss
now are exactly these foundations the whole theory is based on.

1.1.1 Non-singular algebraic curves

Definition 2. An algebraic curve C is a subset in C2

C = {(µ, λ) ∈ C2 | P(µ, λ) = 0} , (1.2)

where P is an irreducible polynomial in λ and µ

P(µ, λ) =

N∑

i=0

M∑

j=0

pijµ
iλj .

The curve C is called non-singular if

gradCP|P=0
=

(
∂P
∂µ

,
∂P
∂λ

)

|P(µ,λ)=0

(1.3)

is nowhere zero on C.

The complex structure on C is defined as follows: the variable λ is taken as
local parameter in the neighborhoods of the points where ∂P/∂µ 6= 0, and the
variable µ is taken as local parameter near the points where ∂P/∂λ 6= 0. The
holomorphic compatibility of the introduced local parameters results from the
complex version of the implicit function theorem.

The Riemann surface C can be made a compact Riemann surface

Ĉ = C ∪ {∞(1)} ∪ . . . ∪ {∞N}

by adjoining points ∞(1), . . . ,∞(N) at infinity (λ → ∞, µ → ∞), and intro-
ducing admissible local parameters at these points, see Fig. 1.1.

Definition 3. Let R be a Riemann surface such that there exists an open
subset

U∞ = U (1)
∞ ∪ . . . ∪ U (N)

∞ ⊂ R
such that R\U∞ is compact and U

(n)
∞ are homeomorphic to punctured discs

zn : U (n)
∞ → D\{0} = {z ∈ C | 0 < |z| < 1} ,

where the homeomorphisms zn are holomorphically compatible with the com-
plex structure of R. Then R is called a compact Riemann surface with punc-
tures.
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Fig. 1.1. A compact Riemann surface with punctures.

Let us extend the homeomorphisms zn

zn : Û (n)
∞ = U (n)

∞ ∪ {∞(n)} → D = {z | |z| < 1} , (1.4)

by setting zn(∞(n)) = 0, n = 1, . . . , N . A complex atlas for a new Riemann
surface

R̂ = R∪ {∞(1)} ∪ . . . ∪ {∞(N)}
is defined as a union of a complex atlas A of R with the coordinate charts
(1.4) compatible with A due to Definition 3. The Riemann surface R̂ is called
the compactification of the punctured Riemann surface R.

Hyperelliptic curves.

Let us consider the important special case of hyperelliptic curves

µ2 =
N∏

j=1

(λ− λj) , N ≥ 3 , λj ∈ C . (1.5)

When N = 3 or 4 the curve (1.5) is called elliptic. The curve is non-singular
if all the points λj are different

λj 6= λi , i, j = 1, . . . , N .

In this case the choice of local parameters can be additionally specified.
Namely, in the neighborhood of the points (µ0, λ0) with λ0 6= λj ∀j, the
local parameter is the homeomorphism

(µ, λ)→ λ . (1.6)

In the neighborhood of each point (0, λj) it is defined by the homeomorphism

(µ, λ)→
√
λ− λj . (1.7)

For odd N = 2g + 1, the curve (1.5) has one puncture ∞

P →∞⇐⇒ λ→∞ ,

and a local parameter in its neighborhood is given by the homeomorphism
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z∞ : (µ, λ)→ 1√
λ
. (1.8)

For even N = 2g+ 2 there are two punctures ∞± distinguished by the condi-
tion

P →∞± ⇐⇒ µ

λg+1
→ ±1 , λ→∞ ,

and the local parameters in the neighborhood of both points are given by the
homeomorphism

z∞± : (µ, λ)→ λ−1 . (1.9)

Theorem 1. The local parameters (1.6, 1.7, 1.8, 1.9) describe a compact Rie-
mann surface

Ĉ = C ∪ {∞} if N is odd ,

Ĉ = C ∪ {∞±} if N is even ,

of the hyperelliptic curve (1.5).

One prefers to consider compact Riemann surfaces and thus the compact-
ification Ĉ is called the Riemann surface of the curve C.

It turns out that all compact Riemann surfaces can be described as com-
pactifications of algebraic curves (see for example [Jos06]).

1.1.2 Quotients under group actions

Definition 4. Let ∆ be a domain in C. A group G : ∆ → ∆ of holomorphic
transformations acts discontinuously on ∆ if for any P ∈ ∆ there exists a
neighborhood V ∋ P such that

gV ∩ V = ∅ , ∀g ∈ G , g 6= I . (1.10)

The quotient space ∆/G is defined by the equivalence relation

P ∼ P ′ ⇔ ∃g ∈ G : P ′ = gP .

By the natural projection π : ∆→ ∆/G every point is mapped to its equiva-
lence class. Every point P ∈ ∆ has a neighborhood V satisfying (1.10). Then
U = π(V ) is open and π|V : V → U is a homeomorphism. Its inversion
z : U → V ⊂ ∆ ⊂ C is a local parameter. One can cover ∆/G by domains of
this type. The transition functions are the corresponding group elements g;
therefore they are holomorphic.

Theorem 2. ∆/G is a Riemann surface.
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Tori

Let us consider the case ∆ = C and the group G generated by two trans-
lations

z → z + w , z → z + w′ ,

where w,w′ ∈ C are two non-parallel vectors, Im w′/w 6= 0, see Fig. 1.2. The
group G is commutative and consists of the elements

gn,m(z) = z + nw +mw′ , n,m ∈ ZZ . (1.11)

The factor C/G has a nice geometrical realization as the parallelogram

T = {z ∈ C | z = aw + bw′, a, b ∈ [0, 1)} .

There are no G-equivalent points in T and on the other hand every point in
C is equivalent to some point in T . Since the edges of the parallelogram T are
G-equivalent z ∼ z + w, z ∼ z + w′, R is a compact Riemann surface, which
is topologically a torus. We discuss this case in more detail in Sect. 1.5.5.

w0

w′ w + w′

Fig. 1.2. A complex torus

The uniformization theorem (see for example [Jos06]) claims that all com-
pact Riemann surfaces can be obtained as quotients ∆/G.

1.1.3 Polyhedral surfaces as Riemann surfaces

One can build a Riemann surface gluing together pieces of the complex plane
C.

Consider a finite set of disjoint polygons Fi and identify isometrically pairs
of edges in such a way that the result is a compact oriented polyhedral surface
P . A polyhedron in 3-dimensional Euclidean space is an example of such a
surface.

Theorem 3. The polyhedral surface P is a Riemann surface.

In order to define a complex structure on a polyhedral surface let us dis-
tinguish three kinds of points (see Fig. 1.3):
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θ2

θ1

θn

Fig. 1.3. Three kinds of points on a polyhedral surface

1. inner points of triangles,
2. inner points of edges,
3. vertices.
One can map isometrically the corresponding polygon Fi (or pairs of neigh-

boring polygons) into C. This provides local parameters at the points of the
first and the second kind. Let P be a vertex and Fi, . . . , Fn the sequence of
successive polygons with this vertex (see the point (iii) above). Denote by θi
the angle of Fi at P . Then define

γ =
2π∑n
i=1 θi

.

Consider a suitably small ball neighborhood of P, which is the union U r =
∪iF ri , where F ri = {Q ∈ Fi | | Q − P |< r}. Each F ri is a sector with
angle θi at P . We map it as above into C with P mapped to the origin
and then apply z 7→ zγ, which produces a sector with the angle γθi. The
mappings corresponding to different polygons Fi can be adjusted to provide
a homeomorphism of U r onto a disc in C. All transition functions of the
constructed charts are holomorphic since they are compositions of maps of
the form z 7→ az + b and z 7→ zγ (away from the origin).

It turns out that any compact Riemann surface can be recovered from
some polyhedral surface [Bos].

1.1.4 Complex structure generated by the metric

There is a smooth version of the previous construction. Let (R, g) be a two-real
dimensional orientable differential manifold with Riemannian metric g.

Definition 5. Two metrics g and g̃ are called conformally equivalent if they
differ by a function on R

g ∼ g̃ ⇔ g = f g̃ , f : R → IR+ . (1.12)

The transformation (1.12) preserves angles. This relation defines classes of
conformally equivalent metrics.

Let (x, y) : U ⊂ R → R2 be a local coordinate. In terms of the complex
variable z = x+ iy the metric can be written as
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g = Adz2 + 2Bdzdz̄ + Ādz̄2, A ∈ C, B ∈ IR, B > |A| . (1.13)

Note that the complex coordinate z is not compatible with the complex struc-
ture we will define on R with the help of g.

Definition 6. A coordinate w : U → C is called conformal if the metric in
this coordinate is of the form

g = eφdw, dw̄ , (1.14)

i.e., it is conformally equivalent to the standard metric dwdw̄ of IR2 = C.

If F : U ⊂ IR2 → IR3 is an immersed surface in IR3 then the first fundamen-
tal form < dF, dF > induces a metric on U . When the standard coordinate
(x, y) of IR2 ⊃ U is conformal, the parameter lines

F (x,∆m) , F (∆n, y) , x, y ∈ IR , n,m ∈ ZZ , ∆→ 0

comprise an infinitesimal square net on the surface.
It is easy to show that every compact Riemann surface admits a conformal

Riemannian metric. Indeed, each point P ∈ R possesses a local parameter
zP : UP → DP ⊂ C, where DP is a small open disc. Since R is compact there
exists a finite covering ∪ni=1UPi = R. For each i choose a smooth function
mi : DPi → IR with

mi > 0 on Di , mi = 0 on C \Di .

mi(zPi)dzPidz̄Pi is a conformal metric on UPi . The sum of these metrics over
i = 1, . . . , n yields a conformal metric on R.

Moreover, any metric can be brought to conformal form (1.14) due to the
following fundamental theorem.

Theorem 4. Conformal equivalence classes of metrics on an orientable two-
manifold R are in one to one correspondence with the complex structures on
R.

Let us show how one finds conformal coordinates. The metric (1.13) can
be written as follows (we suppose A 6= 0 )

g = s(dz + µdz̄)(dz̄ + µ̄dz) , s > 0 , (1.15)

where

µ =
Ā

2B
(1 + |µ|2) , s =

2B

1 + |µ|2 .

Here |µ| is a solution of the quadratic equation

|µ|+ 1

|µ| =
2B

|A| ,
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which can be chosen |µ| < 1. Comparing (1.15) and (1.14) we get

dw = λ(dz + µdz̄)

or
dw = λ(dz̄ + µ̄dz).

In the first case the map w(z, z̄) satisfies the equation

wz̄ = µwz (1.16)

and preserves the orientation w :⊃ CU → V ⊂ C since |µ| < 1. In the second
case w : U → V inverses the orientation.

Equation (1.16) is called the Beltrami equation and µ(z, z̄) is called the
Beltrami coefficient.

By analytic methods (see for example [Spi79]) one can prove that for any
Beltrami coefficient µ there exists a local solution to the Beltrami equation in
the corresponding functional class. This allows us to introduce local conformal
coordinates.

Proposition 1. Let R be a two-dimensional orientable manifold with a metric
g and a positively oriented atlas ((xα, yα) : Uα → IR2)α∈A on R. Let (x, y) :
U ⊂ R → IR2 be one of these coordinate charts around a point P ∈ U ,
let z = x + iy and µ(z, z̄) be the Beltrami coefficient and let wβ(z, z̄) be a
solution to the Beltrami equation (1.16) in a neighborhood Vβ ⊂ V = z(U)
with P ∈ Uβ = z−1(Vβ). Then the coordinate wβ is conformal and the atlas
(wβ : Uβ → C)β∈B defines a complex structure on R.

Only the holomorphicity of the transition function may require a comment.
Let w : U → C, w̃ : Ũ → C be two local parameters with a non-empty
intersection U ∩ Ũ 6= ∅. Both coordinates are conformal

g = eφdw dw̄ = eφ̃dw̃ d ¯̃w,

which happens in one of the two cases

∂w̃

∂w̄
= 0 or

∂w̃

∂w
= 0 (1.17)

only. The transition function w̃(w) is holomorphic and not antiholomorphic
since the map w → w̃ preserves orientation.

Repeating these arguments one observes that conformally equivalent met-
rics generate the same complex structure, and Theorem 4 follows.

1.2 Holomorphic mappings

Definition 7. A mapping
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f : M → N

between Riemann surfaces is called holomorphic if for every local parameter
(U, z) on M and every local parameter (V,w) on N with U ∩ f−1(V ) 6= ∅, the
mapping

w ◦ f ◦ z−1 : z(U ∩ f−1(V ))→ w(V )

is holomorphic.

A holomorphic mapping to C is called a holomorphic function, a holomor-
phic mapping to Ĉ is called a meromorphic function.

The following lemma characterizes the local behavior of holomorphic map-
pings.

Lemma 1. Let f : M → N be a holomorphic mapping. Then for any a ∈ M
there exist k ∈ IN and local parameters (U, z), (V,w) such that a ∈ U, f(a) ∈ V
and F = w ◦ f ◦ z−1 : z(U)→ w(V ) equals

F (z) = zk. (1.18)

Corollary 1. Let f : M → N be a non-constant holomorphic mapping, then
f is open, i.e., the image of an open set is open.

If M is compact then f(M) is compact as a continuous image of a compact
set and open due to the previous claim. This implies that in this case the
corresponding non-constant holomorphic mapping is surjective and its image
N = f(M) compact.

We see that there exist no non-constant holomorphic mappings f : M → C,
which is the issue of the classical Liouville theorem

Theorem 5. On a compact Riemann surface there exists no non-constant
holomorphic function.

Non-constant holomorphic mappings of Riemann surfaces f : M → N are
discrete: for any point P ∈ N the set SP = f−1(P ) is discrete, i.e. for any
point a ∈M there is a neighborhood V ⊂M intersecting with SP in at most
one point, |V ∩ SP | ≤ 1. Non-discreteness of S for a holomorphic mapping
would imply the existence of a limiting point in SP and finally f = const, f :
M → P ∈ N. Non-constant holomorphic mappings of Riemann surfaces are
also called holomorphic coverings.

Definition 8. Let f : M → N be a holomorphic covering. A point P ∈ M
is called a branch point of f if it has no neighborhood V ∋ P such that
f
∣∣
V

is injective. A covering without branch points is called unramified (rami-
fiedcovering!ramified or branched covering in the opposite case).

Note that various definitions of a covering are used in the literature (see for ex-
ample [Ber57, Jos06, Bea78]). In particular, often the term “covering” is used
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for unramified coverings of our definition. Ramified coverings are important
in the theory of Riemann surfaces.

The number k ∈ IN in Lemma 1 can be described in topological terms.
There exist neighborhoods U ∋ a, V ∋ f(a) such that for any Q ∈ V \{f(a)}
the set f−1(Q) ∩ U consists of k points. One says that f has the multiplicity
k at a. Lemma 1 allows us to characterize the branch points of a holomorphic
covering f : M → N as the points with the multiplicity k > 1. Equivalently,
P is a branch point of the covering f : M → N if

∂(w ◦ f ◦ z−1)

∂z

∣∣∣∣
z(P )

= 0 , (1.19)

where z and w are local parameters at P and f(P ) respectively. Due to the
chain rule this condition is independent of the choice of the local parameters.
The number bf (P ) = k − 1 is called the branch number of f at P ∈ M. The
next lemma follows immediately from Lemma 1.

Lemma 2. Let f : M → N be a holomorphic covering. Then the set of branch
points

B = {P ∈M | bf (P ) > 0}
is discrete. If M is compact, then B is finite.

The projection A = f(B) of the set of branch points is also finite. The
number m of preimages for any point in N\A is the same since any two
points Q1, Q2 ∈ N\A can be connected by a curve l ⊂ N\A. Combined with
the topological characterization of the branch numbers this fact implies the
following theorem.

Theorem 6. Let f : M → N be a non-constant holomorphic mapping between
two compact Riemann surfaces. Then there is a number m ∈ IN such that f
takes every value Q ∈ N precisely m times, counting multiplicities. That is,
for all Q ∈ N ∑

P∈f−1(Q)

(bf (P ) + 1) = m . (1.20)

b = 2

b = 1
b = 1

N

f

M

Fig. 1.4. Covering
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Definition 9. The number m above is called the degree of f , and the covering
f : M → N is called m-sheeted.

Applying Theorem 6 to holomorphic mappings f : R→ Ĉ we get

Corollary 2. A non-constant meromorphic function on a compact Riemann
surface assumes every value m times, where m is the number of its poles
(counting multiplicities).

1.2.1 Algebraic curves as coverings

Let C be a non-singular algebraic curve (1.2) and Ĉ its compactification. The
map

(µ, λ)→ λ (1.21)

is a holomorphic covering Ĉ → Ĉ. If N is the degree of the polynomial P(µ, λ)
in µ

P(µ, λ) = µNpN (λ) + µN−1pN−1(λ) + . . .+ p0(λ) ,

where all pi(λ) are polynomials, then λ : Ĉ → Ĉ is an N -sheeted covering, see
Fig. 1.4.

The points with ∂P/∂µ = 0 are the branch points of the covering λ : C →
C. At these points ∂P/∂λ 6= 0, and µ is a local parameter. The derivative of
λ with respect to the local parameter vanishes

∂λ

∂µ
= −∂P/∂µ

∂P/∂λ = 0 ,

which characterizes (1.19) the branch points of the covering (1.21). In the
same way the map (µ, λ) 7→ µ is a holomorphic covering of the µ-plane. The
branch points of this covering are the points with ∂P/∂λ = 0.

Hyperelliptic curves

Before we consider the hyperelliptic case let us recall a conventional de-
scription of the Riemann surface of the function µ =

√
λ. One takes two copies

of the complex plane C with cuts [0,∞] and glues them together crosswise
along this cut (see Fig. 1.5). The image in Fig. 1.5 visualizes the points of the
curve

C = {(µ, λ) ∈ C2 | µ2 = λ} ,
and the point λ = 0 gives an idea of a branch point.

The compactification Ĉ of the hyperelliptic curve

C = {(µ, λ) ∈ C2 | µ2 =

N∏

i=1

(λ− λi)} (1.22)
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0

Fig. 1.5. Riemann surface of
√

λ

is a two sheeted covering of the extended complex plane λ : Ĉ → Ĉ. The
branch points of this covering are

(0, λi), i = 1, . . . , N and ∞ for N = 2g + 1 ,

(0, λi), i = 1, . . . , N for N = 2g + 2 ,

with the branch numbers bλ = 1 at these points. Only the branching at
λ = ∞ possibly needs some clarification. The local parameter at ∞ ∈ Ĉ is
1/λ, whereas the local parameter at the point ∞ ∈ Ĉ of the curve Ĉ with
N = 2g + 1 is 1/

√
λ due to (1.8). In these coordinates the covering mapping

reads as (compare with (1.18))

1

λ
=

(
1√
λ

)2

,

which shows that bλ(∞) = 1.
One can imagine the Riemann surface Ĉ with N = 2g+2 as two Riemann

spheres with the cuts

[λ1, λ2], [λ3, λ4], . . . , [λ2g+1, λ2g+2]

glued together crosswise along the cuts. Fig. 1.6 presents a topological image
of this Riemann surface. The image in Fig. 1.7 shows the Riemann surface
“from above” or “the first” sheet on the covering λ : C → C.

Ĉ Ĉ

Fig. 1.6. Topological image of a hyperelliptic surface

Hyperelliptic curves possess a holomorphic involution
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λ6

λ1

λ2

λ5

λ4

λ3

Fig. 1.7. Hyperelliptic surface C as a two-sheeted cover. The parts of the curves
on C that lie on the second sheet are indicated by dotted lines.

h : (µ, λ)→ (−µ, λ) , (1.23)

which interchanges the sheets of the covering λ : Ĉ → Ĉ. It is called the
hyperelliptic involution. The branch points of the covering are the fixed points
of h.

The cuts in Fig. 1.7 are conventional and belong to the image shown in
Fig. 1.7 and not to the hyperelliptic Riemann surface itself, which is deter-
mined by its branch points alone. In particular, the two images shown in
Fig. 1.8 correspond to the same Riemann surface and to the same covering
(µ, λ)→ λ.

Fig. 1.8. Two equivalent images of the same hyperelliptic Riemann surface

1.2.2 Symmetric Riemann surfaces as coverings

The construction of Sect. 1.1.2 can be also applied to Riemann surfaces.

Theorem 7. Let R be a (compact) Riemann surface and let G be a finite
group of holomorphic automorphisms1 of order |G|. Then R/G is a Riemann
surface with the complex structure determined by the condition that the canon-
ical projection

π : R → R/G
1 This group is always finite if the genus ≥ 2.
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is holomorphic. This is an |G|-sheeted covering, ramified at the fixed points of
G.

The canonical projection π defines an |G|-sheeted covering. Denote by

GP0 = {g ∈ G | gP0 = P0}

the stabilizer of P0. It is always possible to choose a neighborhood U of P0,
which is invariant with respect to all elements of GP0 and such that U∩gU = ∅
for all g ∈ G\GP0 . Let us normalize the local parameter z on U by z(P0) = 0.
The local parameter w in π(U), which is |GP0 |-sheetedly covered by U is
defined as the product of the values of the local parameter z at all equivalent
points lying in U . In terms of the local parameter z all the elements of the
stabilizer are represented by the functions g̃ = z◦g◦z−1 : z(U)→ z(U), which
vanish at z = 0. Since g̃(z) are also invertible they can be represented as g̃(z) =
zhg(z) with hg(0) 6= 0. Finally the w − z coordinate charts representation of
π

w ◦ π ◦ z−1 : z → z|GP0 |
∏

g∈GP0

hg(z)

shows that the branch number of P0 is |GP0 |.
The compact Riemann surface Ĉ of the hyperelliptic curve

µ2 =
2N∏

n=1

(λ2 − λ2
n) , λ2

i 6= λ2
j , λk 6= 0 (1.24)

has the following group of holomorphic automorphisms

h : (µ, λ)→ (−µ, λ)
i1 : (µ, λ)→ (µ,−λ)

i2 = hi1 : (µ, λ)→ (−µ,−λ) .

The hyperelliptic involution h interchanges the sheets of the covering λ : Ĉ →
Ĉ, therefore the factor Ĉ/h is the Riemann sphere. The covering

Ĉ → Ĉ/h = Ĉ

is ramified at all the points λ = ±λn.
The involution i1 has four fixed points on Ĉ: two points with λ = 0 and

two points with λ =∞. The covering

Ĉ → Ĉ1 = Ĉ/i1 (1.25)

is ramified at these points. The mapping (1.25) is given by

(µ, λ)→ (µ,Λ) , Λ = λ2 ,

and Ĉ1 is the Riemann surface of the curve
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µ2 =

2N∏

n=1

(Λ− λ2
n) .

The involution i2 has no fixed points. The covering

Ĉ → Ĉ2 = Ĉ/i2 (1.26)

is unramified. The mapping (1.26) is given by

(µ, λ)→ (M,Λ) , M = µλ, Λ = λ2 ,

and Ĉ2 is the Riemann surface of the curve

M2 = Λ
2N∏

n=1

(Λ − λ2
n) .

1.3 Topology of Riemann surfaces

1.3.1 Spheres with handles

We have seen in Sect. 1.1 that any Riemann surface is a two-dimensional ori-
entable real manifold. In this section we present basic facts about the topology
of these manifolds focusing on the compact case. We start with an intuitive
fundamental classification theorem.

Theorem 8. (and Definition) Every compact Riemann surface is homeo-
morphic to a sphere with handles (i.e., a topological manifold homeomorphic
to a sphere with handles in Euclidean 3-space). The number g ∈ IN of han-
dles is called the genus of R. Two manifolds with different genera are not
homeomorphic.

b2

b1

a2

a1

Fig. 1.9. A sphere with 2 handles

The genus of the compactification Ĉ of the hyperelliptic curve (1.22) with
N = 2g + 1 or N = 2g + 2 is equal to g.

For many purposes it is convenient to use planar images of spheres with
handles.
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Proposition 2. Let Πg be a sphere S2 ∼= IR2 ∪{∞} with 2g holes bounded by
the non-intersecting curves

γ1, γ
′
1, . . . , γg, γ

′
g . (1.27)

and identify the curves γi ≈ γ′i, i = 1, . . . , g in such a way that the orientations
of these curves with respect to Πg are opposite (see Fig. 1.10). Then Πg is
homeomorphic to a sphere with g handles.

γ1

γg γ′g

γ′1

Πg

Fig. 1.10. A planar image of a sphere with g handles

To check this claim one should cut up all the handles of a sphere with g
handles.

A normalized simply-connected image of a sphere with g handles is de-
scribed in the following proposition.

Proposition 3. Let Fg be a 4g-gon with the edges

a1, b1, a
′
1, b

′
1, . . . , ag, bg, a

′
g, b

′
g , (1.28)

listed in the order of traversing the boundary of Fg and the boundary curves

ai ≈ a′i, bi ≈ b′i, i = 1, . . . , g

are identified in such a way that the orientations of the edges ai and a′i as
well as bi and b′i with respect to Fg are opposite (see Fig. 1.11). Then Fg is
homeomorphic to a sphere with g handles. The sphere without handles (g = 0)
is homeomorphic to a 2-gon with the edges identified.

This claim is visualized in Figs. 1.12, 1.13. One choice of closed curves
a1, b1, . . . , ag, bg on a sphere with handles is shown in Fig. 1.9.

Let us consider a triangulation T of R, i.e., a set {Ti} of topological trian-
gles, which are glued along their edges (the identification of vertices or edges
of individual triangles is not excluded), and which comprise R. More gener-
ally, one can consider cell decompositions of R into topological polygons {Ti}.
Obviously, compact Riemann surfaces possess finite triangulations.
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b′1

b1

b′g

a′1

a1

a′g

ag

Fg
bg

Fig. 1.11. Simply-connected image of a sphere with g handles

a

b
≃ ≃b

a

a′

b′
a

b′

b

Fig. 1.12. Gluing a torus

∼=∼= ∼=
a

l
b

a′

b′

l

a

a′

b alb′

b

a

b

Fig. 1.13. Gluing a handle

Definition 10. Let T be a triangulation of a compact two-real dimensional
manifold R and F be the number of triangles, E the number of edges, V the
number of vertices of T . The number

χ = F − E + V (1.29)

is called the Euler characteristic of R.

Proposition 4. The Euler characteristic χ(R) of a compact Riemann surface
R is independent of the triangulation of R.

A differential geometric proof of this fact is based on the Gauss–Bonnet
theorem (see for example [Spi79]). Introduce a conformal metric eu dz dz̄ on
a Riemann surface (see Sect. 1.1.4). The Gauss–Bonnet theorem provides us
with the following formula for the Euler characteristic

χ(R) =
1

2π

∫

R
K , (1.30)

where
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K = −2uzz̄e
−u

is the curvature of the metric. The right hand side in (1.30) is independent of
the triangulation, the left hand side is independent of the metric we introduced
on R. This proves that the Euler characteristic is a topological invariant of
R.

A triangulation of the simply-connected model Fg of Proposition 3 gives
a formula for χ in terms of the genus.

Corollary 3. The Euler characteristic χ(R) of a compact Riemann surface
R of genus g is equal to

χ(R) = 2− 2g . (1.31)

Theorem 9 (Riemann-Hurwitz). Let f : R̂ → R be an N -sheeted cover-
ing of the compact Riemann surface R of genus g. Then the genus ĝ of R̂ is
equal to

ĝ = N(g − 1) + 1 +
b

2
, (1.32)

where
b =

∑

P∈R̂

bf (P ) (1.33)

is the total branching number.

This formula is equivalent to the corresponding identity for the Euler char-
acteristic

χ(R̂) = Nχ(R)− b .
The latter follows easily if one chooses a triangulation of R so that the set of
its vertices contains the projection to R of all branch points of the covering.

1.3.2 Fundamental group

Let γ be a closed curve with initial and terminal point P , i.e., a continuous
map γ : [0, 1]→ R with γ(0) = γ(1) = P .

Definition 11. Two closed curves γ1, γ2 on R with the initial and terminal
point P are called homotopic if one can be continuously deformed to the an-
other, i.e., if there exists a continuous map γ : [0, 1] × [0, 1] → R such that
γ(t, 0) = γ1(t), γ(t, 1) = γ2(t), γ(0, λ) = γ(1, λ) = P . The set of homotopic
curves forms a homotopy class, which we denote by Γ = [γ].

There is a natural composition of such curves:

γ1 · γ2(t) =

{
γ1(2t) 0 ≤ t ≤ 1

2
γ2(2t− 1) 1

2 ≤ t ≤ 1 ,

which is well-defined also for the corresponding homotopic classes
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Γ1 · Γ2 = [γ1 · γ2] .

The set of homotopy classes of curves forms a group π1(R, P ) with the mul-
tiplication defined above. The curves that can be contracted to a point corre-
spond to the identity element of the group. It is easy to see that the groups
π1(R, P ) and π1(R, Q) based at different points are isomorphic as groups,
and one can omit the second argument in the notation. The elements of this
group are freely homotopic closed curves (i.e. cycles without reference to the
base point P ).

Definition 12. The group π1(R) is called the fundamental group of R.

Examples
1. Sphere with N holes

D1

γ2
D2DN

γN

γ1

Fig. 1.14. Fundamental group of a sphere with N holes

The fundamental group is generated by the homotopy classes of the closed
curves γ1, . . . , γN each going around one of the holes (Fig. 1.14). The curve
γ1γ2 . . . γN can be contracted to a point, which implies the relation

Γ1Γ2 . . . ΓN = 1 (1.34)

in π1(S
2 \ {⋃Nn=1Dn}).

2. Compact Riemann surface of genus g
It is convenient to consider the 4g-gon model Fg (Fig. 1.15). The curves

a1, b1, . . . , ag, bg are closed on R. Their homotopy classes, which we denote by
A1, B1, . . . , Ag, Bg generate π1(R). The contractible boundary of Fg implies
the only relation in the fundamental group:

A1B1A
−1
1 B−1

1 . . . AgBgA
−1
g B−1

g = 1 . (1.35)
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a1

b1

a−1
1

b−1
1

ag

bg

b−1
g

a−1
g

Fig. 1.15. Fundamental group of a compact surface of genus g

1.3.3 First homology group

Formal sums of points
∑
niPi, oriented curves γi,

γ =
∑

niγi ∈ C1

and oriented domains Di,

D =
∑

niDi ∈ C2

with integer coefficients ni ∈ ZZ form abelian groups C0, C1 and C2 respec-
tively. The elements of these groups are called 0-chains , 1-chains and 2-chains,
respectively.

The boundary operator ∂ maps the corresponding elements to their ori-
ented boundaries, defining the group homomorphisms ∂ : C1 → C0, ∂ : C2 →
C1.

C1 contains two important subgroups, of cycles and of boundaries. A closed
oriented curve γ is called a cycle (i.e. ∂γ = 0), and γ = ∂D is called a boundary.
We denote these subgroups by

Z = {γ ∈ C1 | ∂γ = 0} , B = ∂C2 .

Because ∂2 = 0, every boundary is a cycle and we have B ⊂ Z ⊂ C1. Two
elements of C1 are called homologous if their difference is a boundary:

γ1 ∼ γ2, γ1, γ2 ∈ C1 ⇔ γ1 − γ2 ∈ B, i.e. ∃D ∈ C2 : δD = γ1 − γ2 .

Definition 13. The factor group

H1(R,ZZ) = Z/B

is called the first homology group of R.

Freely homotopic closed curves are homologous. However, the converse is
false in general, as one can see from the example in Fig. 1.16.

The first homology group is the fundamental group “made commutative”.
More precisely
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Fig. 1.16. A cycle homologous to zero but not homotopic to a point.

H1(R,ZZ) =
π(R)

[π(R), π(R)]
,

where the denominator is the commutator subgroup, i.e., the subgroup of
π(R) generated by all elements of the form ABA−1B−1, A,B ∈ π(R).

To introduce intersection numbers of elements of the first homology
group it is convenient to represent them by smooth cycles. Every element of
H1(R,ZZ) can be represented by a C∞-cycle without self-intersections. More-
over, given two elements ofH1(R,ZZ) one can represent them by smooth cycles
intersecting transversally in a finite number of points.

Let γ1 and γ2 be two curves intersecting transversally at the point P . One
associates to this point a number (γ1◦γ2)P = ±1, where the sign is determined
by the orientation of the basis γ′1(P ), γ′2(P ) as it is shown in Fig. 1.17.

γ1 γ2

γ2 γ1

(γ1 ◦ γ2)P = 1

P P

(γ1 ◦ γ2)P = −1

Fig. 1.17. Intersection number at a point.

Definition 14. Let γ1, γ2 be two smooth cycles intersecting transversally in
finitely many points. The intersection number of γ1 and γ2 is defined by

γ1 ◦ γ2 =
∑

P∈γ1∩γ2
(γ1 ◦ γ2)P . (1.36)

Lemma 3. The intersection number of any boundary with any cycle vanishes.

Since (1.36) is bilinear it is enough to check the statement for a boundary
of a domain β = δD and a simple cycle γ. This follows from the fact that the
cycle γ enters D as many times as it leaves D (see Fig. 1.18).

To define the intersection number for homology classes represent γ, γ′ ∈
H1(R,ZZ) by C∞-cycles
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D

δD

γ

Fig. 1.18. γ ◦ δD = 0.

γ =
∑

i

niγi, γ′ =
∑

j

mjγ
′
j ,

where γi, γ
′
j are smooth curves intersecting transversally. Define γ ◦ γ′ =∑

ij nimjγi ◦ γ′j . Due to Lemma 3 the intersection number is well defined
for homology classes.

Theorem 10. The intersection number is a bilinear skew-symmetric map

◦ : H1(R,ZZ)×H1(R,ZZ)→ ZZ .

Examples

1. The homology group of a sphere with N holes
The homology group is generated by the loops γ1, . . . , γN−1 (see Fig. 1.14).

For the homology class of the loop γN one has

γN = −
N−1∑

i=1

γi ,

since
∑N

i=1 γi is a boundary.

2. Homology group of a compact Riemann surface of genus g
Since the homotopy group is generated by the cycles a1, b1, . . . , ag, bg

shown in Fig. 1.15 this is also true for the homology group. The intersec-
tion numbers of these cycles are as follows:

ai ◦ bj = δij , ai ◦ aj = bi ◦ bj = 0 . (1.37)

The cycles a1, b1, . . . , ag, bg constitute a basis of the homology group. Their
intersection numbers imply the linear independence.

Definition 15. A homology basis a1, b1, . . . , ag, bg of a compact Riemann sur-
face of genus g with the intersection numbers (1.37) is called canonical basis
of cycles.
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A canonical basis of cycles is by no means unique. Let (a, b) be a canonical
basis of cycles. We represent it by a 2g-dimensional vector

(
a
b

)
, a =



a1

...
ag


 , b =



b1
...
bg


 .

Any other basis (ã, b̃) of H1(R,ZZ) is then given by the transformation
(
ã

b̃

)
= A

(
a
b

)
, A ∈ GL(2g,ZZ) . (1.38)

Substituting the right hand side of equation (1.38) in

J =

(
ã

b̃

)
◦ (ã, b̃) , J =

(
0 I
−I 0

)

we obtain that the basis (ã, b̃) is canonical if and only if A is symplectic,
A ∈ Sp(g,ZZ), i.e.,

J = AJAT . (1.39)

Two examples of canonical cycle bases are presented in Figs. 1.19, 1.20.
The curves bi in Fig. 1.19 connect identified points of the boundary curves and
are therefore closed. In Fig. 1.20 the parts of the cycles lying on the “lower”
sheet of the covering are marked by dotted lines.

b1a1

ag

bg

Πg

Fig. 1.19. A canonical cycle basis for the planar model Πg of a compact Riemann
surface.

1.4 Abelian differentials

Differentials on a Riemann surface are much easier to handle than functions,
and they are the basic tool to investigate and construct functions.
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λ2g λ2g+2λ2 λ4 λ2g−1 λ2g+1λ1 λ3

b1

b2 bg

a2a1 ag

Fig. 1.20. A canonical cycle basis of a hyperelliptic Riemann surface.

1.4.1 Differential forms and integration formulas

If smooth complex valued functions f(z, z̄), p(z, z̄), q(z, z̄), s(z, z̄) are as-
signed to each local coordinate on R such that

f = f(z, z̄) ,

ω = p(z, z̄)dz + q(z, z̄)dz̄ , (1.40)

S = s(z, z̄)dz ∧ dz̄

are invariant under coordinate changes (1.1), one says that the function (0-
form) f , the differential (1-form) ω and the 2-form S are defined on R.

The 1-form ω is called a form of type (1,0) (resp. a form of type (0,1)) if
it may locally be written ω = p dz (resp. ω = q dz̄). The space of differentials
is obviously a direct sum of the subspaces of (1,0) and (0,1) forms.

The exterior product of two 1-forms ω1 and ω2 is the 2-form

ω1 ∧ ω2 = (p1q2 − p2q1)dz ∧ dz̄ .

The differential operator d, which transforms k-forms into (k+1)-forms is
defined by

df = fzdz + fz̄dz̄ ,

dω = (qz − pz̄)dz ∧ dz̄ , (1.41)

dS = 0 .

Definition 16. A differential df is called exact. A differential ω with dω = 0
is called closed.
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Using (1.41), one can also easily check that

d2 = 0

whenever d2 is defined and

d(fω) = df ∧ ω + fdω (1.42)

for any function f and 1-form ω. This implies in particular that any exact
form is closed.

One can integrate differentials over 1-chains (i.e., smooth oriented curves
and their formal sums),

∫
γ

ω, and 2-forms over 2-chains (formal sums of ori-

ented domains):
∫
D

S.

The most important integration formula is

Theorem 11 (Stokes’s theorem). Let D be a 2-chain with a piecewise
smooth boundary ∂D. Then Stokes’s formula

∫

D

dω =

∫

∂D

ω (1.43)

holds for any differential ω.

The difference of two homologic curves γ − γ̃ is a boundary for some D,
which implies

Corollary 4. A differential ω is closed, dω = 0, if and only if for any two
homological paths γ and γ̃ ∫

γ

ω =

∫

γ̃

ω

holds.

Corollary 5. Let ω be a closed differential, Fg be a simply connected model
of Riemann surface of genus g (see Sect. 1.3) and P0 be some point in Fg.
Then the function

f(P ) =

P∫

P0

ω , P ∈ Fg ,

where the integration path lies in Fg is well-defined on Fg.

Let γ1, . . . , γn be a homology basis ofR and ω a closed differential. Periods
of ω are defined by

Λi =

∫

γi

ω .
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Any closed curve γ on R is homological to
∑
niγi with some ni ∈ ZZ, which

implies ∫

γ

ω =
∑

niΛi ,

i.e., Λi generate the lattice of periods of ω. In particular, if R is a Riemann
surface of genus g with canonical homology basis a1, b1, . . . , ag, bg, we denote
the corresponding periods by

Ai =

∫

ai

ω , Bi =

∫

bi

ω .

Theorem 12 (Riemann’s bilinear relations). Let R be a Riemann sur-
face of genus g with a canonical basis ai, bi, i = 1, . . . , g and let ω and ω′ be
two closed differentials on R with periods Ai, Bi, A

′
i, B

′
i, i = 1, . . . , g. Then

∫

R

ω ∧ ω′ =

g∑

j=1

(AjB
′
j −A′

jBj) . (1.44)

The Riemann surface R cut along all the cycles ai, bi, i = 1, . . . , g of the
fundamental group is the simply connected domain Fg with the boundary (see
Figs. 1.11, 1.15)

∂Fg =

g∑

i=1

ai + a−1
i + bi + b−1

i . (1.45)

Stokes’s theorem with D = Fg implies

∫

R

ω ∧ ω′ =

∫

∂Fg

ω′(P )

P∫

P0

ω ,

where P0 is some point in Fg and the integration path [P0, P ] lies in Fg.
The curves aj and a−1

j of the boundary of Fg are identical on R but have

opposite orientation. For the points Pj and P ′
j lying on aj and a−1

j respectively
and coinciding on R we have (see Fig. 1.21)

ω′(Pj) = ω′(P ′
j) ,

Pj∫

P0

ω −
P ′
j∫

P0

ω =

Pj∫

P ′
j

ω = −Bj . (1.46)

In the same way for the points Qj ∈ bj and Q′
j ∈ b−1

j coinciding on R one
gets

ω′(Qj) = ω′(Q′
j) ,

Qj∫

P0

ω −
Q′
j∫

P0

ω =

Qj∫

Q′
j

ω = Aj . (1.47)
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Substituting, we obtain

∫

∂Fg

ω′(P )

P∫

P0

ω =

g∑

j=1

(
−Bj

∫

aj

ω′ +Aj

∫

bj

ω′) =

g∑

j=1

(AjB
′
j −A′

jBj) .

Finally, to complete the proof of Riemann’s bilinear identity, one checks di-
rectly that the right hand side of (1.44) is invariant under the transformation
(1.38, 1.39). Therefore the claim holds for an arbitrary canonical basis of
H1(R,C).

Q′

j

P ′

jQj

Pj

b−1
j

a−1
j

aj
bj

Fig. 1.21. Illustrating the proof of the Riemann bilinear relation.

1.4.2 Abelian differentials of the first, second and third kind

Definition 17. A differential ω on a Riemann surface R is called holomor-
phic (or an Abelian differential of the first kind) if in any local chart it is
represented as

ω = h(z)dz

where h(z) is holomorphic. The differential ω̄ is called anti-holomorphic.

Holomorphic and anti-holomorphic differentials are closed.
Holomorphic differentials form a complex vector space H1(R,C). It is

not difficult to show that the dimension of this space is at most g. Indeed,
Riemann’s bilinear identity with ω′ = ω̄ implies that the periods Aj , Bj of a
holomorphic differential ω satisfy

Im

g∑

j=1

AjB̄j < 0 . (1.48)

Thus, if all a-periods of the holomorphic differential ω are zero then ω ≡ 0. If
ω1, . . . , ωg+1 are holomorphic, then there exists a linear combination of them
with all zero a-periods, i.e., the differentials are linearly dependent.

Theorem 13. The dimension of the space of holomorphic differentials of a
compact Riemann surface is equal to its genus

dim H1(R,C) = g(R) .



1 Riemann Surfaces 31

The existence part of this theorem is more difficult and can be proved
by analytic methods [FK92]. However, when the Riemann surface R is con-
cretely described, one can usually present the basis ω1, . . . , ωg of holomorphic
differentials explicitly.

On a hyperelliptic curve one can check the holomorphicity using the cor-
responding local coordinates described in Sect. 1.1.1.

Theorem 14. The differentials

ωj =
λj−1dλ

µ
, j = 1, . . . , g (1.49)

form a basis of holomorphic differentials of the hyperelliptic Riemann surface

µ2 =

N∏

i=1

(λ− λi) λi 6= λj , (1.50)

where N = 2g + 2 or N = 2g + 1.

Another example is the holomorphic differential

ω = dz

on the torus C/G of Sect. 1.3. Here z is the coordinate of C.
Since a differential with all zero a-periods vanishes identically, the matrix

of a-periods Aij =
∫
ai

ωj of any basis ωj, j = 1, . . . , g of H1(R,C) is invertible.

The basis can be normalized.

Definition 18. Let aj , bj , j = 1, . . . , g be a canonical basis of H1(R,ZZ). The
dual basis of holomorphic differentials ωk, k = 1, . . . , g, normalized by

∫

aj

ωk = 2πiδjk

is called canonical basis of differentials.

We consider also differentials with singularities.

Definition 19. A differential Ω is called meromorphic or Abelian differential
if in any local chart z : U → C it is of the form

Ω = g(z)dz ,

where g(z) is meromorphic. The integral
P∫
P0

Ω of a meromorphic differential

is called the Abelian integral.
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Let z be a local parameter at the point P, z(P ) = 0 and

Ω =

∞∑

k=N(P )

gkz
kdz , N ∈ ZZ (1.51)

be the representation of the differential Ω at P . The numbers N(P ) and g−1

do not depend on the choice of the local parameter and are characteristics of
Ω alone. N(P ) is called the order of the point P . If N(P ) is negative −N(P )
is called the order of the pole of Ω at P . The number g−1 is called the residue
of Ω at P . It can also be defined by

resPΩ ≡ g−1 =
1

2πi

∫

γ

Ω , (1.52)

where γ is a small closed simple loop going around P in the positive direction.
Let S be the set of singularities of Ω

S = {P ∈ R | N(P ) < 0} .
S is discrete, and if R is compact then S is also finite.

Computing the integral of an Abelian differential Ω along the boundary
of the simply connected model Fg by residues, one obtains

∑

Pj∈S
resPjΩ = 0 . (1.53)

Definition 20. A meromorphic differential with singularities is called an
Abelian differential of the second kind if the residues are equal to zero at all
singular points. A meromorphic differential with non-zero residues is called
an Abelian differential of the third kind.

The residue identity (1.53) motivates the following choice of basic mero-

morphic differentials. The differential of the second kind Ω
(N)
R has only one

singularity. It is at the point R ∈ R and is of the form

Ω
(N)
R =

(
1

zN+1
+O(1)

)
dz , (1.54)

where z is a local parameter at R with z(R) = 0. The Abelian differential

Ω
(N)
R depends on the choice of the local parameter z. The Abelian differential

of the third kind ΩRQ has two singularities at the points R and Q with

resRΩRQ = −resQΩRQ = 1 ,

ΩRQ =

(
1

zR
+O(1)

)
dzR near R ,

ΩRQ =

(
− 1

zQ
+O(1)

)
dzQ near Q , (1.55)
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where zR and zQ are local parameters at R and Q with zR(R) = zQ(Q) = 0.
For the corresponding Abelian integrals this implies

P∫
Ω

(N)
R = − 1

NzN
+O(1) P → R , (1.56)

P∫
ΩRQ = log zR +O(1) P → R ,

P∫
ΩRQ = − log zQ +O(1) P → Q . (1.57)

The Abelian integrals of the first and second kind are single-valued on Fg.
The Abelian integral of the third kind ΩRQ is single-valued on Fg \ [R,Q],
where [R,Q] is a cut from R to Q lying inside Fg.

One can add Abelian differentials of the first kind to Ω
(N)
R and ΩRQ pre-

serving the form of the singularities. By addition of a proper linear combina-
tion

∑g
i=1 αiωi the differential can be normalized as follows:

∫

aj

Ω
(N)
R = 0 ,

∫

aj

ΩRQ = 0 (1.58)

for all a-cycles j = 1, . . . , g.

Definition 21. The differentials Ω
(N)
R , ΩRQ with the singularities (1.54),

(1.55) and all zero a-periods (1.58) are called the normalized Abelian dif-
ferentials of the second and third kind.

Theorem 15. Given a compact Riemann surface R with a canonical basis
of cycles a1, b1, . . . , ag, bg, points R,Q ∈ R, a local parameter z at R, and

N ∈ IN, there exist unique normalized Abelian differentials Ω
(N)
R and ΩRQ of

the second and third kind, respectively.

The proof of the uniqueness is simple. The holomorphic difference of two
normalized differentials with the same singularities has all zero a-periods and
therefore vanishes identically. Like in the case of holomorphic differentials, the
existence can be shown by analytic methods [FK92].

Abelian differentials of the second and third kind can be normalized by
a more symmetric condition than (1.58). Namely, all the periods can be nor-
malized to be purely imaginary

Re

∫

γ

Ω = 0 , ∀γ ∈ H1(R,ZZ) .

Corollary 6. The normalized Abelian differentials form a basis in the space
of Abelian differentials on R.
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Again, as in the case of holomorphic differentials, we present the basis of
Abelian differentials of the second and third kind in the hyperelliptic case

µ2 =

M∏

k=1

(λ− λk) .

Denote the coordinates of the points R and Q by

R = (µR, λR) , Q = (µQ, λQ) .

We consider the case when both points R and Q are finite λR 6= ∞, λQ 6=
∞. The case λR = ∞ or λQ = ∞ is reduced to the case we consider by
a fractional linear transformation. If R is not a branch point, then to get a
proper singularity we multiply dλ/µ by 1/(λ−λR)n and cancel the singularity
at the point πR = (−µR, λR).

The following differentials are of the third kind with the singularities (1.55)

Ω̂RQ =

(
µ+ µR
λ− λR

− µ+ µQ
λ− λQ

)
dλ

2µ
if µR 6= 0 , µQ 6= 0 ,

Ω̂RQ =

(
µ+ µR

µ(λ − λR)
− 1

λ− λQ

)
dλ

2
if µR 6= 0 , µQ = 0 ,

Ω̂RQ =

(
1

λ− λR
− 1

λ− λQ

)
dλ

2
if µR = µQ = 0 .

If R is not a branch point, µR 6= 0, then the differentials

Ω̂
(N)
R =

µ+ µ
[N ]
R

(λ− λR)N+1

dλ

2µ
,

where µ
[N ]
R is the Taylor series at R up to the term of order N ,

µ
[N ]
R = µR +

∂µ

∂λ

∣∣∣∣
R

(λ− λR) + . . .+
1

N !

∂Nµ

∂λN

∣∣∣∣
R

(λ− λR)N ,

have singularities at R of the form
(
z−N−1 + o(z−N−1)

)
dz (1.59)

where z = λ − λR. If R is a branch point, µR = 0, the following differentials
have the singularities (1.59) with z =

√
λ− λR

Ω̂
(N)
R =

dλ

2(λ− λR)nµ

√√√√√
N∏

i=1
i6=R

(λR − λi) for N = 2n− 1 ,

Ω̂
(N)
R =

dλ

2(λ− λR)n
for N = 2n− 2 .

Taking proper linear combinations of these differentials with different values
of N we obtain the singularity (1.54). The normalization (1.58) is obtained
by addition of holomorphic differentials (1.46)
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1.4.3 Periods of Abelian differentials. Jacobi variety

Definition 22. Let aj , bj, j = 1, . . . , g, be a canonical homology basis of R
and let ωk, k = 1, . . . , g, be the dual basis of H1(R,C). The matrix

Bij =

∫

bi

ωj (1.60)

is called the period matrix of R.

Theorem 16. The period matrix is symmetric and its real part is negative
definite,

Bij = Bji , (1.61)

Re(Bα,α) < 0 , ∀α ∈ IRg \ {0} . (1.62)

The symmetry of the period matrix follows from the Riemann bilinear identity
(1.44) with ω = ωi and ω′ = ωj . The definiteness (1.62) is another form of
(1.48).

The period matrix depends on the homology basis. Let us use the column
notations (

ã

b̃

)
=

(
A B

C D

)(
a

b

)
,

(
A B

C D

)
∈ Sp(g,ZZ) . (1.63)

Let ω = (ω1, . . . , ωg) be the canonical basis of holomorphic differentials
dual to (a, b). Labeling columns of the matrices by differentials and rows by
cycles we get

∫

ã

ω = 2πiA + BB,

∫

b̃

ω = 2πiC + DB.

The canonical basis of H1(R,C) dual to the basis (ã, b̃) is given by the right
multiplication

ω̃ = 2πiω(2πiA + BB)−1.

This implies the following transformation formula for the period matrix.

Lemma 4. The period matrices B and B̃ of the Riemann surface R corre-
sponding to the homology basis (a, b) and (ã, b̃) respectively are related by

B̃ = 2πi(DB + 2πiC)(BB + 2πiA)−1, (1.64)

where A,B,C,D are the coefficients of the symplectic matrix (1.63).

Using the Riemann bilinear identity one can express the periods of the
normalized Abelian differentials of the second and third kind in terms of the
normalized holomorphic differentials. Choosing ω = ωj and ω′ = Ω

(N)
R or ω′ =

ΩRQ in the Riemann bilinear identity we obtain the following representations.
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Lemma 5. Let ωj , Ω
(N)
R , ΩRQ be the normalized Abelian differentials from

Definition 21. Let z be a local parameter at R with z(R) = 0 and

ωj =

∞∑

k=0

αk,jz
kdz (1.65)

the representation of the normalized holomorphic differentials at R. The pe-

riods of Ω
(N)
R , ΩRQ are equal to:

∫

bj

Ω
(N)
R =

1

N
αN−1,j (1.66)

∫

bj

ΩRQ =

R∫

Q

ωj , (1.67)

where the integration path [R,Q] in (1.67) does not cross the cycles a, b.

Let Λ be the lattice

Λ = {2πiN +BM, N,M ∈ ZZ
g}

generated by the periods of R. It defines an equivalence relation in Cg : two
points of Cg are equivalent if they differ by an element of Λ.

Definition 23. The complex torus

Jac(R) = Cg/Λ

is called the Jacobi variety of R. The map

A : R→ Jac(R) , A(P ) =

P∫

P0

ω , (1.68)

where ω = (ω1, . . . , ωg) is the canonical basis of holomorphic differentials and
P0 ∈ R, is called the Abel map.

1.5 Meromorphic functions on compact Riemann

surfaces

1.5.1 Divisors and the Abel theorem

In order to analyze functions and differentials on Riemann surfaces, one char-
acterizes them in terms of their zeros and poles. It is convenient to consider
formal sums of points on R. (Later these points will become zeros and poles
of functions and differentials).
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Definition 24. A formal linear combination

D =

N∑

j=1

njPj , nj ∈ ZZ , Pj ∈ R (1.69)

is called a divisor on the Riemann surface R. The sum

deg D =
N∑

j=1

nj

is called the degree of D.

The set of all divisors with the obviously defined group operations

n1P + n2P = (n1 + n2)P , −D =
N∑

j=1

(−nj)Pj

forms an Abelian group Div(R). A divisor (1.69) with all nj ≥ 0 is called
positive (or integral, or effective). This notion allows us to define a partial
ordering in Div(R)

D ≤ D′ ⇐⇒ D′ −D ≥ 0 .

Definition 25. Let f be a meromorphic function on R and let P1, . . . , PM
be its zeros with multiplicities p1, . . . , pM > 0 and Q1, . . . , QN its poles with
multiplicities q1, . . . , qN > 0. The divisor

D = p1P1 + . . .+ pMPM − q1Q1 − . . .− qNQN = (f)

is called the divisor of f and is denoted by (f) . A divisor D is called principal
if there exists a function f with (f) = D.

Obviously we have
(fg) = (f) + (g) ,

where f and g are two meromorphic functions on R.

Definition 26. Two divisors D and D′ are called linearly equivalent if the
divisor D −D′ is principal. The corresponding equivalence class is called the
divisor class.

We denote linearly equivalent divisors by D ≡ D′. Divisors of Abelian
differentials are also well-defined. We have already seen that the order of the
point N(P ) defined by (1.51) is independent of the choice of a local parameter
and is a characteristic of the Abelian differential. The set of points P ∈ R
with N(P ) 6= 0 is finite.
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Definition 27. The divisor of an Abelian differential Ω is

(Ω) =
∑

P∈R
N(P )P ,

where N(P ) is the order of the point P of Ω.

Since the quotient of two Abelian differentials

Ω1/Ω2

is a meromorphic function any two divisors of Abelian differentials are linearly
equivalent. The corresponding class is called canonical. We will denote it by
C.

Any principal divisor can be represented as the difference of two positive
linearly equivalent divisors

(f) = D0 −D∞ , D0 ≡ D∞ ,

where D0 is the zero divisor and D∞ is the pole divisor of f . Corollary 2
implies that

deg(f) = 0 ,

i.e., all principal divisors have zero degree. All canonical divisors have the
same degree.

The Abel map is defined for divisors in a natural way

A(D) =

N∑

j=1

nj

Pj∫

P0

ω . (1.70)

If the divisor D is of degree zero, then A(D) is independent of P0

D = P1 + . . .+ PN −Q1 − . . .−QN ,

A(D) =
N∑
i=1

Pi∫
Qi

ω . (1.71)

Theorem 17 (Abel’s theorem). The divisor D ∈ Div (R) is principal if
and only if:

1) deg D = 0 ,
2) A(D) ≡ 0 .

The necessity of the first condition is already shown in Corollary 2. Let f be
a meromorphic function with the divisor

(f) = P1 + . . .+ PN −Q1 − . . .−QN

(these points need not be different). Then
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Ω =
df

f
= d(log f)

is an Abelian differential of the third kind. Since periods of Ω are integer
multiples of 2πi, it can be represented as

Ω =

N∑

i=1

ΩPiQi +

g∑

k=1

nkωk

with nk ∈ ZZ. The representation (1.67) for the b-periods of the normalized
differentials of the third kind implies A(D) ≡ 0.

Corollary 7. All linearly equivalent divisors are mapped by the Abel map to
the same point of the Jacobian

A((f) +D) = A(D) .

The Abel theorem can be formulated in terms of any basis ω̃ = (ω̃1, . . . , ω̃g)
of holomorphic differentials. In this case the second condition of the theorem
reads

N∑

i=1

Pi∫

Qi

ω̃ ≡ 0 (mod periods of ω̃).

1.5.2 The Riemann-Roch theorem

Let D∞ be a positive divisor onR. A natural problem is to describe the vector
space of meromorphic functions with poles at D∞ only. More generally, let D
be a divisor on R. Let us consider the vector space

L(D) = {f meromorphic functions on R | (f) ≥ D or f ≡ 0}.

Let us split
D = D0 −D∞

into negative and positive parts

D0 =
∑

niPi , D∞ =
∑

mkQk ,

where both D0 and D∞ are positive. The space L(D) of dimension

l(D) = dim L(D)

consists of the meromorphic functions with zeros of order at least ni at Pi
and with poles of order at most mk at Qk.

Similarly, let us denote by

H(D) = {Ω Abelian differential on R | (Ω) ≥ D or Ω ≡ 0}
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the corresponding vector space of differentials, and by

i(D) = dim H(D)

its dimension, which is called the index of speciality of D.
It is easy to see that l(D) and i(D) depend only on the divisor class of D,

and
i(D) = l(D − C) , (1.72)

where C is the canonical divisor class. Indeed, let Ω0 be a non-zero Abelian
differential and C = (Ω0) be its divisor. The map H(D)→ L(D−C) defined
by

H(D) ∋ Ω −→ Ω

Ω0
∈ L(D − C)

is an isomorphism of linear spaces, which implies i(D) = l(D − C).

Theorem 18 (Riemann-Roch theorem). Let R be a compact Riemann
surface of genus g and D a divisor on R. Then

l(−D) = deg D − g + 1 + i(D) . (1.73)

This identity can be proved by an analysis of the singularities and the
periods of the differential df for a function f ∈ L(−D). However the proof is
rather involved [FK92]. Many important results can be easily obtained from
this fundamental theorem.

Since the index i(D) is non-negative one has

Theorem 19 (Riemann’s inequality). For any divisor D

l(−D) ≥ deg D + 1− g .

This has the following immediate consequence.

Corollary 8. For any positive divisor D with deg D = g + 1 there exists a
non-constant meromorphic function in L(−D).

Let us consider a divisor on a Riemann surface of genus zero which consists
of one point D = P . Riemann’s inequality implies l(−P ) ≥ 2. There exists
a non-trivial function f with 1 pole on R. It is a holomorphic covering f :
R→ Ĉ. Since f has only one pole, every value is assumed once (Corollary 2),
therefore R and Ĉ are conformally equivalent.

Corollary 9. Any Riemann surface of genus 0 is conformally equivalent to
the complex sphere Ĉ.

Corollary 10. The degree of the canonical class is

deg C = 2g − 2 . (1.74)
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The Riemann-Roch theorem implies for the canonical divisor

degC = l(−C) + g − 1− i(C) .

Since the spaces of holomorphic differentials and functions are g- and 1-
dimensional respectively, using (1.72), l(−C) = i(0) = g, i(C) = l(0) = 1,
one arrives at (1.74).

Corollary 11. On a compact Riemann surface there is no point where all
holomorphic differentials vanish simultaneously.

Indeed, suppose there exists such a point P ∈ R, i.e., i(P ) = g. The Riemann-
Roch theorem for the divisor D = P implies l(−P ) = 2, i.e., there exists a
non-constant meromorphic function f with only one simple pole. This implies
that f : R→ Ĉ is bi-holomorphic, in particular g = 0.

1.5.3 Jacobi inversion problem

Now we come to more complicated properties of the Abel map. Let us fix a
point P0 ∈ R. From corollary 11 of the Riemann-Roch theorem we know that
all holomorphic differentials do not vanish simultaneously. Therefore dA(P ) =
ω(P ) 6= 0, which shows that the Abel map is an immersion (the differential
of the map vanishes nowhere on R).

Proposition 5. The Abel map

A : R → Jac(R)

P 7→
∫ P

P0

ω (1.75)

is an embedding, i.e., the map (1.75) is an injective immersion.

The injectivity follows from Abel’s theorem. Suppose there exist P1, P2 ∈ R
with A(P1) = A(P2), i.e., the divisor P1−P2 is principal. Functions with one
pole do not exist for Riemann surfaces of genus g > 0, thus the points must
coincide P1 = P2.

The Jacobi variety of a Riemann surface of genus one is a one-dimensional
complex torus, which is itself a Riemann surface of genus one (see Sect. 1.1.2).

Corollary 12. A Riemann surface of genus one is conformally equivalent to
its Jacobi variety.

Although the next theorem looks technical (see for example [FK92] for the
proof), it is an important result often used.

Theorem 20 (Jacobi inversion problem). Let Dg be the set of positive
divisors of degree g. The Abel map on this set
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A : Dg → Jac(R)

is surjective, i.e., for any ξ ∈ Jac(R) there exists a degree g positive divisor
P1 + . . .+ Pg ∈ Dg (the Pi need not be different) satisfying

g∑

i=1

∫ Pi

P0

ω = ξ. (1.76)

1.5.4 Special divisors and Weierstrass points

Definition 28. A positive divisor D of degree deg D = g is called special if
i(D) > 0, i.e., there exists a holomorphic differential ω with

(ω) ≥ D . (1.77)

The Riemann-Roch theorem implies that (1.77) is equivalent to the existence
of a non-constant function f with (f) ≥ −D. Since the space of holomorphic
differentials is g-dimensional, (1.77) is a homogeneous linear system of g equa-
tions in g variables. This shows that most of the positive divisors of degree g
are non-special.

Definition 29. A point P ∈ R is called the Weierstrass point if the divisor
D = gP is special.

The Weierstrass points are special points of R. Weierstrass points exists on
Riemann surfaces of genus g > 1. They coincide with the zeros of the holo-
morphic q-differential Hdzq with q = g(g + 1)/2 and

H := det




h1 . . . hg
h′1 . . . h′g
...

...

h
(g−1)
1 . . . h

(g−1)
g


 , (1.78)

where ωk = hk(z)dz are the local representations of a basis of holomorphic
differentials. Indeed, H vanishes at P0 if and only if the matrix in (1.78)
has a non-zero vector (α1, . . . , αg)

T in the kernel. In this case the differential∑g
k=1 αkhk has a zero of order g at P0, which implies i(gP0) > 0.
The number of the Weierstrass points is bounded by the number of zeros

of H , which is g3 − g.

1.5.5 Hyperelliptic Riemann surfaces

Let R be a compact Riemann surface of a hyperelliptic curve as in Theorem 1.
On this Riemann surface there exist meromorphic functions with precisely two
poles counting multiplicities. Examples of such functions are λ and 1

λ−λ0
with

arbitrary λ0. This observation leads to an equivalent definition of hyperelliptic
Riemann surfaces.
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Definition 30. A compact Riemann surface R of genus g ≥ 2 is called hy-
perelliptic if there exists a positive divisor D on R with

deg D = 2 , l(−D) ≥ 2 .

A non-constant meromorphic function Λ in L(−D) defines a two-sheeted
covering of the complex sphere

Λ : R → Ĉ . (1.79)

All the ramification points of this covering have branch numbers 1.
It is not difficult to show that two hyperelliptic Riemann surfaces are

conformally equivalent if and only if their branch points differ by a fractional
linear transformation. The branch points can be used as parameters in the
moduli space of hyperelliptic curves. The complex dimension of this space
is 2g − 1. Indeed, there are 2g + 2 branch points and three of them can be
normalized to 0, 1,∞ by a fractional linear transformation. We see that for
g = 2 this dimension coincides with the complex dimension 3g−3 of the space
of Riemann surfaces of genus g (see Sect. 1.8.1). This simple observation shows
that there exist non-hyperelliptic Riemann surfaces of genus g ≥ 3.

Theorem 21. Any Riemann surface of genus g = 2 is hyperelliptic.

This is not difficult to prove. The zero divisor (ω) of a holomorphic differential
on a Riemann surface R of genus 2 is of degree 2 = 2g − 2. Since i((ω)) > 0,
the Riemann-Roch theorem implies l((ω)) ≥ 2.

Special divisors on hyperelliptic Riemann surfaces are characterized by the
following simple property.

Proposition 6. Let R be a hyperelliptic Riemann surface and let λ : R → Ĉ
be the corresponding two-sheeted covering (1.5) with branch points λk, k =
1 . . . , N . A positive divisor D of degree g is singular if and only if it contains
a pair of points (µ0, λ0), (−µ0, λ0) with the same λ-coordinate λ0 6= λk or a
double branch point 2(0, λk).

D being a special divisor implies that there exists a differential ω with
(ω) ≥ D. The differential ω is holomorphic, and due to Theorem 14 it can be
represented as

ω =
Pg−1(λ)

µ
dλ ,

where Pg−1(λ) is a polynomial of degree g − 1. The differential ω has g − 1
pairs of zeros

(µn, λn), (−µn, λn) , n = 1, . . . , g − 1, Pg−1(λn) = 0 .

Since D is of degree g it must contain at least one of these pairs.
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1.6 Theta functions

1.6.1 Definition and simplest properties

Consider a g-dimensional complex torus Cg/Λ where Λ is a lattice of full rank:

Λ = AN +BM , A,B ∈ gl(g,C) , N,M ∈ ZZ
g , (1.80)

and the 2g columns of A,B are IR-linearly independent. Non-constant mero-
morphic functions on Cg/Λ exist only (see, for example, [Sie71]) if the complex
torus is an Abelian torus, i.e., if by an appropriate linear choice of coordinates
on Cg the lattice (1.80) can be reduced to a special form: A is a diagonal
matrix of the form

A = 2πi diag(a1 = 1, . . . , ag) , ak ∈ IN , ak divides ak+1 ,

and B is a symmetric matrix with negative real part. An Abelian torus with
a1 = . . . = ag = 1 is called principally polarized. Jacobi varieties of Rie-
mann surfaces are principally polarized Abelian tori. Meromorphic functions
on Abelian tori are constructed in terms of theta functions, which are defined
by their Fourier series.

Definition 31. Let B be a symmetric g × g matrix with negative real part.
The theta function is defined by the following series

θ(z) =
∑

m∈ZZg

exp{1
2
(Bm,m) + (z,m)} , z ∈ C .

Here
(Bm,m) =

∑

ij

Bijmimj , (z,m) =
∑

j

zjmj .

Since B has negative real part, the series converge absolutely and defines
an entire function on Cg.

Proposition 7. The theta function is even,

θ(−z) = θ(z) ,

and possesses the following periodicity property:

θ(z+2πiN+BM) = exp{−1

2
(BM,M)−(z,M)}θ(z) , N,M ∈ ZZ

g . (1.81)

More generally one introduces theta functions with characteristics [α, β]

θ

[
α
β

]
(z) =

∑

m∈ZZg

exp

{
1

2
(B(m+ α),m+ α) + (z + 2πiβ,m+ α)

}

= θ(z + 2πiβ +Bα) exp

{
1

2
(Bα,α) + (z + 2πiβ, α)

}
, (1.82)

z ∈ Cg, α, β ∈ IRg .
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with the transformation law

θ

[
α
β

]
(z + 2πiN +BM) = (1.83)

exp
{
− 1

2 (BM,M)− (z,M) + 2πi((α,N)− (β,M))
}
θ

[
α
β

]
(z) .

1.6.2 Theta functions of Riemann surfaces

From now on we consider an Abelian torus which is a Jacobi variety, C/Λ =
Jac(R). By combining the theta function with the Abel map, one obtains the
following useful map on a Riemann surface:

Θ(P ) := θ(AP0(P )− d) , AP0(P ) =

∫ P

P0

ω . (1.84)

Here we incorporated the base point P0 ∈ R in the notation of the Abel map,
and the parameter d ∈ Cg is arbitrary. The periodicity properties of the theta
function (1.81) imply the following

Proposition 8. Θ(P ) is an entire function on the universal covering R̃ of
R. Under analytical continuation Mak ,Mbk along a- and b-cycles on the
Riemann surface, it is transformed as follows:

Mak Θ(P ) = Θ(P ) ,

Mbk Θ(P ) = exp{− 1
2Bkk −

∫ P
P0
ωk + dk} Θ(P ) . (1.85)

The zero divisor (Θ) of Θ(P ) on R is well defined.

Theorem 22. The theta function Θ(P ) either vanishes identically on R or
has exactly g zeros (counting multiplicities):

deg(Θ) = g .

Suppose Θ 6≡ 0. As in Sect. 1.4 consider the simply connected model Fg
of the Riemann surface. The differential d logΘ is well defined on Fg and the
number of zeros of Θ is equal to

deg(Θ) =
1

2πi

∫

∂Fg

d logΘ(P ) .

using the periodicity properties of Θ we get (see Theorem 12 for notation) for
the values of d logΘ at the corresponding points

d logΘ(Q′
j) = d logΘ(Qj), d logΘ(P ′

j) = d logΘ(Pj)− ωj(Pj) . (1.86)

For the number of zeros of the theta function this implies
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deg(Θ) =
1

2πi

g∑

j=1

∫

aj

ωj = .

A similar but more involved computation [FK92] of the integral

Ik =
1

2πi

∫

∂Fg

d logΘ(P )

∫ P

P0

ωk .

implies the following Jacobi inversion problem for the zeros of (Θ).

Proposition 9. Suppose Θ 6≡ 0. Then its g zeros P1, . . . , Pg satisfy

g∑

i=1

∫ Pi

P0

ω = d−K , (1.87)

where K is the vector of Riemann constants

Kk = πi +
Bkk
2
− 1

2πi

∑

j 6=k

∫

aj

ωj

∫ P

P0

ωk . (1.88)

One can easily check that K ∈ Jac(R) is well defined by (1.88), i.e., it is
independent of the integration path. On the other hand, K depends on the
choice of the base point P0.

1.6.3 Theta divisor

Let us denote by Jk the set of equivalence classes (of linearly equivalent divi-
sors, see Sect. 1.5.1) of divisors of degree k. The Abel theorem and the Jacobi
inversion imply a canonical identification of Jg and the Jacobi variety

Jg ∋ D ←→ A(D) ∈ Jac(R) .

The zero set of the theta function of a Riemann surface, which is called the
theta divisor can be characterized in terms of divisors on R as follows. Take
a non-special divisor D̃ = P1 + . . . + Pg and distinguish one of its points

D̃ = P1 + D, D ∈ Jg−1. Proposition 9 implies that θ(
∫ P

ω − A(̃(D)) − K)
vanishes in particular at P1, and one has θ(A(D)−K) = 0. Since non-special
divisors form a dense set, one has this identify for any D ∈ Jg−1. Moreover,
this identity gives a characterization of the theta divisor [FK92].

Theorem 23. The theta divisor is isomorphic to the set Jg−1 of equivalence
classes of positive divisors of degree g − 1:

θ(e) = 0⇔ ∃D ∈ Jg−1, D ≥ 0 : e = A(D) +K .
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For any D ∈ Jg−1 the expression A(D) + K ∈ Jac(R) is independent of
the choice of the initial integration point P0.

Using this characterization of the theta divisor one can complete the de-
scription of Proposition 9 of the divisor of the function Θ

Theorem 24. Let Θ(P ) = θ(AP0 (P ) − d) be the theta function (1.84) on a
Riemann surface and let the divisor D ∈ Jg, D ≥ 0 be a Jacobi inversion
(1.76) of d−K,

d = A(D) +K .

Then the following alternative holds:
(i) Θ ≡ 0 iff i(D) > 0, i.e., if the divisor D is special,
(ii) Θ 6≡ 0 iff i(D) = 0, i.e., if the divisor D is non-special. In the last

case, D is precisely the zero divisor of Θ.

The evenness of the theta function and Theorem 23 imply that θ(d −
A(P )) ≡ 0 is equivalent to the existence (for any P ) of a positive divisor DP

of degree g − 1 satisfying A(D) +K −A(P ) = A(DP ) +K. Due to the Abel
theorem the last identity holds if and only if the divisors D and DP + P are
linearly equivalent, i.e., if there exists a function in L(−D) vanishing at the
(arbitrary) point P . In terms of the dimension of L(−D) the last property
can be formulated as l(−D) > 1, which is equivalent to i(D) > 0.

Suppose now that D is non-special. Then, as we have shown above, Θ 6≡ 0,
and Proposition 9 implies for the zero divisor of Θ

A((Θ)) = A(D) .

The non-speciality of D implies D = (Θ).
Although the vector of Riemann constants K appeared in Proposition 9

just as a result of computation, K plays an important role in the theory
of theta functions. The geometrical nature of K is partially clarified by the
following

Proposition 10.
2K = −A(C) ,

where C is a canonical divisor.

Indeed, take an arbitrary positive D1 ∈ Jg−1. Due to Theorem 23 the
theta function vanishes at e = A(D1) +K. Theorem 23 applied to θ(−e) = 0
implies the existence of a positive divisor D2 ∈ Jg−1 with −e = A(D2) +K.
For 2K this gives

2K = A(D1 +D2) .

It is not difficult to show that this representation (where D1 ∈ Jg−1 is ar-
bitrary) implies l(−D1 − D2) ≥ g, or equivalently i(D1 + D2) > 0, i.e., the
divisor D1 +D2 is canonical.

The vanishing of theta functions at some points follows from their algebraic
properties.
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Definition 32. Half-periods of the period lattice

∆ = 2πiα+Bβ , α = (α1, . . . , αg) , β = (β1, . . . , βg), αk, βk ∈
{

0,
1

2

}
.

are called half periods or theta characteristics. A half period is called even
(odd) if 4(α, β) = 4

∑
αkβk is even (odd).

We denote the theta characteristic by ∆ = [α, β]. The theta function θ(z)
vanishes in all odd theta characteristics

θ(∆) = θ(−∆+ 4πiα+ 2Bβ) = θ(−∆) exp(−4πi(α, β)) .

To any odd theta characteristic ∆ there corresponds a positive divisor D∆

of degree g − 1,
∆ = A(D∆) +K . (1.89)

Since 2∆ belongs to the lattice of Jac(R), doubling of (1.89) yields

A(2D∆) = −2K = A(C) .

The next corollary follows from the Abel theorem.

Corollary 13. For any odd theta characteristic ∆ there exists a holomorphic
differential ω∆ with

(ω∆) = 2D∆ . (1.90)

In particular all zeros of ω∆ are of even multiplicity.

Note, that identity (1.90) is an identity on divisors and not only on equivalence
classes of divisors.

The differential ω∆ can be described explicitly in theta functions.
To any point z of the Abelian torus one can associate a number s(z)

determined by the condition that all partial derivatives of θ up to order s(z)−1
vanish at z and at least one partial derivative of order s(z) does not vanish at
z. For most of the points s = 0. The points of the theta divisor are precisely
those with s > 0. In particular, s(∆) > 0 for any odd theta characteristic ∆.
An odd theta characteristic ∆ is called non-singular iff s(∆) = 1.

Let D = P1 + . . .+Pg−1 be a positive divisor of degree g−1. Consider the
function f(P1, . . . , Pg−1) = θ(A(D) +K) of g − 1 variables. Since f vanishes
identically, differentiating it with respect to Pk one sees that the holomorphic
differential

h =
∑

i

∂θ

∂zi
(e)ωi

with e = A(D) +K vanishes at all points Pk. Let ∆ be an odd non-singular
theta characteristic. Then D∆ ∈ Jg−1 is uniquely determined by the identity
(1.89), i.e., i(D∆) = 1. Indeed, if D∆ is not determined by its Abel image
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then it is linearly equivalent to a divisor P + Dg−2, Dg−2 ∈ Jg−2 with an
arbitrary point P . Repeating the arguments with the differential h above
we see that it vanishes identically on R, i.e., all the derivatives of the theta
function θ(∆) vanish. This contradicts the non-singularity of ∆. Finally, we
arrive at the following explicit description the one-dimensional (i(D∆) = 1)
space of holomorphic differentials vanishing at D∆.

Proposition 11. Let ∆ be a non-singular odd theta characteristic and D∆ the
corresponding (1.89) positive divisor of degree g − 1. Then the holomorphic
differential ω∆ of Corollary 13 is given by the expression

ω∆ =

g∑

i=1

∂θ

∂zi
(∆)ωi ,

where ωi are normalized holomorphic differentials.

We finish this section with Riemann’s complete description of the theta
divisor. The proof of this classical theorem can be found for example in [FK92,
Lew64]. It is based on considerations similar to the ones in this section, but
technically more involved.

Theorem 25. The following two characterizations of a point e ∈ Jac(R) are
equivalent:
• The theta function and all its partial derivatives up to order s−1 vanish

in e and at least one partial derivative of order s does not vanish at e.
• e = A(D) +K where D is a positive divisor of degree g and i(D) = s.

1.7 Holomorphic line bundles

In this section some results of the previous sections are formulated in the lan-
guage of holomorphic line bundles. This language is useful for generalizations
to manifolds of higher dimension, where one does not have concrete tools as
in the case of Riemann surfaces, and where one has to rely on more abstract
geometric constructions.

1.7.1 Holomorphic line bundles and divisors

Let (Uα, zα) be coordinate charts of an open cover ∪α∈AUα = R of a Riemann
surface. The geometric idea behind the concept of a holomorphic line bundle
is the following. One takes the union Uα×C over all α ∈ A and “glues” them
together by identifying (P, ξα) ∈ Uα×C with (P, ξβ) ∈ Uβ×C for P ∈ Uα∩Uβ
linearly holomorphically, i.e., ξβ = g(P )ξα where g(P ) : Uα ∩ Uβ :→ C is
holomorphic.

Let us make this “constructive” definition rigorous. Denote by
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O∗(U) ⊂ O(U) ⊂M(U)

the sets of nowhere vanishing holomorphic functions, of holomorphic func-
tions and of meromorphic functions on U ⊂ R, respectively. A holomorphic
line bundle is given by its transition functions, which are holomorphic non-
vanishing functions gαβ ∈ O∗(Uα ∩ Uβ) satisfying

gαβ(P )gβγ(P ) = gαγ(P ) ∀P ∈ Uα ∩ Uβ ∩ Uγ . (1.91)

This identity implies in particular gαα = 1 and gαβgβα = 1.
Introduce on triples [P,Uα, ξ], P ∈ Uα, α ∈ A, ξ ∈ C the following equiva-

lence relation:

[P,Uα, ξ] ∼ [Q,Uβ, η]⇔ P = Q ∈ Uα ∩ Uβ , η = gβαξ . (1.92)

Definition 33. The union of Uα × C identified by the equivalence relation
(1.92) is called a holomorphic line bundle L = L(R). The mapping π : L→R
defined by [P,Uα, ξ] 7→ P is called the canonical projection. The linear space
LP := π−1(P ) ∼= {P} × C is called the fibre of L over P .

The line bundle with all gαβ = 1 is called trivial.
A set of meromorphic functions φα ∈M(Uα) such that φα/φβ ∈ O∗(Uα ∩

Uβ) for all α, β is called a meromorphic section φ of a line bundle L(R) defined
by the transition functions

gαβ = φα/φβ .

Note that the divisor (φ) of the meromorphic section φ is well defined by

(φ)
∣∣∣
Uα

= (φα)
∣∣∣
Uα

. In the same way one defines a line bundle L(U) and its

sections on an open subset U ⊂ R. Bundles are locally trivializable, i.e., there
always exist local sections: a local holomorphic section over Uα can be given
simply by

Uα ∋ P 7→ [P,Uα, 1]. (1.93)

One immediately recognizes that holomorphic (Abelian) differentials (see
Definitions 17, 19) are holomorphic (meromorphic) sections of a holomorphic
line bundle. This line bundle, given by the transition functions

gαβ(P ) =
dzβ
dzα

(P ) ,

is called the canonical bundle and denoted by K.
Obviously a line bundle is completely determined by a meromorphic sec-

tion. In Sect. 1.4 and 1.5.5 we dealt with meromorphic sections directly and
formulated results in terms of sections without using the bundle language.

Let L be a holomorphic line bundle (1.92) with trivializations (1.93) on
Uα. Local sections

Uα ∋ P 7→ [P,Uα, hα(P )] ,
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where hα ∈ O∗(Uα) define another holomorphic line bundle L′ which is called
(holomorphically) isomorphic to L. We see that fibres of isomorphic holomor-
phic line bundles can be holomorphically identified hα : L(Uα) → L′(Uα).
This is equivalent to the following definition.

Definition 34. Two holomorphic line bundles L and L′ are isomorphic if
their transition functions are related by

g′αβ = gαβ
hα
hβ

(1.94)

with some hα ∈ O∗(Uα).

We have seen that holomorphic line bundles can be described by their
meromorphic sections. Therefore it is not suprising that holomorphic line
bundles and divisors are intimately related. To each divisor one can natu-
rally associate a class of isomorphic holomorphic line bundles. Let D be a
divisor on R. Consider a covering {Uα} such that each point of the divisor
belongs to only one Uα. Take φα ∈ M(Uα) such that the divisor of φα is
presicely the part of D lying in Uα,

(φα) = Dα := D |Uα .

For example take φα = zniα , where zα is a local parameter vanishing at the
point Pi ∈ Uα of the divisor D =

∑
niPi. The so defined meromorphic section

φ determines a line bundle L associated with D. If φ′α ∈M(Uα) are different
local sections with the same divisor D = (φ′), then hα = φ′α/φα ∈ O∗(Uα)
and φ′ determines a line bundle L′ isomorphic to L. We see that a divisor D
determines not a particular line bundle but a class of isomorphic line bundles
together with corresponding meromorphic sections φ such that (φ) = D. This
relation is clearly an isomorphism. Let us denote by L[D] isomorphic line
bundles determined by D.

It is natural to get rid of sections in this relation and to describe line
bundles in terms of divisors.

Lemma 6. The holomorphic line bundles L[D] and L[D′] are isomorphic if
and only the corresponding divisors D and D′ are linearly equivalent.

Indeed, choose a covering {Uα} such that each point ofD andD′ belongs to
only one Uα. Take h ∈M(R) with (h) = D−D′. This function is holomorphic
on each Uα ∩ Uβ, α 6= β. If φ is a meromorphic section of L[D] then hφ
is a meromorphic section of L[D′], which implies (1.94) for the transition
functions. Conversely, let φ and φ′ be meromorphic sections of isomorphic
line bundles L[D] and L[D′] respectively, (φ) = D, (φ′) = D′. Identity (1.94)
implies that φαhα/φ

′
α is a meromorphic function on R. The divisor of this

function is D −D′, which yields D ≡ D′.
It turns out that Lemma 6 implies a classification of holomorphic line bun-

dles. Namely, every holomorphic line bundle L comes as a bundle associated
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to the divisor L = L[(φ)] of a meromorphic section φ, and every holomorphic
line bundle possesses a meromorphic section. The proofs of the last fact are
based on homological methods and are rather involved [GH94, Gu66, Spr81].
We arrive at the following fundamental classification theorem.

Theorem 26. There is a one to one correspondence between classes of iso-
morphic holomorphic line bundles and classes of linearly equivalent divisors.

The degree degD is called the degree of the line bundle L[D].
Thus, holomorphic line bundles are classified by elements of Jn (see

Sect. 1.6.3), where n is the degree of the bundle n = degL. Due to the Abel
theorem and Jacobi inversion, elements of Jn can be identified with the points
of the Jacobi variety. Namely, choose some D0 ∈ Jn as a reference point. Then
due to the Abel theorem the class of divisor D ∈ Jn is given by the point

A(D −D0) =

∫ D

D0

ω ∈ Jac(R) .

Conversely, due to the Jacobi inversion, given some D0 ∈ Jn, to any point
d ∈ Jac(R) there corresponds D ∈ Jn satisfying A(D −D0) = d.

1.7.2 Picard group. Holomorphic spin bundle.

We will not distinguish isomorphic line bundles and denote by L[D] the iso-
morphic line bundle associated with the divisor class D.

The set of line bundles can be equipped with an Abelian group structure.
If L and L′ are bundles with transition functions gαβ and g′αβ respectively,

then the line bundle. L′L−1 is defined by the transition functions g′αβg
−1
αβ .

Definition 35. The Abelian group of line bundles on R is called the Picard
group of R and denoted by Pic(R)

Let φ and φ′ be meromorphic sections of L and L′ respectively. Then φ′/φ
is a meromorphic section of L′L−1. For the divisors of the sections one has
(φ′/φ) = (φ′)− (φ). The classification theorem 26 implies the following

Theorem 27. The Picard group Pic(R) is isomorphic to the group of divisors
Div(R) modulo linear equivalence.

Holomorphic q-differentials of Sect. 1.5.4 are holomorphic sections of the
bundle Kq.

Corollary 14. Holomorphic line bundles L1, L2, L3 satisfy

L3 = L2L
−1
1

if and only if

degL3 = degL2 − degL1 and A(D3 −D2 +D1) = 0 ,

where Di are the divisors corresponding to Li = L[Di].
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For the proof one uses the characterization of line bundles via their mero-
morphic sections φ1, φ2, φ3 and applies the Abel theorem to the meromorphic
function φ3φ1/φ2.

Since the canonical bundle K is of even degree one can define a “square
root” of it.

Definition 36. A holomorphic line bundle S satisfying

SS = K

is called a holomorphic spin bundle. Holomorphic (meromorphic) sections of
S are called holomorphic (meromorphic) spinors.

Spinors are differentials of order 1/2. In local coordinates they are given
by expressions s(z)

√
dz where s(z) is holomorphic (meromorphic) for holo-

morphic (meromorphic) spinors.

Proposition 12. There exist exactly 4g non-isomorphic spin bundles on a
Riemann surface of genus g.

This fact can be shown using the description of classes of isomorphic holo-
morphic line bundles by the elements of the Jacobi variety, see the end of
Sect. 1.7.1. The classes of linearly equivalent divisors are isomorphic to points
of the Jacobi variety

D ∈ Jn ↔ d = A(D − nP0) ∈ Jac(R) ,

where P0 is a reference point P0 ∈ R. For the divisor classDS of a holomorphic
spin bundle Corollary 14 implies

degDS = g − 1 and 2A(DS) = A(C) ,

where C is the canonical divisor. Proposition 10 provides us with the general
solution to this problem,

A(DS) = −K +∆ ,

whereK is the vector of Riemann constants and∆ is one of the 4g half-periods
of Definition 32. Due to the Jacobi inversion the last equation is solvable
(the divisor DS ∈ Jg−1 is not necessarily positive) for any ∆. We denote by
D∆ ∈ Jg−1 the divisor class corresponding to the half-period ∆ and by S∆ the
corresponding holomorphic spin bundle S∆ := L[D∆]. The line bundles with
different half-periods can not be isomorphic since the images of their divisors
in the Jacobi variety are different.

Note that we obtained a geometrical interpretation for the vector of Rie-
mann constants.
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Corollary 15. Up to a sign the vector of Riemann constants is the image
under the Abel map of the divisor of the holomorphic spin bundle with the
zero theta characteristic

K = −A(D[0,0] − (g − 1)P0) .

This corollary clarifies the dependence of KP0 on the base point and on the
choice of the canonical homology basis.

Finally, let us give a geometric interpretation of the Riemann-Roch theo-
rem. Denote by h0(L) the dimension of the space of holomorphic sections of
the line bundle L.

Theorem 28 (Riemann-Roch theorem). For any holomorphic line bun-
dle π : L→R over a Riemann surface R of genus g

h0(L) = degL− g + 1 + h0(KL−1) . (1.95)

This theorem is just a reformulation of Theorem 18. Indeed, let D = (φ)
be the divisor of a meromorphic section of the line bundle L = L[D] and
let h be a holomorphic section of L. The quotient h/φ is a meromorphic
function with the divisor (h/φ) ≥ −D. On the other hand, given f ∈ M(R)
with (f) ≥ −D the product fφ is a holomorphic section of L. We see that
the space of holomorphic sections of L can be identified with the space of
meromorphic functions L(−D) defined in Sect. 1.5.2. Similarly, holomorphic
sections of KL−1 can be identified with Abelian differentials with divisors
(Ω) ≥ D. This is the space H(D) of Sect. 1.5.2 and its dimension is i(D).
Now the claim follows from (1.73).

The Riemann-Roch theorem does not allow us to compute the number of
holomorphic sections of a spin bundle. The identity (1.95) implies only that
deg S = g − 1. A computation of h0(S) is a rather delicate problem. It turns
out that the dimension of the space of holomorphic sections of S∆ depends
on the theta characteristic ∆ and is even for even theta characteristics and
odd for odd theta characteristics [Ati71]. Spin bundles with non-singular theta
characteristics have no holomorphic sections if the characteristic is even and
have a unique holomorphic section if the characteristic is odd.

Results of Sect. 1.6.3 allow us to show this easily for odd theta character-
istics. Take the differential ω∆ of Corollary 13. The square root of it

√
ω∆ is

a holomorphic section of S∆.

Proposition 13. Spin bundles S∆ with odd theta characteristics ∆ possess
global holomorphic sections.

If ∆ is a non-singular theta characteristic then the corresponding positive
divisor D∆ of degree g − 1 is unique (see the proof of Proposition 11). This
implies the uniqueness of the differential with (ω) = D∆ and h0(S∆) = 1.
This holomorphic section is given by
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√√√√
g∑

i=1

∂θ

∂zi
(∆)ωi .

1.8 Schottky Uniformization

1.8.1 Schottky group

Let C1, C
′
1, . . . , CN , C

′
N be a set of 2N mutually disjoint Jordan curves on Ĉ.

They comprise the boundary of a domain Π ⊂ Ĉ which is a topological sphere
with 2N holes (see Fig. 1.22). Let us assume that the curves Cn and C′

n are
identified by σCn = C′

n where σ is a loxodromic transformation,

σnz −Bn
σnz −An

= µn
z −Bn
z −An

, |µn| < 1, n = 1, . . . , N , (1.96)

which maps the exterior of Cn to the interior of C′
n. The points An, Bn are

the fixed points of this transformation.

b1

b2

B2

a2

C2

A2

B1

a1

C1

A1

C ′

1

C ′

2

Fig. 1.22. The fundamental domain Π of a Schottky group with a canonical ho-
mology basis. The cycles an coincide with the positively oriented C′

n ; bn run on Π

between the points zn ∈ Cn and σnzn ∈ C′
n.

Fractional-linear transformations can be canonically identified with the
elements of the matrix group PSL(2,C):

(
a b
c d

)
↔ σz =

az − b
cz − d , a, b, c, d ∈ C , ad− bc = 1 . (1.97)

The canonical matrix representation of the transformation (1.96) is as follows
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(
a b
c d

)
=

1

A−B

(
A
√
µ− B√

µ AB( 1√
µ −
√
µ)

√
µ− 1√

µ
A√
µ −B

√
µ

)
.

The derivative of the transformation (1.97) is σ′z = (cz + d)−2. It is an
isometry for the points satisfying |cz + d| = 1. These points comprise the
isometric circle Cσ of σ with the center at − dc and the radius 1

|c| . The isometric

circles Cσ and Cσ−1 of the transformations (1.96) have equal radii and are
disjoint.

Definition 37. The group G generated by the transformations σ1, . . . , σN is
called a Schottky group. If all the boundary curves Cn, C

′
n are circles the

Schottky group is called classical.

These groups were introduced in [Sch87] by Schottky who has established
their fundamental properties and investigated their automorphic functions.
The domain Π is the fundamental domain of the group G. The existence
of nonclassical (for an arbitrary system of generators) Schottky groups is
shown in [Mar74]. A special case of classical Schottky groups are the Schot-
tky groups with fundamental domains bounded by isometric circles of their
generators. General Schottky groups can be characterized as free, purely lox-
odromic finitely generated discontinuous groups [Mas67].

The limit set Λ(G) of the Schottky group is the closure of the fix points
of all its elements. The discontinuity set Ω(G) = C \ Λ(G) factorized with
respect to G is a compact Riemann surface Ω(G)/G of genus N . According
to the classical uniformization theorem [Fo29] any compact Riemann surface
of genus N can be represented in this form.

Theorem 29 (Schottky uniformization). Let R be a Riemann surface
of genus N with a set of homologically independent simple disjoint loops
v1, . . . , vN . Then there exists a Schottky group G such that

R = Ω(G)/G ,

and the fundamental domain Π(G) is conformally equivalent to R cut along
the loops v1, . . . , vN .

Under the Schottky uniformization the loops vn are mapped to the bound-
ary curves Cn, C

′
n. The loop system v1, . . . , vN generates a subgroup of the

homology group H1(R,ZZ). Two loop systems generating the same subgroup
determine the same Schottky group but with a different choice of generators.
The Schottky groups G and G′ corresponding to the loop systems generating
different subgroups of H1(R,ZZ) are different.

The Schottky group is parametrized by the fix points A1, B1, . . . , AN , BN
of the generators and their trace parameters µ1, . . . , µN . The Schottky groups
G and G′ with the parameters A1, B1, . . . , AN , BN and A′

1, B
′
1, . . . , A

′
N , B

′
N

which differ by a common fractional-linear transformation uniformize the same
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Riemann surface. This parameter counting gives the correct number 3N − 3
for the complex dimension of the moduli space of Riemann surfaces of genus
N .

It is unknown whether every Riemann surface can be uniformized by a
classical Schottky group.

The Schottky uniformization ofR is determined by a half basis ofH1(Ω(G)/G,ZZ),
and it is natural to choose a canonical basis of H1(R,ZZ) respecting this struc-
ture. Such a canonical basis of cycles is illustrated in Fig. 1.22: the cycle an
coincides with the positively oriented curve C′

n, and the cycle bn connects the
points zn ∈ Cn and σnzn ∈ C′

n, and the b-cycles are mutually disjoint.

1.8.2 Holomorphic differentials as Poincaré series

Denote by Gn the subgroup of the Schottky group G generated by σn. The
cosets G/Gn and Gm\G/Gn are the sets of all elements

σ = σj1i1 . . . σ
jk
ik
, i ∈ {1, . . . , N} , j ∈ ZZ \ {0} ,

such that ik 6= n and for Gm\G/Gn in addition i1 6= m.
The following theorem is classical (see [Bur92, Bak97]).

Theorem 30. If the Poincaré series

ωn =
∑

σ∈G/Gn

(
1

z − σBn
− 1

z − σAn

)
dz (1.98)

are absolutely convergent on Π(G), they are holomorphic differentials of
the Riemann surface Ω(G)/G normalized in the canonical basis shown in
Fig. 1.22. The period matrix is

Bnm =
∑

σ∈Gm\G/Gn

log{Bm, σBn, Am, σAn} , m 6= n ,

Bnn = logµn +
∑

σ∈Gn\G/Gn

log{Bn, σBn, An, σAn} , (1.99)

where the curly brackets denote the cross-ratio

{z1, z2, z3, z4} =
(z1 − z2)(z3 − z4)
(z2 − z3)(z4 − z1)

.

The series (1.98) have no poles in Π(G). The normalization
∫
am

ωn = 2πiδnm

follows from a computation of residues. Indeed, if σ = σj1i1 . . . σ
jk
ik
, σ 6= I, then

both the points σBn and σAn are inside of C′
i1 when j1 > 0, and inside of Ci1

when j1 < 0. Only for σ = I the images σBn and σAn are separated: Bn is
inside of C′

n and An is inside of Cn.
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The series (1.98) are (−2)-dimensional Poincaré series and can be written
in a slightly different form

ωn =
∑

σ∈Gn\G

(
1

σz −Bn
− 1

σz −An

)
σ′zdz , σ′z =

1

(cz + d)2
.

In this form it is easy to see that ωn(σz) = ωn(z), so ωn is a holomorphic
differential on R = Ω(G)/G. Using the invariance of the cross-ratio with
respect to fractional-linear transformations

{σz1, σz2, σz3, σz4} = {z1, z2, z3, z4}

one can derive (1.99) from the definition of the period matrix.
The problem of convergence of Poincaré series describing holomorphic dif-

ferentials is a non-trivial problem of crucial importance since one cannot rely
on computations with divergent series. This problem is ignored in some ap-
plied papers. For general Schottky groups and even for classical ones the (−2)-
dimensional Poincaré theta series can be divergent. However, the convergence
of these series is guaranteed if the fundamental domain Π(g) is “circle decom-
posable”:

Assume that the Schottky group is classical and that 2N − 3 circles
L1, . . . , L2N−3 can be fixed on the fundamental domain Π(G) so that the
following conditions are satisfied:

• (i) The circles L1, . . . , L2N−3, C1, C
′
1, . . . , CN , C

′
N are mutually disjoint,

• (ii) The circles L1, . . . , L2N−3 divideΠ(G) into 2N−2 regions T1, . . . , T2N−2,
• (iii) Each Ti is bounded by exactly three circles.

Such Schottky groups are called circle decomposable (see Fig. 1.23 for an ex-
ample of a circle decomposable Schootky group). In particular, each Schottky
group which has an invariant circle is circle decomposable by circles orthogo-
nal to the invariant circle.

The following elegant geometric convergence result is due to Schottky
[Sch87] (see also [FK65] for a proof).

Theorem 31 (Schottky condition). (−2)-dimensional Poincaré theta se-
ries corresponding to a circle decomposable Schottky group is absolutely con-
vergent on the whole fundamental domain of G.

The convergence of (−2)-dimensional Poincaré theta series can be proved
also in the case when the circles Cn, C

′
n, n = 1, . . . , N are small and far

enough apart. The corresponding estimations can be found in [Bur92, Bak97]
and in the contribution by Schmies in this volume.

The convergence of the Poincaré theta series can be characterized in terms
of the metrical properties of the limiting set Λ(G). If ν is the minimal di-
mension for which the (−ν)-dimensional Poincaré theta series converge abso-
lutely, then the Hausdorff measure of Λ(G) is equal to ν

2 . In particular, the
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Fig. 1.23. The fundamental domain of a circle decomposable Schottky group.

1-dimensional Hausdorff measure of Λ(G) of a Schottky group with divergent
(−2)-dimensional Poincaré theta series is infinite. Examples of such classi-
cal Schottky groups with fundamental domains bounded by isometric circles
can be found in [Myr16, Aka67]. The class of Schottky groups with conver-
gent (−2)-dimensional Poincaré theta series is geometrically characterized in
[Bow79].

1.8.3 Schottky uniformization of real Riemann surfaces

As it was mentioned in the preceding sections the problem of convergence
of the Poincaré theta series for the holomorphic differentials is of crucial im-
portance. Another important problem for the practical application of Schottky
uniformization is to determine the Schottky space S = (A1, B1, µ1, . . . , AN , BN , µN ) ⊂
C3N of the uniformizing Schottky groups. Both problems are so difficult that
solving them for general Riemann surfaces seems hopeless.

The situation is more fortunate in the case of real Riemann surfaces, which
is the most important for applications. In this case one can find a Schottky uni-
formization with convergent Poincaré series and describe the Schottky space
S [Bob88, BBE+94]. Here we present the main ideas of this method.

Definition 38. A Riemann surface R with an anti-holomorphic involution
τ : R → R is called a real Riemann surface. The connected components
X1, . . . , Xm of the set of fix points of τ are called real ovals. If R\{X1, . . . , Xm}
has two connected components the Riemann surface is called of decomposing
type.
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There are real Riemann surfaces without fix point of τ . Let R be of decom-
posing type and R+ and R− be two components of R \ {X1, . . . , Xm}. Both
R± are Riemann surfaces of type (g,m), i.e., they are homeomorphic to a
surface of genus g = N+1−m

2 with m boundary components.

Theorem 32. Every real Riemann surface of decomposing type possesses a
Schottky uniformization by a Fuchsian group G of the second kind. The
Poincaré theta series of dimension −2 of G are absolutely convergent.

The main idea behind this theorem is that in this case the Schottky group
is of Fuchsian type. Indeed, consider the classical Fuchsian uniformization of
the surface R+ = H/G. Here H is the upper half plane H = {z ∈ ZZ,ℑz > 0}
and the group G is a purely hyperbolic Fuchsian group of the second kind
[Fo29]. The matrix elements (1.97) of all the group elements of G are real and
satisfy |a+d| > 2. The groupG is generated by the hyperbolic transformations
α1, β1, . . . , αg, βg and γ1, . . . , γm, m > 0, satisfying the constraint

α1β1α
−1
1 β−1

1 . . . αgβgα
−1
g β−1

g γ1 . . . γm = I .

Extending the action of G to the lower half-plane H = {z ∈ ZZ,ℑz < 0} we
obtain another component R− = H/G. The elements

σi = αi, σg+i = βi, σ2g+j = γj , i = 1, . . . , g; j = 1, . . . ,m− 1

acting on the whole Riemann sphere Ĉ generate a free, purely hyperbolic
group, which is a Schottky group uniformizing the Riemann surface R. It
possesses an invariant circle, which is the real line, and therefore is circle de-
composable. The convergence of the Poincaré series follows from Theorem 31.
Note that the Schottky group is classical since the fundamental domain of the
Fuchsian group can be chosen to be bounded by geodesics in the hyperbolic
geometry. These geodesics are arcs of circles orthogonal to the real line.

The Schottky uniformization of real Riemann surfaces of decomposing type
described above looks as follows. The circles Cn, C

′
n, n = 1, . . . , N are or-

thogonal to the real axis and their discs are disjoint (see Fig. 1.24 for the
special case of M-curves). The order of circles is arbitrary. Every pair Cn, C

′
n

determines a hyperbolic transformation σn. The transformations σ1, . . . , N
generate a Schottky group uniformizing a real Riemann surface of decompos-
ing type. The number of real ovals is determined by the arrangement of the
circles Cn, C

′
n, n = 1, . . . , N . The Schottky parameters are real,

(A1, B1, µ1, . . . , AN , BN , µN ) ∈ IR3N , 0 < µn < 1, n = 1, . . . , N .

The description of the Schottky space can be obtained from an analysis of the
invariant lines of the group elements of G (see [Kee65, Nat04]). We present
here the result for the case of M-curves.

A real Riemann surface R of genus N with maximal possible number
m = N + 1 of real ovals is called an M-curve. The real ovals decompose it
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A1 A2 A3B1B2B3

Fig. 1.24. Schottky uniformization of an M-curve.

into two components R± which are topological spheres with N +1 holes. The
Schottky space S is described as follows [Bob88, BBE+94]:

BN < BN−1 < . . . < B1 < A1 < . . . < AN , 0 <
√
µn < 1, n = 1, . . . , N ,

{Bn, Bn+1, An, An+1} >
(√

µn +
√
µn+1

1 +
√
µnµn+1

)2

, n = 1, . . . , N − 1 .

1.8.4 Schottky uniformization of hyperelliptic M-curves

By imposing an additional symmetry to the Schottky data one obtains hyper-
elliptic Riemann surfaces. The additional constraint

Bn = −An, n = 1, . . . , N , (1.100)

in the previous description of M-curves gives all hyperelliptic M-curves. All
the considerations simplify in this case (see [BBE+94] for details).

In particular the fundamental domain Π of the Schottky group can be
chosen symmetric with respect to the involution πz = −z. The boundary
circles Cn, C

′
n can be chosen to be the isometric circles of the corresponding

hyperbolic generators. The center cn and the radius rn of Cn are as follows:

cn = An
1 + µn
1− µn

, rn = 2An

√
µn

1− µn
.

The involutions τz = z̄ and τ̃ = τπz = −z̄ are anti-holomorphic, and τ is the
one with N +1 real ovals. The Schottky group G is the subgroup of index 2 of
the group generated by the inversions in in the circles Cn and τ̃ , in particular
σn = τ̃ in, σ

−1
n = inτ̃ . The intersection points of the circles Cn with the real

axis

z±n = An
1±√µn
1∓√µn

as well as z = 0 and z = ∞ are the fix points of the hyperelliptic involution
π.

The reduction (1.100) simplifies the period matrix,

Bnm =
∑

σ∈Gm\G/Gn

log

(
Am − σ(An)

Am − σ(−An)

)2

,

Bnn = logµn +
∑

σ∈Gn\G/Gn

log

(
An − σ(An)

An − σ(−An)

)2
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and the description of the Schottky set,

0 < A1 < . . . < AN , 0 <
√
µn < 1 , n = 1, . . . , N ,(

1−√µn
1−√µn

)(
1−√µn+1

1−√µn+1

)
>

An
An+1

, n = 1, . . . , N − 1 .

A meromorphic function λ : R→ Ĉ with double pole (at z =∞) defining
a two-sheeted covering (see Sect. 1.5.5) is given by the Poincaré theta series

λ(z) =
∑

σ∈G
((σz)2 − (σ0)2) .

The corresponding hyperelliptic curve is

µ2 = λ
N∏

n=1

(λ− λ(z−n ))(λ − λ(z+
n )) .
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