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We discuss discretization of Koenigs nets (conjugate nets with equal Laplace invariants)

and of isothermic surfaces. Our discretization is based on the notion of dual quadrilat-

erals: two planar quadrilaterals are called dual if their corresponding sides are parallel,

and their noncorresponding diagonals are parallel. Discrete Koenigs nets are defined as

nets with planar quadrilaterals admitting dual nets. Several novel geometric properties

of discrete Koenigs nets are found; in particular, two-dimensional discrete Koenigs nets

can be characterized by coplanarity of the intersection points of diagonals of elemen-

tary quadrilaterals adjacent to any vertex; this characterization is invariant with respect

to projective transformations. Discrete isothermic nets are defined as circular Koenigs

nets. This is a new geometric characterization of discrete isothermic surfaces introduced

previously as circular nets with factorized cross-ratios.

1 Introduction

This paper is devoted to the discretization of a geometrically important class of two-

dimensional conjugate nets, very popular in the classical differential geometry un-

der the name of nets with equal invariants. With a view toward discretization, we
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prefer to call them Koenigs nets, for the following reason: among various geometric and

analytic characterizations, the property of having equal Laplace invariants belongs to

the minor part which do not survive by discretization, at least literally. Therefore the

term “discrete nets with equal invariants” would be misleading. On the other hand, the

French geometer G. Koenigs contributed a lot to the study of their properties [26, 27],

see also [p. 19–47 in 12, 20]. The term “discrete Koenigs nets” will be suggestive and well

justified.

Discrete Koenigs nets are closely related to discrete Moutard nets which recently

found an important mathematical application in the problem of a geometric characteri-

zation of Prym varieties [21].

Another class of nets, whose discretizations are discussed in the present paper,

are isothermic surfaces. Classically, their theory was considered as one of the highest

achievements of the local differential geometry, see [1, 11–14, 20] and modern studies

[8–10, 23, 25, 35].

Both classes of nets have already been discretized. Historically, discrete isother-

mic surfaces were introduced earlier [2], as circular nets with factorized cross-ratios.

An approach to the discretization of Koenigs nets have been proposed in [17], based

on a characterization of smooth Koenigs nets as conjugate nets possessing a so-called

conic of Koenigs in each tangent plane [27] (a conic of Koenigs has a second-order con-

tact both with the u1 tangent line at the corresponding point of the Laplace trans-

form f−1 and with the u2 tangent line of f at the corresponding point of the Laplace

transform f1).

In the present paper, we propose a novel definition of discrete Koenigs nets and

discrete isothermic surfaces. This definition is based on one of the characterizations of

the Koenigs nets and isothermic surfaces, namely on the notion of duality. We believe

that it is this definition that lies in the core of the whole theory and leads most directly

to various other properties. All discretizations we consider belong to the class of Q-nets,

or nets with planar elementary quadrilaterals [19], which are the fundamental objects of

discrete differential geometry (see [3, 4] for a detailed presentation of the current state

of discrete differential geometry as well as for historical remarks).

Two planar quadrilaterals are said to be dual if their corresponding sides are

parallel and their noncorresponding diagonals are also parallel. In [31], this property

has been identified as a characterization of pairs of quadrilaterals with parallel sides

and with the vanishing mixed area, and it has been observed that the corresponding

circular quadrilaterals of dual discrete isothermic surfaces possess this property. These
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observations stimulated the development presented here. Namely, we study here the

geometric and analytic properties of nets all of whose quadrilaterals can be dualized

simultaneously.

A net with planar quadrilaterals admitting a dual net is called a discrete Koenigs

net. A discrete Koenigs net with all circular quadrilaterals is called a discrete isothermic

net.

Discrete surfaces we arrive at are not new. The class of discrete isothermic sur-

faces turns out to coincide with the original class introduced in [2], so that we get just

a novel characterization of the latter. In the case of discrete Koenigs nets, the history

is more complicated: they first appeared in [32] (see also [33, 34]) in the context of in-

finitesimal deformations of surfaces, with exactly the same definition as we use (dual

quadrilaterals are called antiparallel there); however, the geometric and analytic prop-

erties of these nets remained to a large extent unexplored. Recently, this class has been

studied in [5, 18], but again some of the crucial properties passed unnoticed. The main

novel results of the present paper include:

• Definition of discrete Koenigs nets as those admitting dual nets (Definition

3.4).

• A characterization of discrete Koenigs nets in terms of an exact multiplicative

one-form on diagonals, defined through ratios of diagonal segments (Theorem

3.7). Integrating this exact form, we arrive at the function ν defined at the

vertices of a discrete Koenigs net. This function is a novel and important

ingredient of an analytic description of discrete Koenigs nets. In particular,

the function ν allows us to find a discrete analog of a Laplace equation with

equal invariants (Equation (30)), and defines the Moutard representatives of a

discrete Koenigs net (Theorem 3.15).

• A novel projective-geometric characterization of two-dimensional Koenigs

nets: intersection points of diagonals of elementary quadrilaterals of such

a net form a net with planar quadrilaterals (Theorem 3.9). Interestingly, the

net comprised by the intersection points of diagonals of quadrilaterals of a

discrete Koenigs net in the sense of our definition turns out to satisfy the

definition of discrete Koenigs nets from [17].

• A novel definition of discrete isothermic nets as circular nets admitting dual

nets (Definition 4.1).

• A novel understanding of the discrete metric of a discrete isothermic net, as

the function ν in the circular context (Theorem 4.8).
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2 Koenigs Nets and Isothermic Surfaces

2.1 Definitions and duality

Definition 2.1 (Koenigs net). A map f : R
2 → R

N is called a Koenigs net if it satisfies a

differential equation

∂1∂2 f = (∂2 log ν) ∂1 f + (∂1 log ν) ∂2 f (1)

with some scalar function ν : R
2 → R

∗. �

The following characterization of Koenigs nets will be of a fundamental impor-

tance for us.

Theorem 2.2 (dual Koenigs net). A conjugate net f : R
2 → R

N is a Koenigs net if and

only if there exists a scalar function ν : R
2 → R such that the differential one-form d f∗

defined by

∂1 f∗ = ∂1 f

ν2
, ∂2 f∗ = −∂2 f

ν2
(2)

is exact. In this case the map f∗ : R
2 → R

N , defined (up to a translation) by the integration

of this one-form, is also a Koenigs net, called dual to f . �

This follows immediately by cross-differentiating Equation (2). A different way

to formulate the latter equations is:

∂1 f∗ ‖ ∂1 f , ∂2 f∗ ‖ ∂2 f ,

(∂1 + ∂2) f∗ ‖ (∂1 − ∂2) f , (∂1 − ∂2) f∗ ‖ (∂1 + ∂2) f. (3)

Definition 2.3 (isothermic surface). A curvature line parameterized surface f : R
2 →

R
N is called an isothermic surface if its first fundamental form is conformal, possibly

upon a re-parameterization of independent variables ui �→ ϕi(ui) (i = 1, 2), i.e. if at every

point u ∈ R
2 of the definition domain there holds |∂1 f |2/|∂2 f |2 = α1(u1)/α2(u2). �

In other words, isothermic surfaces are characterized by the relations ∂1∂2 f ∈
span(∂1 f , ∂2 f ) and

〈∂1 f , ∂2 f〉 = 0, |∂1 f |2 = α1s2, |∂2 f |2 = α2s2, (4)
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with some s : R
2 → R+ (conformal metric coefficient) and with the functions αi depending

on ui only (i = 1, 2). Conditions (4) may be equivalently represented as

∂1∂2 f = (∂2 log s)∂1 f + (∂1 log s)∂2 f , 〈∂1 f , ∂2 f〉 = 0. (5)

Comparison with Equation (1) shows that isothermic surfaces are nothing but orthogonal

Koenigs nets, the role of the function ν being played by the metric coefficient s.

In the case of isothermic surfaces the duality is specialized as follows.

Theorem 2.4 (dual isothermic surface). Let f : R
2 → R

N be an isothermic surface. Then

the R
N-valued one-form d f∗ defined by

∂1 f∗ = α1
∂1 f

|∂1 f |2 = ∂1 f

s2
, ∂2 f∗ = −α2

∂2 f

|∂2 f |2 = −∂2 f

s2
(6)

is exact. The surface f∗ : R
2 → R

N , defined (up to a translation) by the integration of this

one-form, is isothermic, with

〈∂1 f∗, ∂2 f∗〉 = 0, |∂1 f∗|2 = α1s−2, |∂2 f∗|2 = α2s−2. (7)

The surface f∗ is called dual to, or the Christoffel transform of the surface f . �

2.2 Moutard representatives

Remarkably, the defining property (1) turns out to be invariant under projective transfor-

mations of R
N , so that the notion of Koenigs nets actually belongs to projective geometry.

If one considers the ambient space R
N of a Koenigs net as an affine part of RP

N , then there

is an important choice of representatives for f ∼ ( f , 1) in the space R
N+1 of homogeneous

coordinates, namely

y = ν−1( f , 1). (8)

Indeed, a straightforward computation shows that the representatives (8) satisfy the

following simple differential equation:

∂1∂2y = qy (9)
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with the scalar function q = ν∂1∂2(ν−1). Differential equation (9) is known as the Moutard

equation. Accordingly, we call a map y : R
2 → R

N+1 a Moutard net if it satisfies the

Moutard equation (9) with some q : R
2 → R.

Theorem 2.5 (Koenigs nets = Moutard nets in homogeneous coordinates). For a

Koenigs net f : R
2 → R

N , the lift (8) is a Moutard net. Conversely, given a Moutard net

y : R
2 → R

N+1 with a nonvanishing last component ν−1 : R
2 → R

∗, define f : R
2 → R

N by

Equation (8), then f is a Koenigs net. �

More generally, for a given Moutard net y in R
N+1, it is not difficult to figure out

the condition for a scalar function ν : R
2 → R

∗, under which f̃ = νy satisfies equation

of the Laplace type: ν−1 has to be a solution of the same Moutard equation (9) (not

necessarily one of the components of the vector y), and then there holds

∂1∂2 f̃ = (∂2 log ν)∂1 f̃ + (∂1 log ν)∂2 f̃ .

Of course, Moutard nets can be considered also on their own rights, i.e. one does

not have to regard the ambient space R
N+1 of a Moutard net as the space of homogeneous

coordinates for RP
N . Nevertheless, such an interpretation is useful in the most cases.

In application to isothermic surfaces, the construction of Moutard representa-

tives can be performed within the projective model of Möbius geometry. Recall that,

although conditions (4) are formulated in Euclidean terms, they are invariant not only

with respect to Euclidean motions and dilations in R
N , but also with respect to the

inversion f → f/〈 f , f〉. Therefore, the notion of isothermic surfaces belongs to Möbius

differential geometry.

Recall (see, e.g. [8] or [23]) that the basic space of the projective model of Möbius

geometry in R
N is the projectivization P(RN+1,1) of the Minkowski space R

N+1,1. The latter

is the space spanned by N + 2 linearly independent vectors e1, . . . , eN+2 and equipped

with the Minkowski scalar product

〈ei, e j〉 =

⎧⎪⎪⎨
⎪⎪⎩

1, i = j ∈ {1, . . . , N + 1},
−1, i = j = N + 2,

0, i 
= j.

It is convenient to introduce two isotropic vectors e0 = 1
2 (eN+2 − eN+1), e∞ = 1

2 (eN+2 +
eN+1), satisfying 〈e0, e∞〉 = − 1

2 .
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A point f ∈ R
N is modeled in the space P(RN+1,1) by the element with homoge-

neous coordinates f̂ = f + e0 + | f |2e∞. Thus, points f ∈ R
N ∪ {∞} are in a one-to-one

correspondence with points of the projectivized light cone P(LN+1,1), where

L
N+1,1 = {

ξ ∈ R
N+1,1 : 〈ξ , ξ 〉 = 0

}
. (10)

A surface f : R
2 → R

N is curvature lines parameterized if and only if its lift f̂ : R
2 →

L
N+1,1 into the light cone is a conjugate net. In particular, Equations (5) are equivalent to

∂1∂2 f̂ = (∂2 log s)∂1 f̂ + (∂1 log s)∂2 f̂ .

Thus, the following result by Darboux [p. 267 in 14] holds:

Theorem 2.6 (isothermic surfaces = Moutard nets in the light cone). For an isother-

mic surface f : R
2 → R

N with the conformal metric coefficient s : R
2 → R+, define its lift

into the light cone, y : R
2 → L

N+1,1, by

y = s−1( f + e0 + | f |2e∞
)
. (11)

Then y satisfies the Moutard equation (9) with q = s∂1∂2(s−1).

Conversely, given a Moutard net y : R
2 → L

N+1,1 in the light cone, define s : R
2 →

R
∗ and f : R

2 → R
N by Equation (11), so that s−1 is the e0-component, and s−1 f is the R

N-

part of y in the basis e1, . . . , eN , e0, e∞. Then f is an isothermic surface, and the definition

(4) holds with the functions αi = 〈∂i y, ∂i y〉 depending on ui only. �

Note that in the second part of the theorem we can always assume that s : R
2 →

R+, changing y to −y if necessary.

3 Discrete Koenigs and Moutard Nets

3.1 Notion of dual quadrilaterals

Definition 3.1 (dual quadrilaterals; see [31–34]). Two quadrilaterals (A, B, C , D) and

(A∗, B∗, C ∗, D∗) in a plane are called dual if their corresponding sides are parallel:

(A∗B∗) ‖ (AB), (B∗C ∗) ‖ (BC ), (C ∗D∗) ‖ (C D), (D∗ A∗) ‖ (D A), (12)
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Fig. 1. Dual quadrilaterals.

and the noncorresponding diagonals are parallel:

(A∗C ∗) ‖ (BD), (B∗D∗) ‖ (AC ). (13)

See Figure 1. �

Lemma 3.2 (existence and uniqueness of dual quadrilateral). For any planar quadri-

lateral (A, B, C , D) a dual one exists and is unique up to scaling and translation. �

Proof. Uniqueness of the form of the dual quadrilateral can be argued as follows.

Denote the intersection point of the diagonals of (A, B, C , D) by M = (AC ) ∩ (BD). Take an

arbitrary point M∗ in the plane as the designated intersection point of the diagonals of

the dual quadrilateral. Draw two lines �1 and �2 through M∗ parallel to (AC ) and (BD),

respectively, and choose an arbitrary point on �2 to be A∗. Then the rest of construction

is unique: draw the line through A∗ parallel to (AB), its intersection point with �1 will

be B∗; draw the line through B∗ parallel to (BC ), its intersection point with �2 will be

C ∗; draw the line through C ∗ parallel to (C D), its intersection point with �1 will be D∗. It

remains to be seen that this construction closes, namely that the line through D∗ parallel

to (D A) intersects �2 at A∗. Clearly, this property does not depend on the initial choice

of A∗ on �2, since this choice only affects the scaling of the dual picture. Therefore, it is

enough to demonstrate the closing property for some choice of A∗, or, in other words, to

show the existence of one dual quadrilateral. This can be done as follows.

Denote by e1 and e2 some vectors along the diagonals, and introduce the coeffi-

cients α, . . . , δ by

−−→
MA = αe1,

−−→
MB = βe2,

−−→
MC = γ e1,

−−→
MD = δe2, (14)
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so that

−→
AB = βe2 − αe1,

−→
BC = γ e1 − βe2,

−→
C D = δe2 − γ e1,

−→
D A = αe1 − δe2.

(15)

Construct a quadrilateral (A∗, B∗, C ∗, D∗) by setting

−−−→
M∗ A∗ = −e2

α
,

−−−→
M∗B∗ = −e1

β
,

−−−→
M∗C ∗ = −e2

γ
,

−−−→
M∗D∗ = −e1

δ
. (16)

Its diagonals are parallel to the noncorresponding diagonals of the original quadrilat-

eral, by construction. The corresponding sides are parallel as well:

−−−→
A∗B∗ = − 1

β
e1 + 1

α
e2 = 1

αβ

−→
AB,

−−−→
B∗C ∗ = − 1

γ
e2 + 1

β
e1 = 1

βγ

−→
BC ,

−−−→
C ∗D∗ = −1

δ
e1 + 1

γ
e2 = 1

γ δ

−→
C D,

−−−→
D∗ A∗ = −1

α
e2 + 1

δ
e1 = 1

δα

−→
D A.

Thus, the quadrilateral (A∗, B∗, C ∗, D∗) is dual to (A, B, C , D). �

Note that the quantities α, . . . , δ in Equation (14) are not well defined by the

geometry of the quadrilateral (A, B, C , D), since they depend on the choice of the vectors

e1, e2. Well defined are their ratios, which can be viewed also as ratios of the directed

lengths of the corresponding segments of diagonals, say γ : α = l(M, C ) : l(M, A) and δ :

β = l(M, D) : l(M, B). It is natural to associate these ratios with directed diagonals:

Definition 3.3 (ratio of diagonal segments). Given a quadrilateral (A, B, C , D), with the

intersection point of diagonals M = (AC ) ∩ (BD), we set

q(
−→
AC ) = l(M, C )

l(M, A)
, q(

−→
BD) = l(M, D)

l(M, B)
. (17)

Changing the direction of a diagonal corresponds to inverting the associated quan-

tity q. �

Note that

(A, B, C , D) convex ⇔ q(
−→
AC ) < 0 and q(

−→
BD) < 0. (18)
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3.2 Notion of discrete Koenigs nets

In dealing with discrete nets f : Z
m → R

N we will use the usual notations

τi f (u) = f (u + ei), δi f (u) = f (u + ei) − f (u),

where ei stands for the unit vector of the ith coordinate direction. Moreover, we often

abbreviate f (u), τi f (u), τiτ j f (u) to f , fi, fij, respectively. Recall that a Q-net is a map f :

Z
m → R

N such that all elementary quadrilaterals ( f , fj, fij, fj) are planar. The following

definition is the fundamental one for the present paper.

Definition 3.4 (discrete Koenigs net). A Q-net f : Z
m → R

N is called a discrete Koenigs

net if it admits a dual net, i.e. a Q-net f∗ : Z
m → R

N such that all elementary quadrilat-

erals of the net f∗ are dual to the corresponding quadrilaterals of f :

δi f∗ ‖ δi f , f∗
i j − f∗ ‖ fi − fj, f∗

i − f∗
j ‖ fij − f. (19)

�

This definition can be seen as a discretization of conditions (3).

In order to understand restrictions imposed on a Q-net by this definition, we start

with the following construction. Each lattice Z
m is bipartite: one can color its vertices

black and white so that each edge connects a black vertex with a white one (for instance,

one can call vertices u = (u1, · · · , um) with an even value of |u| = u1 + · · · + um black

and those with an odd value of |u| white). Each elementary quadrilateral has a black

diagonal (the one connecting two black vertices) and a white one. One can introduce

the black graph Z
m
even with the set of vertices consisting of the white vertices of Z

m and

the set of edges consisting of black diagonals of all elementary quadrilaterals of Z
m,

and the analogous white graph Z
m
odd. The geometry of the elementary quadrilaterals of a

Q-net f : Z
m → R

N induces, according to Definition 3.3, the quantities q (ratios of directed

lengths of diagonal segments) on all directed diagonals, white and black.

Definition 3.5 (multiplicative one-form). Given a graph G with the set of vertices V

and with the set of directed edges �E , the function q : �E → R
∗ is called a multiplicative

one-form on G if q(−e) = 1/q(e) for any directed edge e ∈ �E . It is called exact if for any

cycle of directed edges the product of values of q along this cycle is equal to one. �
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Fig. 2. Four quadrilaterals around a vertex of a two-dimensional net.

The main general statement about exact multiplicative one-forms is the

following.

Theorem 3.6 (integration of an exact form). If q : �E → R
∗ is an exact multiplicative

one-form on G, then there exists a function ν : V → R
∗ such that for any e = (x, y) ∈ �E

there holds q(e) = ν(y)/ν(x). Such a function ν is defined up to a multiplicative constant,

which can be fixed by prescribing ν arbitrarily at one vertex. �

Any Q-net yields a multiplicative one-form q (or, better, two multiplicative one-

forms) on both the black and the white graphs of Z
m, as introduced in Definition 3.3.

Theorem 3.7 (algebraic characterization of discrete Koenigs nets). A Q-net f : Z
m →

R
N is a Koenigs net if and only if the multiplicative one-form q is exact on both Z

m
even and

Z
m
odd. �

Proof. For a given Q-net, one can try to construct a dual net, applying Lemma 3.2, start-

ing with an arbitrary quadrilateral. It is easy to realize that obstructions in extending

this construction to the whole net may appear when running along closed chains of

elementary quadrilaterals in which any two subsequent quadrilaterals share an edge.

m = 2. The basic example of a closed chain of quadrilaterals in this case is given

by four elementary quadrilaterals attached to a (black, say) vertex f . Let the diagonals

of each quadrilateral be divided by their intersection point in the relations γk : αk and

δk : βk (k = 1, . . . , 4), as in Figure 2. The dual quadrilaterals are determined up to scaling

factors λk (k = 1, . . . , 4), say. Matching the edge shared by the dual quadrilaterals 1 and 2,
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Fig. 3. Three quadrilaterals around a vertex of a three-dimensional net.

we find the relation between their scaling factors:

λ1

α1δ1
= λ2

α2β2
⇔ λ1

λ2
= α1δ1

α2β2
.

Similarly, we find:

λ2

λ3
= α2δ2

α3β3
,

λ3

λ4
= α3δ3

α4β4
,

λ4

λ1
= α4δ4

α1β1
.

All four edges adjacent to f can be matched if and only if the cyclic product of expressions

for the quotients of scaling factors is equal to one. This condition reads:

α1δ1

α2β2
· α2δ2

α3β3
· α3δ3

α4β4
· α4δ4

α1β1
= 1,

or

δ1

β1
· δ2

β2
· δ3

β3
· δ4

β4
= 1. (20)

This is nothing but the closeness condition of the form q for an elementary quadrilateral

of the white graph. All other white and black cycles are products of elementary ones,

therefore (20) for all elementary white and black cycles are necessary and sufficient for

the closeness of the form q. But it is easy to see that if the closeness condition is fulfilled

for all white and black cycles, then no closed chain of quadrilaterals can lead to an

obstruction by the construction of the dual net.

m = 3. In this case the most elementary closed chain of quadrilaterals is given

by three faces of any elementary hexahedron of the net, sharing a (black, for definite-

ness) vertex f ; see Figure 3. The further arguments are completely analogous to the
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two-dimensional case. Matching the edges shared by the dual quadrilaterals 1 and 2,

by the dual quadrilaterals 2 and 3, and by the dual quadrilaterals 3 and 1, we find the

relations between their scaling factors:

λ1

λ2
= α1δ1

α2β2
,

λ2

λ3
= α2δ2

α3β3
,

λ3

λ1
= α3δ3

α1β1
.

All three edges adjacent to f can be matched simultaneously if and only if the cyclic prod-

uct of expressions for the quotients of scaling factors is equal to one, which condition

after cancellations reads:

δ1

β1
· δ2

β2
· δ3

β3
= 1. (21)

This is nothing but the closeness condition for the elementary cycle of the white graph

of the lattice Z
3, which is a triangle. All cycles of the white and of the black graphs

(including those encountered in the m = 2 case, i.e. the squares of the two-dimensional

slices of the white and the black graphs of Z
3) are products of elementary triangles.

Again, closeness condition for all white and black cycles guarantees that no closed chain

of quadrilaterals leads to an obstruction.

m ≥ 4. Also, in this case any white or black cycle is a product of elementary

triangles, as for m = 3, therefore no additional conditions appear. �

3.3 Geometric characterization of two-dimensional discrete Koenigs nets

The definition of discrete Koenigs nets obviously belongs to affine geometry, since it

relies on the notion of parallelism. It turns out, however, that the class of discrete Koenigs

nets is projectively invariant (it has been pointed out already in [32, 33]). The proof of

the corresponding projectively invariant characterizations will rely on the generalized

Menelaus theorem [6, 7], which has a similar flavor: its conditions are of affine-geometric

nature, while its conclusions are projectively invariant.

Theorem 3.8 (generalized Menelaus theorem). Let P1, . . . , Pn+1 be n + 1 points in gen-

eral position in R
n, so that the affine space through the points Pi is n-dimensional. Let

Pi,i+1 be some points on the lines (Pi Pi+1) (indices are read modulo n + 1). The n + 1 points

Pi,i+1 lie in an (n − 1)-dimensional affine subspace if and only if the following relation

for the ratios of the directed lengths holds:

n+1∏
i=1

l(Pi, Pi,i+1)

l(Pi,i+1, Pi+1)
= (−1)n+1. �
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Proof. The points Pi,i+1 lie in an (n − 1)-dimensional affine subspace if there is a non-

trivial linear dependence:

n+1∑
i=1

µi Pi,i+1 = 0 with
n+1∑
i=1

µi = 0.

Substituting Pi,i+1 = (1 − ξi)Pi + ξi Pi+1, and taking into account the general position con-

dition, which can be read as linear independence of the vectors
−−→
P1 Pi, we come to a

homogeneous system of n + 1 linear equations for n + 1 coefficients µi:

ξiµi + (1 − ξi+1)µi+1 = 0, i = 1, . . . , n + 1

(where indices are understood modulo n + 1). Clearly, it admits a nontrivial solution if

and only if

n+1∏
i=1

ξi

1 − ξi
=

n+1∏
i=1

l(Pi, Pi,i+1)

l(Pi,i+1, Pi+1)
= (−1)n+1.

(Menelaus theorem corresponds to n = 2.) �

In the following considerations, we use the negative indices −1, −2 to denote the

downward shifts τ−1
1 , τ−1

2 . Consider four elementary quadrilaterals of a Q-net adjacent to

the point f = f (u), i.e. the quadrilaterals ( f , fi, fij, fj) with (i, j) ∈ {(±1, ±2)}. We assume

that the vertex f is nonplanar, i.e. that there is no plane containing these four quadri-

laterals (or, what is the same, there is no plane containing f and its four neighbors fi,

i ∈ {±1, ±2}). Recall that we always assume that the dimension of the ambient space is

N ≥ 3.

Theorem 3.9 (discrete 2d Koenigs nets; characterization in terms of intersection

points of diagonals). A two-dimensional Q-net f : Z
2 → R

N with nonplanar vertices

is a discrete Koenigs net if and only if for every point f = f (u) the intersection points of

diagonals of the four quadrilaterals adjacent to f lie in a two-dimensional plane. �

Proof. This is an immediate consequence of Equation (20) and the n = 3 case of the

generalized Menelaus theorem (Theorem 3.8). �
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Remark. Thus, intersection points of diagonals of elementary quadrilaterals of a two-

dimensional Koenigs net comprise a Q-net. Such Q-nets are not generic; it turns out that

they can be characterized as discrete Koenigs nets in the sense of [17]. �

Theorem 3.10 (discrete 2d Koenigs nets; characterization in terms of vertices).

(1) Let f : Z
2 → R

N be the a Q-net in the space of dimension N ≥ 4. Then f is a

discrete Koenigs net if and only if for every u ∈ Z
2 the five points f and f±1,±2 lie in a

three-dimensional subspace V = V (u) ⊂ R
N , not containing some (and then any) of the

four points f±1, f±2.

(2) Let f : Z
2 → R

3 be a Q-net in the space of dimension N = 3. Then f is a

discrete Koenigs net if and only if for every u ∈ Z
2 the three planes

�(up) = ( f f12 f−1,2), �(down) = ( f f1,−2 f−1,−2), �(1) = ( f f1 f−1)

have a common line �(1), or, equivalently, the three planes

�(left) = ( f f−1,2 f−1,−2), �(right) = ( f f1,2 f1,−2), �(2) = ( f f2 f−2)

have a common line �(2). �

Proof. (1) If the net f satisfies the property of Theorem 3.9, then the space V through f

and f±1,±2 is clearly three-dimensional. Conversely, let this space be three-dimensional.

The four quadrilaterals ( f , fi, fij, fj) lie in a four-dimensional space through f , f±1, f±2.

The intersection points of their diagonals lie in the intersection of V with the three-

dimensional space through f±1, f±2. The intersection of two three-dimensional subspaces

of a four-dimensional space is generically a plane.

(2) Let Mij denote intersection point of diagonals of the quadrilateral ( f , fi, fij, fj),

with (i, j) ∈ {(±1, ±2)}. Coplanarity of the four points Mij is equivalent to the statement

that the lines (M1,2M−1,2) and (M1,−2M−1,−2) intersect. These two lines lie in the planes

( f1 f2 f−1) and ( f1 f−2 f−1), respectively, therefore their intersection point has to belong to

the intersection of these planes, i.e. to the line ( f1 f−1). Thus, coplanarity of the points

Mij is equivalent to the fact that three lines (M1,2M−1,2), (M1,−2M−1,−2), and ( f1 f−1) have

a common point L (1); see Figure 4. Now the planes �(up), �(down) and �(1) can be viewed

as the planes through the point f and the lines (M1,2M−1,2), (M1,−2M−1,−2), and ( f1 f−1),

respectively. Therefore their intersection is the line �(1) through f and L (1). �



16 A. I. Bobenko and Yu. B. Suris

Fig. 4. Four quadrilaterals around a vertex, once more.

Remark 1. It is not difficult to see that in the dimension N ≥ 4 the property formulated

in part (1) of Theorem 3.10 automatically yields the property formulated in part (2).

Indeed, for N ≥ 4 all nine points f , f±1, f±2 and f±1,±2 lie generically in a four-dimensional

subspace of RP
N . In this subspace one can consider, along with the three-dimensional

subspace V , the three-dimensional subspaces V (up) containing the two quadrilaterals

( f , f1, f12, f2), ( f , f−1, f−1,2, f2), and V (down) containing the quadrilaterals ( f , f1, f1,−2, f−2),

( f , f−1, f−1,−2, f−2). Obviously, one has:

�(up) = V (up) ∩ V , �(down) = V (down) ∩ V , �(1) = V (up) ∩ V (down).

Generically, three three-dimensional subspaces V , V (up) and V (down) of a four-dimensional

space intersect along a line �(1). �

Remark 2. The equivalence of two conditions in part (2) of Theorem 3.10 follows, of

course, from the fact that in the notion of discrete Koenigs nets there is no asymmetry

between the coordinate directions 1 and 2. However, it might be worthwhile to give an

additional illustration of this equivalence. For this aim, consider a central projection of

the whole picture from the point f to some plane not containing f . In this projection, the

planarity of elementary quadrilaterals ( f , fi, fij, fj) turns into collinearity of the triples

of points fi, fj and fij. The traces of the planes �(up), �(down) and �(1) on the projection

plane are the lines ( f12 f−1,2), ( f1,−2 f−1,−2), and ( f1 f−1), respectively, and the first version of

the condition of part 2) of Theorem 3.10 turns into the requirement for these three lines to

meet in a point. Similarly, the traces of the planes �(left), �(right) and �(2) on the projection

plane are the lines ( f−1,2 f−1,−2), ( f1,2 f1,−2), and ( f2 f−2), respectively. The requirement for
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Fig. 5. Desargues theorem.

the latter three lines to meet in a point is equivalent to the previous one—this is the

statement of the famous Desargues theorem; see Figure 5. �

3.4 Geometric characterization of three-dimensional discrete Koenigs nets

Theorem 3.11 (discrete 3d Koenigs nets; characterization in terms of intersection

points of diagonals). A three-dimensional Q-net f : Z
3 → R

N is a discrete Koenigs net

if and only if for every point f = f (u) and for every elementary hexahedron with a vertex

f , the intersection points of diagonals of the three hexahedron faces adjacent to f are

collinear. �

Proof. This is nothing but the reformulation of Equation (21) in terms of Menelaus

theorem (n = 2 case of Theorem 3.8). �

Theorem 3.12 (discrete 3d Koenigs nets; characterization in terms of vertices). A

Q-net f : Z
3 → R

N is a discrete Koenigs net if and only if for every elementary hexahedron

of the net its four white vertices are coplanar, or its four black vertices are coplanar (each

one of these conditions implies another one). �

Proof. Consider an elementary hexahedron with the vertices f , fi, fij, f123. Denote

the intersection points of diagonals of the quadrilaterals ( f , fi, fij, fj) by Mij, and the

intersection points of diagonals of the quadrilaterals ( fk, fik, f123, fjk) by Qij. Clearly, if

the points Mij are collinear, then the four points f and fij (the black ones) are coplanar.
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Fig. 6. Pappus theorem.

We show next that the coplanarity of the four black points yield the coplanarity of the

four white points, as well.

Suppose that the four black points f , fij lie in a plane �0. Let �1 be the plane

through the three points f1, f2, f3. Set � = �0 ∩ �1. Then the intersection points Mij of

diagonals of the quadrilaterals ( f , fi, fij, fj) belong to �. Denote by Oij intersection points

of the lines ( fik fjk) ⊂ �0 with �. Then the three lines ( fk Oij) ⊂ �1 intersect in one point,

which is clearly f123 ∈ �1, so that the four points fi, f123 are coplanar. This claim is

nothing but the classical Pappus theorem illustrated in Figure 6. This incidence theorem

of projective geometry is not to be confused with another Pappus theorem, the latter

being a particular case of the Pascal hexagon theorem, when a conic section degenerates

into a pair of lines. The former characterizes a quadrilateral set of points on a line �

which can be defined as consisting of intersection points of this line with the six lines

connecting all pairs among four points in some plane containing �. Quadrilateral sets

admit several equivalent characterizations: a multi-ratio of such a set is equal to 1;

in other words, the points of a quadrilateral set always build three point pairs of a

projective involutive self-map of �.

Now we can finish the proof of Theorem 3.12 as follows. Suppose that the black

vertices of an elementary hexahedron of a Q-net are coplanar. Then also the white vertices

of this hexahedron are coplanar. Then the intersection points of diagonals of all six

faces of the hexahedron are collinear (they belong to the common line of the “black”

and the “white” planes). According to the characterization of Theorem 3.11, the net is

Koenigs. �

Remark. The characterizations of Theorems 3.10, 3.12 coincide with the definitions of

B-quadrilateral nets in [18] and of discrete Moutard nets in [5]. Thus, the point we make
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here is a new property of these nets, fixed as Definition 3.4 and put in the base of the

whole theory. A novel derivation and understanding of the Moutard property of discrete

Koenigs nets will be given below, in Section 3.6. �

3.5 Dual discrete Koenigs nets

We start with the following statement which is a direct consequence of the algebraic

characterization of discrete Koenigs nets given in Theorem 3.7. Indeed, in our local

setting, due to the simple-connectedness of the underlying graphs, the closeness of the

multiplicative one-form q is equivalent to its exactness:

Corollary 3.13 (function ν for a discrete Koenigs net). A Q-net f : Z
m → R

N is a dis-

crete Koenigs net if and only if there exists a real-valued function ν : Z
m → R

∗ with the

following property: for every elementary quadrilateral ( f , fi, fij, fj) there holds:

νi j

ν
= q(

−−→
f fij) = l(M, fij)

l(M, f )
,

ν j

νi
= q(

−−→
fi fj) = l(M, fj)

l(M, fi)
, (22)

where M = ( f fij) ∩ ( fi fj) is the intersection point of diagonals. �

On both the black and the white graphs of Z
m such a function ν is defined up to

a multiplicative constant. This freedom is fixed by prescribing values of ν arbitrarily at

one black and at one white point.

Equation (22) is equivalent to

1

νi j

−−→
Mfij = 1

ν

−→
Mf ,

1

νi

−−→
Mfi = 1

ν j

−−→
Mfj, (23)

which can be re-written also as

fij

νi j
− f

ν
=

(
1

νi j
− 1

ν

)
M,

fi
νi

− fj

ν j
=

(
1

νi
− 1

ν j

)
M. (24)

There follows:
(

1

ν j
− 1

νi

)(
fij

νi j
− f

ν

)
=

(
1

νi j
− 1

ν

) (
fj

ν j
− fi

νi

)
. (25)

This formula can be used for an elegant representation of the dual Koenigs net for f .

Theorem 3.14 (dual Koenigs net). Let f : Z
m → R

N be a discrete Koenigs net, and let

ν : Z
m → R

∗ be the function defined by the property (22). Then the R
N-valued discrete
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one-form δ f∗ defined by

δi f∗ = δi f

ννi
(26)

is exact. Its integration defines (up to a translation) the dual Koenigs net f∗ : Z
m →

R
N . �

Proof. Equation (25) can be equivalently re-written as

fij − fi

νiνi j
+ fi − f

ννi
= fij − fj

ν jνi j
+ fj − f

ννi
. (27)

This is equivalent to the closeness of the discrete form δ f∗. Note that Equation (26)

says that the corresponding sides of elementary quadrilaterals of the nets f and f∗

are parallel. It remains to show that the non-corresponding diagonals of elementary

quadrilaterals of f and f∗ are also parallel, so that these quadrilaterals are dual in the

sense of Definitions 3.1. For this aim we demonstrate the following two formulas:

f∗
i j − f∗ = aij

fj − fi
νiν j

, f∗
j − f∗

i = 1

aij

fij − f

ννi j
, (28)

where

aij =
(

1

νi j
− 1

ν

)/ (
1

ν j
− 1

νi

)
. (29)

Indeed, upon using Equations (25) and (29) we find:

f∗
i j − f∗ = ( f∗

i j − f∗
i ) + ( f∗

i − f∗) = fij − fi
νiνi j

+ fi − f

ννi

= 1

νi

(
fij

νi j
− f

ν

)
− fi

νi

(
1

νi j
− 1

ν

)

= aij
1

νi

(
fj

ν j
− fi

νi

)
− aij

fi
νi

(
1

ν j
− 1

νi

)
= aij

fj − fi

νiν j
,

and, similarly,

f∗
j − f∗

i = ( f∗
i j − f∗

i ) − ( f∗
i j − f∗

j ) = fij − fi

νiνi j
− fij − fj

ν jνi j

= 1

νi j

(
fj

ν j
− fi

νi

)
− fij

νi j

(
1

ν j
− 1

νi

)

= 1

aijνi j

(
fij

νi j
− f

ν

)
− fij

aijνi j

(
1

νi j
− 1

ν

)
= 1

aij

fij − f

νi jν
.

Theorem 3.14 is completely proven. �



Discrete Koenigs nets 21

For future reference, we note here that after some manipulations formula (25)

can be transformed into

δiδ j f = ν jνi j − ννi

ν(νi − ν j)
δi f + νiνi j − νν j

ν(ν j − νi)
δ j f. (30)

This is a discrete analogue of the differential equation (1) for smooth Koenigs nets. See

also Section 3.7 for more details concerning the continuous limit to smooth Koenigs nets.

3.6 Moutard representative of a discrete Koenigs net

Constructions of the previous subsection (functions ν and aij for a given Koenigs net)

can be used also in a different spirit.

Theorem 3.15 (discrete Koenigs nets = discrete Moutard nets in homogeneous coordi-

nates). A Q-net f : Z
m → R

N is a discrete Koenigs net if and only if there exists a

function ν : Z
m → R

∗ such that the points y : Z
m → R

N+1,

y = ν−1( f , 1), (31)

satisfy the Moutard equation with minus signs

τiτ j y − y = aij(τ j y − τi y) (32)

with aij ∈ R given by Equation (29). The net y = ν−1( f , 1), considered as a special lift

of f to the space of homogeneous coordinates for RP
N , will be called the Moutard

representative of the discrete Koenigs net f . �

Proof. First let f : Z
m → R

N be a discrete Koenigs net. Define the function ν : Z
m → R

∗,

according to Corollary 3.13. Then Equation (24) holds, with M being the intersection point

of diagonals of the quadrilateral ( f , fi, fij, fj). Denoting y = ν−1( f , 1), we immediately

arrive at Equation (32) with the coefficients aij defined by Equation (29).

Note that the quantities aij are naturally assigned to elementary quadrilaterals

of Z
m parallel to the coordinate plane Bi j.

Conversely, given a solution y : Z
m → R

N+1 of the Moutard equation (32) in R
N+1,

define ν : Z
m → R and f : Z

m → R
N by y = ν−1( f , 1). In other words, let ν−1 denote the

last component of y, and let f be the vector in R
N obtained by multiplying the first N

components of y by ν. Then, inverting the previous arguments, it is easy to show that f is
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a discrete Koenigs net. Indeed, one finds immediately expression (29) for the coefficient

aij of the Moutard equation, then from

yij − y = aij(yj − yi)

there follows Equation (25). This allows to define the point M by Equation (24). The

latter equation is equivalent to (23), therefore M is nothing but the intersection point of

diagonals of ( f , fi, fij, fj). There holds Equation (22), so by Corollary 3.13 f is a Koenigs

net. �

In the context of discrete integrable systems the discrete Moutard equation (32)

has been introduced in [15], its importance for discrete differential geometry has been

re-iterated in [30], based on the fact that this equation expresses the permutability

properties of the so called Moutard transformation for the differential Moutard equa-

tion [1, 22, 29, 30]. The role played by the discrete Moutard equation in the discrete

differential geometry turns out to be manifold. In particular, the so called Lelieuvre

representation of discrete asymptotic nets involves discrete Moutard nets in R
3 [16, 28].

For the multidimensional consistency of discrete Moutard nets, which lies in the basis

of the transformation theory for discrete Koenigs nets, the reader is referred to [3, 5, 18].

3.7 Continuous limit

In order for a Q-net to admit a continuous limit, all its quadrilaterals should be of a rea-

sonable shape. Anyway, they must be convex. As mentioned in subsection 3.2, diagonals

of convex quadrilaterals carry negative quantities q (ratios of segments of diagonals).

Theorem 3.7 shows that a discrete Koenigs net cannot consist of convex quadrilaterals

(and thus cannot admit a continuous limit) for m ≥ 3. However, there are no obstructions

in case m = 2. This is in a good agreement with the existence of two-dimensional smooth

Koenigs nets only.

Equation (22) shows that in case m = 2 with all convex quadrilaterals we can as-

sume, without losing generality, that the sign of ν(u) at u = (u1, u2) ∈ Z
2 is either (−1)u1 or

(−1)u2 . Clearly, such a wildly oscillating function cannot have a well-behaved continuous

limit. However, upon re-defining

ν(u) �→ (−1)u1ν(u), resp. ν(u) �→ (−1)u2ν(u) (33)
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we get a positive function, which turns out to be a proper discrete analog of the function

ν for smooth Koenigs nets. Note that this re-definition is equivalent to changing Equation

(22) to

ν12

ν
= l( f12, M)

l(M, f )
,

ν2

ν1
= l( f2, M)

l(M, f1)
. (34)

We mention also that Equation (30) with the re-defined ν changes its shape into

δ1δ2 f = ν2ν12 − νν1

ν(ν1 + ν2)
δ1 f + ν1ν12 − νν2

ν(ν1 + ν2)
δ2 f , (35)

with Equation (1) as a continuous limit. Likewise, formulas (26) turn into

δ1 f∗ = δ1 f

νν1
, δ2 f∗ = −δ2 f

νν2
, (36)

where the second redefinition of ν in Equation (33) has been used, for definiteness (the

first one would result in changing signs of both fractions).

Thus, the change of signs (33) enables the smooth limit but breaks the symmetry

of the system. In particular, we observe that the coordinate directions 1 and 2 play differ-

ent roles in Equation (36), while the corresponding formulas (26) for a multidimensional

Koenigs net have the same shape for all coordinate directions.

For the Moutard representative y : Z
2 → R

N+1 of a two-dimensional discrete

Koenigs net the change (33) leads to

y(u) �→ (−1)u1 y(u), resp. y(u) �→ (−1)u2 y(u). (37)

These points satisfy the Moutard equation with the plus signs:

τ1τ2y + y = a(τ1y + τ2y), (38)

or, equivalently,

δ1δ2 f = 1
2 q(τ1 f + τ2 f ), (39)

with some a = 1 + 1
2 q : Z

2 → R. Clearly, the latter equation has Equation (9) as continu-

ous limit.

Again, we observe the trade between the multidimensional consistency of the

Moutard equation with the minus signs (which can be posed in any dimension m ≥ 2)

and the well defined continuous limit for the Moutard equation with the plus signs
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(which only takes place for m = 2). To pass from the former to the latter, one must break

the symmetry through the change of signs (37).

4 Discrete Isothermic Nets

4.1 Notion of a discrete isothermic net

Definition 4.1 (discrete isothermic net ). A discrete isothermic net is a circular Koenigs

net, i.e. a circular net f : Z
m → R

N admitting a dual net f∗ : Z
m → R

N in the sense of

Definition 3.4. �

We can use characterizations of Koenigs net derived in Section 3 in order to find

characterizations of discrete isothermic nets. For this aim, we use the fact that for a

circular net f : Z
m → R

N its lift f̂ = f + e0 + | f |2e∞ into the light cone L
N+1,1 satisfies

the same equation of the Laplace type as the net f itself. In particular, a circular net f

in R
N is discrete Koenigs if and only if f̂ is a discrete Koenigs net in R

N+1,1.

Projectively invariant characterizations of Koenigs nets f̂ in R
N+1,1 immediately

translate into Möbius-geometric characterizations of isothermic nets f in R
N . Thereby

conditions like “points f̂ lie in a d-dimensional space” should be understood as “vectors

f̂ span a (d + 1)-dimensional linear subspace”, and this is translated as “points f belong

to a (d − 1)-dimensional sphere”.

Translating in this fashion Theorem 3.10, applied to a two-dimensional Koenigs

net f̂ in R
N+1,1, into the language of Möbius geometry in R

N , we come to the following

statement.

Theorem 4.2.

(1) Central spheres for a discrete isothermic surface. A two-dimensional cir-

cular net f : Z
2 → R

N not lying in a two-sphere is discrete isothermic if and only if for

every u ∈ Z
2 the five points f and f±1,±2 lie on a two-sphere not containing some (and

then any) of the four points f±1, f±2.

(2) Discrete isothermic net on a sphere. A two-dimensional circular net f :

Z
2 → S2 ⊂ R

N in a two-sphere is discrete isothermic if and only if for every u ∈ Z
2 the

three circles through f ,

C (up) = circle( f , f12, f−1,2), C (down) = circle( f , f1,−2, f−1,−2),

C (1) = circle( f , f1, f−1),
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Fig. 7. Four circles of a generic discrete isothermic surface, with a central sphere.

Fig. 8. Four circles of a planar (or spherical) discrete isothermic net.

have one additional point in common, or, equivalently, the three circles through f ,

C (left) = circle( f , f−1,2, f−1,−2), C (right) = circle( f , f1,2, f1,−2),

C (2) = circle( f , f2, f−2),

have one additional point in common. �

The cases (1) and (2) of Theorem 4.2 are illustrated in Figures 7 and 8, respectively.
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Similarly, translating Theorem 3.12, applied to a multidimensional Koenigs net

f̂ in R
N+1,1, into the language of Möbius-geometric properties of the net f in R

N , we get

the following statement.

Theorem 4.3 (multidimensional discrete isothermic nets). A circular net f : Z
m → R

N

is discrete isothermic if and only if for any elementary hexahedron of the net its four

white vertices are concircular, and its four black vertices are concircular (each one of

these conditions implies another one). �

4.2 Cross-ratio characterization of discrete isothermic nets

Another characterization of discrete isothermic surfaces can be given in terms of the

cross-ratios. Recall that for any four concircular points a, b, c, d ∈ R
N their (real-valued)

cross-ratio is defined by

q(a, b, c, d) = (a − b)(b − c)−1(c − d)(d − a)−1, (40)

with the Clifford multiplication in the Clifford algebra C�(RN ). The Clifford product of

x, y ∈ R
N satisfies xy + yx = −2〈x, y〉, and the inverse element of x ∈ R

N in the Clifford

algebra is given by x−1 = −x/|x|2. Alternatively, one can identify the plane of the quadri-

lateral (a, b, c, d) with the complex plane C, and then multiplication in Equation (40) can

be interpreted as the complex multiplication. An important property of the cross-ratio

is its invariance under Möbius transformations.

For discrete isothermic surfaces Theorem 4.2 yields the following character-

ization.

Theorem 4.4 (cross-ratios of four adjacent quadrilaterals). A two-dimensional cir-

cular net f : Z
2 → R

N is a discrete isothermic surface if and only if the cross-ratios

q = q( f , f1, f12, f2) of its elementary quadrilaterals satisfy the following condition:

q · q−1,−2 = q−1 · q−2. (41)

Here, as usual, the negative indices −i denote the backward shifts τ−1
i , so that, e.g.

q−1 = q( f−1, f , f2, f−1,2); see Figure 9. �

Proof. Perform a Möbius transformation sending f to ∞. Under such a transformation,

the four adjacent circles through f turn into four straight lines ( f±1 f±2), containing the
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Fig. 9. Four adjacent quadrilaterals of a discrete isothermic surface: the cross-ratios

satisfy q · q−1,−2 = q−1 · q−2.

corresponding points f±1,±2. The cross-ratios turn into ratios of directed lengths, e.g.

q( f , f1, f1,2, f2) = − l( f1, f1,2)

l( f1,2, f2)
.

If the affine space through the points f±1, f±2 is three-dimesnional, then, according to

part 1) of Theorem 4.2, the four points f±1,±2 lie in a plane (a sphere through f = ∞).

Generalized Menelaus theorem (Theorem 3.8) provides us with the following necessary

and sufficient condition for this, which reads:

l( f2, f1,2)

l( f1,2, f1)
· l( f1, f1,−2)

l( f1,−2, f−2)
· l( f−2, f−1,−2)

l( f−1,−2, f−1)
· l( f−1, f−1,2)

l( f−1,2, f2)
= 1. (42)

This is equivalent to Equation (41) with f = ∞.

If, on the contrary, the four points f±1, f±2 are coplanar, then, according to part

(2) of Theorem 4.2, both lines ( f−1,2 f1,2) and ( f−1,−2 f1,−2) meet the line ( f−1 f1) at the same

point �(1). Thus, we are in the situation of Figure 5, described by the Desargues theorem.

Here, we apply the Menelaus theorem twice, to the triangle �( f−1, f2, f1) intersected by

the line ( f−1,2 f1,2), and to the triangle �( f−1, f−2, f1) intersected by the line ( f−1,−2 f1,−2):

l( f2, f12)

l( f12, f1)
· l( f−1, f−1,2)

l( f−1,2, f2)
= − l( f−1, �(1))

l(�(1), f1)
= l( f−2, f1,−2)

l( f1,−2, f1)
· l( f−1, f−1,−2)

l( f−1,−2, f−2)
.

This yields formula (42), again. �



28 A. I. Bobenko and Yu. B. Suris

For multidimensional discrete isothermic nets Theorem 4.3 yields a similar char-

acterization.

Theorem 4.5 (cross-ratios of three adjacent quadrilaterals). A circular net f : Z
m →

R
N is discrete isothermic if and only if the cross-ratios of its elementary quadrilaterals

satisfy the following condition:

q( f , fi, fij, fj) · q( f , fj, fjk, fk) · q( f , fk, fki, fi) = 1 (43)

for any triple of different indices i, j, k. �

Proof. Again, perform a Möbius transformation sending f to ∞. Under such a transfor-

mation, the three adjacent circles through f turn into three straight lines ( fi fj), ( fj fk) and

( fk fi), containing the (white) points fij, fjk and fki, respectively. Concircularity of these

white points with f means simply that they are collinear. The necessary and sufficient

condition for this is given by the Menelaus theorem:

l( fj, fij)

l( fij, fi)
· l( fk, fjk)

l( fjk, fj)
· l( fi, fki)

l( fki, fk)
= −1. (44)

Since the Möbius-invariant meaning of the ratios of directed lengths is given by the

corresponding cross-ratios,

q( f , fi, fij, fj) = − l( fi, fij)

l( fij, fj)
,

Equation (44) is equivalent to Equation (43). �

The conclusions of Theorems 4.4 and 4.5 can be summarized with the help of the

following notion:

Definition 4.6 (edge labeling). A system of real-valued functions αi defined on the edges

of Z
m parallel to the ith coordinate axis (i = 1, . . . , m) is called an edge labeling if they

take equal values on each pair of opposite edges of any elementary quadrilateral. �

Thus, both edges (u, u + ei) and (u + ej, u + ei + ej) of an elementary square of Z
m

parallel to the coordinate plane (i j) carry the label αi = αi(u) = αi(u + ej), and, similarly,

both other edges (u, u + ej) and (u + ei, u + ei + ej) carry the label α j = α j(u) = α j(u + ei);
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Fig. 10. Labeling of edges of a discrete isothermic net.

see Figure 10. In this notation, there holds τ jαi = αi for i 
= j, so that each function αi(u)

depends on ui only.

The following theorem is an immediate consequence of Theorems 4.4 and 4.5.

Theorem 4.7 (factorized cross-ratios). A circular net f : Z
m → R

N is discrete isother-

mic if and only if the cross-ratios of its elementary quadrilaterals satisfy

q( f , fi, fij, fj) = αi

α j
, (45)

where αi (i = 1, . . . , m) constitute a real-valued labeling of the edges of Z
m. �

Theorem 4.7 says that our definition of discrete isothermic nets coincides with

the original definition from [2]. In the next subsection we will give a more concrete way

of determining the labeling αi for a given discrete isothermic net.

4.3 Metric of a discrete isothermic net

Now we turn to a characterization of discrete Koenigs nets given in Corollary 3.13. Being

applied to circular nets, it says that such a net f is Koenigs if and only if there exists

a function s : Z
m → R

∗ such that for any circular quadrilateral ( f , fi, fij, fj) with the

intersection point of diagonals M there holds:

l(M, fij)

l(M, f )
= sij

s
,

l(M, fj)

l(M, fi)
= sj

si
. (46)

(Note that the notation s comes to replace ν which we reserve for general Koenigs nets.)

The function s for circular nets turns out to admit an additional property.

Theorem 4.8 (metric coefficient of discrete isothermic nets). For a discrete isothermic

net f , relations (46) define a function s : Z
m → R uniquely, up to a black-white rescaling
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(s �→ λs on black vertices, s �→ µs on white vertices), which can be fixed by prescribing s

arbitrarily at one black and at one white point. There exists a labeling α of edges of Z
m

such that

| fi − f |2 = αissi (i = 1, . . . , m). (47)

A black-white rescaling of the function s results in the rescaling α �→ (λµ)−1α of the

labeling α. �

Proof. For a circular quadrilateral ( f , fi, fij, fj) with the intersection point of diagonals

M, one has two pairs of similar triangles,

�( f , fi, M) ∼ �( fj, fij, M), �( f , fj, M) ∼ �( fi, fij, M).

Hence, there holds:

|Mfij|
|Mfi| = |Mfj|

|Mf | = | fij − fj|
| fi − f | ,

|Mfij|
|Mfj| = |Mfi|

|Mf | = | fij − fi|
| fj − f | . (48)

There follows:

|Mfij|
|Mf | · |Mfj|

|Mfi| = | fij − fj|2
| fi − f |2 ,

|Mfij|
|Mf | · |Mfi|

|Mfj| = | fij − fi|2
| fj − f |2 . (49)

This can be written as

l(M, fij)

l(M, f )
· l(M, fj)

l(M, fi)
= | fij − fj|2

| fi − f |2 ,
l(M, fij)

l(M, f )
· l(M, fi)

l(M, fj)
= | fij − fi|2

| fj − f |2 . (50)

Indeed, contemplating Figure 11, it is not difficult to realize that the fractions on the

left-hand side of each one of the two equations in (50) are either both negative (for an

embedded quadrilateral), or both positive (for a nonembedded quadrilateral), so that the

replacement of the quotients of lengths in Equation (49) by quotients of directed lengths

in Equation (50) is legitimate. Substitute the defining relations (46) of the function s into

Equation (50):

sjsij

ssi
= | fij − fj|2

| fi − f |2 ,
sisij

ssj
= | fij − fi|2

| fj − f |2 . (51)
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Fig. 11. Circular quadrilaterals, an embedded and a non-embedded ones.

But this is equivalent to the claim that the functions

αi = | fi − f |2
ssi

(52)

possess the labeling property, τ jαi = αi. �

The notations αi for edge labelings in Theorems 4.7 and 4.8 coincide not without

a reason.

Theorem 4.9 (origin of the edge labeling for factorized cross-ratios). If the edge la-

beling αi for a discrete isothermic net f : Z
m → R

N is introduced according to Equation

(47), then the cross-ratios of its elementary quadrilaterals are factorized as in Equation

(45). �

Proof. For a circular quadrilateral ( f , fi, fij, fj) one has:

q( f , fi, fij, fj) = ε
| fi − f | · | fij − fj|
| fj − f | · | fij − fi| ,

where ε < 0 for an embedded quadrilateral and ε > 0 for a nonembedded one. Thus,

q( f , fi, fij, fj) = ε
| fi − f |2
| fj − f |2 · | fij − fj|

| fi − f | · | fj − f |
| fij − fi| .

Upon using Equations (47) and (48), the latter equation can be rewritten as

q( f , fi, fij, fj) = ε
αisi

α jsj
· |Mfj|

|Mfi| = αisi

α jsj
· l(M, fj)

l(M, fi)
,
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and finally, due to Equation (51), we arrive at

q( f , fi, fij, fj) = αisi

α jsj
· sj

si
= αi

α j
,

which proves the theorem. �

Theorem 4.8, as it stands, cannot be reversed: existence of a function s satisfying

(47) does not yield the Koenigs property. Indeed, from Equations (47) and (50) one finds:

l(M, fij)

l(M, f )
· l(M, fj)

l(M, fi)
= sjsij

ssi
,

l(M, fij)

l(M, f )
· l(M, fi)

l(M, fj)
= sisij

ssj
, (53)

which is equivalent to

l(M, fij)

l(M, f )
= ±sij

s
,

l(M, fi)

l(M, fj)
= ± si

sj
(54)

(with the same sign ± in both equations). The latter equation is somewhat weaker than

Equation (51), which is necessary and sufficient for the net f to be Koenigs. However,

assuming some additional information about f , it is possible to force the plus signs in

the latter formula. For instance, if it is known that all elementary quadrilaterals of a

two-dimensional circular net f are embedded, then property (47) is sufficient to assure

that f is Koenigs. Indeed, in this case α2/α1 < 0, so that Equation (47) yields s2/s1 < 0

and s12/s < 0, and then the plus sign has to be chosen in Equation (54).

4.4 Duality of discrete isothermic nets

Specializing the notion of duality from general Koenigs nets to circular ones, the first

essential observation is: the dual net for a discrete isothermic net is discrete isothermic,

as well. Indeed, any quadrilateral with sides parallel to the corresponding sides of a

circular quadrilateral is, obviously, also circular. A more detailed description of duality

for discrete isothermic nets is contained in the following theorem.

Theorem 4.10 (dual discrete isothermic net). Let f : Z
m → R

N be a discrete isothermic

net, with the factorized cross-ratios

q( f , fi, fij, fj) = αi

α j
(55)
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and with the metric coefficient s : Z
m → R

∗. Then the R
N-valued discrete one-form δ f∗

defined by

δi f∗ = αi
δi f

|δi f |2 = δi f

ssi
, i = 1, . . . , m, (56)

is exact. Its integration defines (up to a translation) a net f∗ : Z
2 → R

N , called dual to

the net f , or Christoffel transform of the net f . The net f∗ is discrete isothermic, with

the cross-ratios

q( f∗, f∗
i , f∗

i j, f∗
j ) = αi

α j
(57)

and with the metric coefficient s∗ = s−1 : Z
m → R

∗. Conversely, if for a given net f : Z
m →

R
N there exists an edge labeling αi such that the discrete one-form

δi f∗ = αi
δi f

|δi f |2 (58)

is exact, then f is a discrete isothermic net, with cross-ratios as in Equation (55). �

Proof. The first part of the theorem is a consequence of the general construction of

dual Koenigs nets. To prove the converse part, observe that closeness of the one-form

(58) implies that the quadrilateral ( f , fi, fij, fj) is planar. Identifying its plane with C, we

see that the closeness condition is equivalent to (the complex conjugate of)

αi

fi − f
− αi

fij − fj
= α j

fj − f
− α j

fij − fi
.

Upon clearing denominators, the latter equation turns into the cross-ratio equation (55)

(in the generic situation, when fij − fi − fj + f 
= 0). Thus, the closeness of the form (58)

actually characterizes discrete isothermic nets. �

Corollary 4.11. The noncorresponding diagonals of any elementary quadrilateral of a

discrete isothermic net f and of its dual are related by

f∗
i − f∗

j = (αi − α j)
fij − f

| fij − f |2 , f∗
i j − f∗ = (αi − α j)

fi − fj

| fi − fj|2 . (59)

�



34 A. I. Bobenko and Yu. B. Suris

Proof. We put Equation (45) into several equivalent forms; these computations hold not

only in the Clifford algebra C�(RN ), but in an arbitrary associative algebra with unit A.

Being written as

αi( fij − fi)( fi − f )−1 = α j( fij − fj)( fj − f )−1, (60)

this equation displays the symmetry with respect to the diagonal flips of an elementary

quadrilateral, expressed as fi ↔ fj and f ↔ fij, respectively (both have to be accompa-

nied by the change αi ↔ α j). Writing Equation (60) as

αi( fij − f )( fi − f )−1 − αi = α j( fij − f )( fj − f )−1 − α j,

and dividing from the left by fij − f , we arrive at the so-called three-leg form of the

cross-ratio equation

(αi − α j)( fij − f )−1 = αi( fi − f )−1 − α j( fj − f )−1. (61)

According to Equation (56), the right-hand side of Equation (61) is equal to −( f∗
i − f∗)+

( f∗
j − f∗) = f∗

j − f∗
i . This proves the first equation in (59). The second one is anal-

ogous. �

4.5 Moutard representatives of discrete isothermic nets

The metric coefficient of a discrete isothermic net f can be used to produce its Moutard

representative or, better, a Moutard representative of its lift f̂ into the light cone of R
N+1,1.

This leads to a new characterization of discrete isothermic nets, which is manifestly

Möbius invariant, since it is given entirely within the formalism of the projective model

of Möbius geometry. The following statement is a discrete analog of Theorem 2.6.

Theorem 4.12 (discrete isothermic nets = discrete Moutard nets in light cone). If

f : Z
m → R

N is a discrete isothermic net, then its lift y = s−1 f̂ : Z
m → L

N+1,1 to the light

cone of R
N+1,1 satisfies the discrete Moutard equation (32).

Conversely, given a discrete Moutard net y : Z
m → L

N+1,1 in the light cone, let the

functions s : Z
m → R and f : Z

m → R
N be defined by

y = s−1( f + e0 + | f |2e∞
)

(62)
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(so that s−1 is the e0-component, and s−1 f is the R
N-part of y in the basis e1, . . . , eN , e0, e∞).

Then f is a discrete isothermic net. �

Proof. This follows from Theorem 3.15 and the fact that for a circular Koenigs net f in

R
N , the net f̂ = f + e0 + | f |2e∞ is also a Koenigs net in the light cone L

N+1,1 ⊂ R
N+1,1. �

Thus, we found an interpretation of discrete isothermic nets as an instance of

discrete Moutard nets in a quadric. The edge labeling of a discrete isothermic net f

(which provides the factorization (45) of its cross-ratios) is already encoded in its lift y

to the light cone. Indeed,

αi = | fi − f |2
ssi

= −2〈y, τi y〉,

and it is easy to see that these quantities depend on ui only.

4.6 Continuous limit

In order to enable the continuous limit to smooth isothermic surfaces, one should start

with discrete isothermic surfaces (discrete isothermic nets with m = 2) with embedded

elementary quadrilaterals. In this case the standard redefinition of the function s, namely

s(u) �→ (−1)u2s(u), assures the positivity of s. It is convenient to change the notation for

the labeling, as well: α2 �→ −α2. Then formula (47) remains valid as it stands, and for the

negative cross-ratios of elementary quadrilaterals, we get: q( f , f1, f12, f2) = −α1/α2, with

positive labels α1 and α2. Equation (56) turns into

δ1 f∗ = α1
δ1 f

|δ1 f |2 = δ1 f

ss1
, δ2 f∗ = −α2

δ2 f

|δ2 f |2 = −δ2 f

ss2
, (63)

which is a direct discrete analogue of Equation (6). Once again, like in Section 3.7, we

observe that a well-defined continuous limit is made possible by a break of symmetry

among coordinate directions of a multidimensional net.

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (Research Unit “Polyhedral

Surfaces”).



36 A. I. Bobenko and Yu. B. Suris

References
[1] Bianchi, L. Lezioni di geometria differenziale, 3rd ed. Pisa, Italy: Enrico Spoerri, 1923.

[2] Bobenko, A. I., and U. Pinkall. “Discrete isothermic surfaces.” Journal für die reine und

angewandte Mathematik 475 (1996): 187–208.

[3] Bobenko, A. I., and Yu. B. Suris. Discrete Differential Geometry: Integrable Structure. Grad-

uate Studies in Mathematics 98. Providence, RI: American Mathematical Society, 2008.

[4] Bobenko, A. I., and Yu. B. Suris. “On organizing principles of discrete differential geometry.

Geometry of spheres.” Russian Mathematical Surveys 62 (2007): 1–43.

[5] Bobenko, A. I., and Yu. B. Suris. “Isothermic surfaces in sphere geometries as Moutard nets.”

Proceedings of the Royal Society A 463 (2007): 3171–93.

[6] Boldescu, P. “The theorems of Menelaus and Cheva in an n-dimensional affine space.” Anale

Universitatea Craiova Series a IV-a 1 (1970): 101–6.
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calcul infinitésimal, 1st ed. Vol. 4. Paris: Gauthier-Villars, 1896.
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une intégrale générale explicite.” Journal de l’Ecole Polytechnique 45 (1878): 1–11.

[30] Nimmo, J. J. C., and W. K. Schief. “Superposition principles associated with the Moutard

transformation: An integrable discretization of a (2 + 1)-dimensional sine-Gordon system.”

Proceedings of the Royal Society A 453 (1997): 255–79.

[31] Pottmann, H., Y. Liu, J. Wallner, A. Bobenko, and W. Wang. “Geometry of multi-layer freeform

structures for architecture.” ACM Transactions on Graphics 65, no. 26 (2007): 1–11.

[32] Sauer, R. “Wackelige Kurvennetze bei einer infinitesimalen Flächenverbiegung.” Mathema-
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