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Abstract. We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular
on Z

2 . The fields are associated with the vertices and an equation of the form Q(x1, x2, x3, x4) = 0
relates four vertices of one cell. The integrability of equations is understood as 3D-consistency, which
means that it is possible to impose equations of the same type on all faces of a three-dimensional
cube so that the resulting system will be consistent. This allows one to extend these equations
also to the multidimensional lattices Z

N . We classify integrable equations with complex fields x
and polynomials Q multiaffine in all variables. Our method is based on the analysis of singular
solutions.

Key words: integrability, quad-graph, multidimensional consistency, zero curvature representa-
tion, Bäcklund transformation, Bianchi permutability, Möbius transformation.

1. Introduction

The idea of consistency (or compatibility) is at the core of the theory of integrable systems.
It appears already in the very definition of complete integrability of a Hamiltonian flow in the
Liouville–Arnold sense, which says that the flow should be included in a complete family of com-
muting (compatible) Hamiltonian flows [1]. Similarly, it is a characteristic feature of soliton (inte-
grable) partial differential equations that they do not appear separately but are always organized
in hierarchies of commuting (compatible) systems. The condition of the existence of a number of
commuting systems can be taken as the basis of the symmetry approach, which is used to single
out integrable systems in some general classes and classify them [18]. Another manifestation of the
compatibility idea is the relation between continuous and discrete systems based on the notion of
Bäcklund transformations and the Bianchi permutability theorem [9]. The latter has developed into
one of the fundamental principles of discrete differential geometry [12].

Thus, the consistency of discrete equations takes center stage in the integrability theater. We
say that

A d-dimensional discrete equation possesses the consistency property if it can be
imposed in a consistent way on all d-dimensional sublattices of a (d + 1)-dimensional
lattice.

(A more precise definition will be stated below.) As the above remarks show, the idea that this
notion is closely related to integrability is not new. For d = 1, it was used as a possible definition
of integrability of mappings in [24]. For d = 2, a decisive step was made in [10] and independently
in [19]: it was shown that the integrability in the usual sense of soliton theory (as the existence
of a zero curvature representation) follows for two-dimensional systems from the three-dimensional
consistency. Thus, the latter property can be viewed as a definition of integrability. It is a criterion
that can be checked in a completely algorithmic manner starting with no more information than
the equation itself. Moreover, if this criterion gives a positive result, it also delivers the discrete
zero curvature representation.
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01-00403. The second author supported in part by the DFG Research Unit 565 “Polyhedral Surfaces.” The third
author supported in part by the ESF Scientific Programme “Methods of Integrable Systems, Geometry, Applied
Mathematics” (MISGAM).
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Basic building blocks of systems on quad-graphs are quad-equations, i.e., equations of the form

Q(x1, x2, x3, x4) = 0 (1)

on quadrilaterals, where the field variables xi ∈ CP
1 are assigned to the four vertices of a quadri-

lateral as shown in Figure 1. On Z
2 , equations of this type can be treated as discrete analogs of

nonlinear hyperbolic equations. Boundary value problems of Goursat type for such systems were
studied in [6].

Assumption. In this paper, we assume that Q is a multiaffine polynomial, i.e., a polynomial
of degree one in each argument. It follows that equation (1) can be solved for each variable, and
the solution is a rational function of the other three variables.

x1 x2

x3x4

Q

Fig. 1. A quad-equation Q(x1, x2, x3, x4) = 0;
the variables xi are assigned to the vertices

The general idea of integrability as consistency in this case is shown in Figure 2. We assign six
quad-equations to the faces of a coordinate cube. The subscript j corresponds to the shift in the
jth coordinate direction. If one starts from arbitrary values x, x1 , x2 , x3 , then the values x12 , x13 ,
x23 are found from three equations on the left, front, and bottom faces, and the equations on the
right, back, and top faces yield, in general, three different values of x123 . The system is said to be
3D-consistent if these three values identically coincide for arbitrary initial data x, x1 , x2 , x3 .

In [3], we classified 3D-consistent systems of a particular type. The equations on all faces
coincided up to the parameter values associated with the three directions of edges. Moreover, cubic
symmetry, as well as a certain additional condition called the tetrahedron property (see below), was
imposed. A 3D-consistent system without the tetrahedron property was found in [13]. Later, this
system was shown in [22] to be linearizable. In [26], it was shown that the 3D-consistent equations
classified in [3] satisfy the integrability test based on the notion of algebraic entropy.

The consistency approach was generalized in various directions. Systems with fields on edges
lead to Yang–Baxter maps ([25], [23], [20]). Quadrirational Yang–Baxter maps were classified in [4].
The 4D-consistency of discrete 3D-systems is related to the functional tetrahedron equation studied
in [17], [16], [15], and [8].

In the present paper, we classify 3D-consistent multiaffine quad-equations in a more general
setting. The faces of the consistency cube can carry a priori different quad-equations. Neither sym-
metry nor the tetrahedron property are assumed. This leads to a general classification of integrable
quad-equations.
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x23 x123

x3 x13

x2 x12

x x1

Fig. 2. A 3D consistent system of quad-equations. The equations are associated to the faces of the cube



5

The outline of our approach is the following.
(a) By applying discriminant-like operators to successively eliminate variables, one can descend

from a multiaffine polynomial in four variables, associated to a quadrilateral, to quadratic polyno-
mials in two variables, associated to its edges, and finally to quartic polynomials in one variable,
associated to its vertices (Section 2).

(b) By analyzing singular solutions, we prove that the biquadratic polynomials that come to
an edge of the cube from the two adjacent faces coincide up to a constant factor (see Section 3).
At this point, an additional nondegeneracy assumption is needed. We assume that all biquadratic
polynomials do not have factors of the form x− c with constant c. (Examples of equations without
this property are presented in Section 7.)

(c) This allows us to associate a quartic polynomial in the respective variable to each vertex of
the cube; admissible sets of polynomials are classified modulo Möbius transformations, and each
variable is transformed independently (Section 4).

(d) Finally, we reverse the procedure and reconstruct the biquadratic polynomials on the edges
of the cube and then the multiaffine equations themselves (Section 6).

2. Multiaffine and Biquadratic Polynomials

Our approach is based on the descent from the faces to the edges and further to the vertices
of the cube. In this section, we consider a single face and describe this descent irrespective of 3D-
consistency. Let Pm

n denote the set of polynomials in n variables which are of degree m in each
variable. We consider the following action of Möbius transformations on polynomials f ∈ Pm

n :

M [f ](x1, . . . , xn) = (c1x1 + d1)m · · · (cnxn + dn)mf

(
a1x1 + b1

c1x1 + d1
, . . . ,

anxn + bn

cnxn + dn

)
,

where aidi − bici = ∆i �= 0. The operations

P1
4

δxi,xj−→ P2
2

δxk−→ P4
1 , δx,y(Q) = QxQy − QQxy, δx(h) = h2

x − 2hhxx

are covariant with respect to Möbius transformations. (The subscripts x and y denote partial
differentiation.) More precisely, if Q ∈ P1

4 and h ∈ P2
2 , then

δxi,xj (M [Q]) = ∆i∆jM [δxi,xj (Q)], δxi(M [h]) = ∆2
i M [δxi(h)]. (2)

Further, we make an extensive use of relative invariants of polynomials under Möbius trans-
formations. For quartic polynomials r ∈ P4

1 , these relative invariants are well known and can be
defined as the coefficients of the Weierstrass normal form r = 4x3−g2x−g3 . For a given polynomial
r(x) = r4x

4 + r3x
3 + r2x

2 + r1x + r0 , they are specified by the formulas (e.g., see [28])

g2(r, x) =
1
48

(2rrIV − 2r′r′′′ + (r′′)2) =
1
12

(12r0r4 − 3r1r3 + r2
2),

g3(r, x) =
1

3456
(12rr′′rIV − 9(r′)2rIV − 6r(r′′′)2 + 6r′r′′r′′′ − 2(r′′)3)

=
1

432
(72r0r2r4 − 27r2

1r4 + 9r1r2r3 − 27r0r
2
3 − 2r3

2).

Under the Möbius change of x = x1 , these quantities are just multiplied by constant factors,

gk(M [r], x) = ∆2k
1 gk(r, x), k = 2, 3.

For biquadratic polynomials h ∈ P2
2 ,

h(x, y) = h22x
2y2 + h21x

2y + h20x
2 + h12xy2 + h11xy + h10x + h02y

2 + h01y + h00, (3)
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the relative invariants are

i2(h, x, y) = 2hhxxyy − 2hxhxyy − 2hyhxxy + 2hxxhyy + h2
xy

= 8h00h22 − 4h01h21 − 4h10h12 + 8h02h20 + h2
11,

i3(h, x, y) =
1
4

det

⎛
⎝ h hx hxx

hy hxy hxxy

hyy hxyy hxxyy

⎞
⎠ = det

⎛
⎝h22 h21 h20

h12 h11 h10

h02 h01 h00

⎞
⎠ .

Note that i3 can also be defined by the formula

−4i3(h, x, y) = δx,y(δx,y(h))/h.

The transformation law associated with the Möbius change of x = x1 and y = x2 has the form

ik(M [h], x, y) = ∆k
1∆

k
2ik(h, x, y), k = 2, 3.

The following properties of the operations δx,y and δx can be proved by straightforward computa-
tions.

Lemma 1. The identities

δx3(δx1,x2(Q)) = δx2(δx1,x3(Q)), (4)

ik(δx1,x2(Q), x3, x4) = ik(δx3,x4(Q), x1, x2), k = 2, 3, (5)

hold for any multiaffine polynomial Q(x1, x2, x3, x4). The identity

gk(δx1(h), x2) = gk(δx2(h), x1), k = 2, 3, (6)

holds for any biquadratic polynomial h(x1, x2) ∈ P2
2 .

Let hij = hji = δxk,xl
(Q), where {i, j, k, l} = {1, 2, 3, 4}. Then Lemma 1 implies the commuta-

tivity of the diagram

r4(x4)
δx3←−−−− h34(x3, x4)

δx4−−−−→ r3(x3)

δx1

�⏐⏐
�⏐⏐δx1,x2

�⏐⏐δx2

h14(x1, x4)
δx2,x3←−−−− Q(x1, x2, x3, x4)

δx1,x4−−−−→ h23(x2, x3)

δx4

⏐⏐	
⏐⏐	δx3,x4

⏐⏐	δx3

r1(x1)
δx2←−−−− h12(x1, x2)

δx1−−−−→ r2(x2)

(7)

Moreover, the biquadratic polynomials on the opposite edges have the same invariants i2 and i3 ,
and all four quartic polynomials ri have the same invariants g2 and g3 . This diagram can be
completed by the polynomials h13 and h24 corresponding to the diagonals (so that the graph of
the tetrahedron appears), but we will not need them. The introduced polynomials also satisfy a
number of other interesting relations.

Lemma 2. For any multiaffine polynomial Q(x1, x2, x3, x4) ∈ P1
4 , the following identities hold

(where hij(xi, xj) = δxk,xl
(Q) ∈ P2

2 ):

4i3(h12, x1, x2)h14 = det

⎛
⎝ h12 h12

x1
�

h12
x2

h12
x1x2

�x2

h12
x2x2

h12
x1x2x2

�x2x2

⎞
⎠ , (8)

where � = h23
x3x3

h34 − h23
x3

h34
x3

+ h23h34
x3x3

;

h12h34 − h14h23 = PQ, P = det

⎛
⎝ Q Qx1 Qx3

Qx2 Qx1x2 Qx2x3

Qx4 Qx1x4 Qx3x4

⎞
⎠ ∈ P1

4 , (9)
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2Qx1

Q
=

h12
x1

h34 − h14
x1

h23 + h23h34
x3

− h23
x3

h34

h12h34 − h14h23
. (10)

Identity (8) shows that h14 can be expressed via three other biquadratic polynomials (provided
that i3(h12) �= 0). Identity (9) defines Q as one of the factors in a simple expression built from
hij . Finally, differentiating (10) with respect to x2 or x4 leads to a relation of the form Q2 =
F [h12, h23, h34, h14], where F is a rational expression in hij and their derivatives. Therefore, if the
biquadratic polynomials on three edges (out of four) is known, then Q can be found explicitly. Of
course, it is seen from Lemma 2 that not any set of three biquadratic polynomials can be obtained
as hij from some Q ∈ P1

4 .
The biquadratic polynomials hij for a given Q ∈ P1

4 are closely related to singular solutions
of the multiaffine equation

Q(x1, x2, x3, x4) = 0. (11)

The polynomial Q ∈ P1
4 is assumed to be irreducible. (In particular, Qxi �≡ 0; otherwise, the

polynomial Q should be treated as reducible, since the change of variable xi �→ 1/xi takes it to
xiQ). Obviously, equation (11) can be solved for any variable: let Q = p(xj , xk, xl)xi +q(xj , xk, xl);
then xi = −q/p for generic xj , xk , and xl . However, xi is not defined if the point (xj , xk, xl) lies
on the curve

Si : p(xj , xk, xl) = q(xj , xk, xl) = 0, Q ≡ pxi + q, (12)

in (CP
1)3 . The projection of this curve onto the coordinate plane (j, k) is exactly the biquadratic

hjk = pqxl
− pxl

q = 0.
Definition 1. A solution (x1, x2, x3, x4) of equation (11) is said to be singular with respect to

xi if it also satisfies the equation Qxi(x1, x2, x3, x4) = 0. The curve Si is called the singular curve
for xi .

Lemma 3. If a solution (x1, x2, x3, x4) of equation (11) is singular with respect to xi , then
hjk = hjl = hkl = 0. Conversely, if hjk = 0 for some solution, then this solution is singular with
respect to either xi or xl .

Proof. Since hjk = QxiQxl
− QQxi,xl

, it follows that the equations hjk = 0 and QxiQxl
= 0

are equivalent for the solutions of the equation Q = 0.
We use the following notion of nondegeneracy for biquadratic polynomials.
Definition 2. A biquadratic polynomial h(x, y) ∈ P2

2 is said to be nondegenerate if no poly-
nomial in its equivalence class with respect to Möbius transformations is divisible by a factor of
the form x − c or y − c (with c = const).

According to this definition, a nondegenerate polynomial h(x, y) ∈ P2
2 is either irreducible or

has the form (α1xy + β1x + γ1y + δ1)(α2xy + β2x + γ2y + δ2) with αiδi �= βiγi . In both cases, the
equation h = 0 defines y as a two-valued function of x, and vice versa. On the other hand, for
example, the polynomial h(x, y) = x− y2 (treated as an element of P2

2 ) is, according to Definition
2, a degenerate biquadratic, since the inversion x �→ 1/x takes it to x(1 − xy2).

The following notion plays a fundamental role in our studies.
Definition 3. A multiaffine function Q ∈ P1

4 is said to be of type Q if all four of its accom-
panying biquadratics hjk ∈ P2

2 are nondegenerate and of type H otherwise.

3. 3D-Consistency and Biquadratic Curves

Consider the system of equations

A(x, x1, x2, x12) = 0, Ā(x3, x13, x23, x123) = 0,
B(x, x1, x3, x13) = 0, B̄(x2, x12, x23, x123) = 0,
C(x, x2, x3, x23) = 0, C̄(x1, x12, x13, x123) = 0

(13)
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x23 x123

x3 x13

x2 x12

x x1

f

h

g A

Ā

B

B̄

C C̄

Fig. 3. A 3D-consistent system of quad-equations. The equations are associated
with the faces of the cube: A and Ā, with the bottom and top ones; B and B̄ , with the

front and back ones; and C and C̄ , with the left and right ones

on a cube; see Figure 3. The functions A, . . . , C̄ are multiaffine (belong to P1
4 ) and are not a priori

supposed to be related to each other in any way. We will use the notation Aij = δxk,xl
A for the

accompanying biquadratic polynomials.
Theorem 1. Let all six functions A, . . . , C̄ be of type Q, and let equations (13) be 3D-consis-

tent. Then
(i) For any edge of the cube, the two biquadratic polynomials corresponding to this edge (coming

from the two faces sharing this edge) coincide up to a constant factor.
(ii) The product of these factors around any vertex is equal to −1; for example,

A0,1B0,3C0,2 + A0,2B0,1C0,3 = 0. (14)

(iii) System (13) possesses the tetrahedron property ∂x123/∂x = 0.

Proof. The elimination of x12 , x13 , and x23 leads to equations

F (
2
x,

1
x1,

1
x2,

3
x3,

1
x123) = Āx13,x23BC − Āx23Bx13C − Āx13BCx23 + ĀBx13Cx23 = 0,

G(
2
x,

1
x1,

3
x2,

1
x3,

1
x123) = B̄x12,x23AC − B̄x23Ax12C − B̄x12ACx23 + B̄Ax12Cx23 = 0,

H(
2
x,

3
x1,

1
x2,

1
x3,

1
x123) = C̄x12,x13AB − C̄x13Ax12B − C̄x12ABx13 + C̄Ax12Bx13 = 0.

Here the numbers over the arguments of F , G, and H indicate the degrees of the right-hand side
in the respective variables. (The degree is understood in the projective sense, as in the example at
the end of the previous section.) Owing to 3D-consistency, the expressions for x123 as functions of
x, x1 , x2 , x3 , found from these equations, coincide. Therefore, the following factorizations hold:

F = f(x,
2
x3)K, G = g(x,

2
x2)K, H = h(x,

2
x1)K, K = K(x,

1
x1,

1
x2,

1
x3,

1
x123), (15)

where f , g, and h are some polynomials of degree 2 in the second argument. The degree in x
remains to be determined.

Let the initial data x, x1 , and x2 be free variables, and let x3 be chosen so as to satisfy the
equation f(x, x3) = 0. Then F ≡ 0, and thus the system B = C = Ā = 0 does not determine the
value of x123 . Moreover, the equation B = 0 can be solved for x13 , since otherwise the initial data
would be constrained by equation B0,1(x, x1) = 0. Likewise, the equation C = 0 is solvable for
x23 . Therefore, the uncertainty appears from the singularity of the equation Ā = 0 with respect to
x123 . Hence, the relation Ā3,13(x3, x13) = 0 holds. By virtue of the assumption of the theorem, x13

is a (two-valued) function of x3 and does not depend on x1 . This means that the equation B = 0
is singular with respect to x1 , and therefore, B0,3(x, x3) = 0. Likewise, C0,3(x, x3) = 0.
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Thus, we have proved that if x3 = ϕ(x) is a zero of the polynomial f , then it is also a zero of
the polynomials B0,3 and C0,3 . If one of these three polynomials is irreducible, then this already
implies that they coincide up to a constant factor. If the polynomials are reducible, this may be
wrong, since it is possible that f = a2 , B0,3 = ab, and C0,3 = ac, where a, b, and c are multiaffine
in x and x3 . In any case, we have degx f = 2, and this is sufficient to complete the proof.

Indeed, this implies that degx K = 0, that is, the tetrahedron property holds. In turn, this
implies the relation (14), as was shown in [3]. Recall this computation: let us rewrite system (13)
in the form

x12 = a(x, x1, x2), x13 = b(x, x1, x3), x23 = c(x, x2, x3),

x123 = d(x1, x2, x3) = ā(x3, x13, x23) = b̄(x2, x12, x23) = c̄(x1, x12, x13)

and find, by differentiation,

dx1 = āx13bx1 , dx2 = āx23cx2 , 0 = āx13bx + āx23cx,

dx1 = b̄x12ax1 , dx3 = b̄x23cx3 , 0 = b̄x12ax + b̄x23cx,

dx2 = c̄x12ax2 , dx3 = c̄x13bx3 , 0 = c̄x12ax + c̄x13bx.

These equations readily imply the relation

ax2bx1cx3 + ax1bx3cx2 = 0,

which is equivalent to (14) by virtue of the identity ax2/ax1 = A0,1/A0,2 . The variables in equation
(14) separate: B0,3/C0,3 = −A0,2/C0,2 ·B0,1/A0,1 , so that B0,3/C0,3 can only depend on x. In view
of the assumption of the theorem, this ratio is constant.

There exist 3D-consistent systems whose equations are not of type Q. The assertions of Theo-
rem 1 may or may not hold for such systems, as the following examples show.

Example 1. The simplest 3D-consistent equation is the linear equation

x + xi + xj + xij = 0.

In this case, all biquadratic polynomials are equal to 1, so that assertion (i) is satisfied and assertion
(ii) is not. Since (ii) is a consequence of the tetrahedron property (iii), it follows that the latter
cannot hold either. Indeed,

x123 = 2x + x1 + x2 + x3.

The factor f in this example is also equal to 1, but this is a coincidence, destroyed by Möbius
changes of variables. Indeed, in this case degx K = 1, and after the inversion xI → 1/xI of all
variables we arrive at f = xx2

3 , while B0,3 turns into x2x2
3 .

Example 2. The Hietarinta equation [13]

(x − e(j))(xij − o(j))(xi − o(i))(xj − e(i)) − (x − e(i))(xij − o(i))(xi − e(j))(xj − o(j)) = 0 (16)

is 3D-consistent, but assertion (i) does not hold:

B0,3 = (e(3) − o(1))(o(1) − o(3))(x − e(3))(x − e(1))(x3 − e(1))(x3 − o(3)),

C0,3 = (e(3) − o(2))(o(2) − o(3))(x − e(3))(x − e(2))(x3 − e(2))(x3 − o(3)).

The factor f is proportional to (x− e(3))(x3 − e(1))(x3 − e(2)). Consequently, degx K = 1, and the
tetrahedron property does not hold.

Example 3. Probably the best known example of a 3D-consistent system is given by the
discrete potential KdV equation

(x − xij)(xi − xj) + α(i) − α(j) = 0. (17)

In this case, all assertions of the theorem hold, in spite of the degeneracy of the biquadratics:

B0,3 = α(1) − α(3), C0,3 = α(2) − α(3), f = 1.
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(Recall that the degree is understood in the projective sense. Under the inversion, these polynomials
turn into x2x2

3 .)

Example 4. Equation (Q1)

Q(x, x1, x2, x12; α(1), α(2); δ)

= α(1)(x − x2)(x1 − x12) − α(2)(x − x1)(x2 − x12) + δα(1)α(2)(α(1) − α(2)) = 0

is consistent not only with its own copies (see [3] and Theorem 4 below), but also with linear
equations. Namely, the system formed by the equations

Q(x, x1, x12, x2; α(1), α(2); δ) = 0, x13 − x3 = x1 − x, x23 − x3 = x2 − x

and their copies on the opposite faces is 3D-consistent. In this case, the edge (x, x3) carries the
polynomials

B0,3 = C0,3 = −1, f = 1.

However, in contrast to the previous example, the tetrahedron property is not valid, and degx K =
2. This means that the polynomial f is not biquadratic and its image under inversion is x2

3 .
Moreover, the biquadratic polynomials corresponding to the edge (x, x1) do not coincide,

A0,1 = α(2)(α(1) − α(2))
(
(x1 − x)2 − δ(α(1))2

)
, B0,1 = −1, h = 1.

We see in this example that it is possible that some of the biquadratic polynomials satisfy the
assumptions of the theorem and the others do not.

4. Classification of Biquadratic Polynomials

Diagram (7) suggests an algorithm for the classification of multiaffine equations Q = 0 modulo
Möbius transformations. The first step is to use Möbius transformations to bring the polyno-
mials ri(xi) associated with the vertices of the quadrilateral into canonical form. According to
formulas (2),

δxl
(δxj ,xk

(M [Q])) = ∆2
j∆

2
k∆

2
l M [δxl

(δxj ,xk
(Q))] =

C

∆2
i

M [ri],

where C = ∆2
1∆

2
2∆

2
3∆

2
4 . Since the polynomial Q is defined up to an arbitrary factor, we can assume

that Möbius changes of variables in the equation Q = 0 induce the transformations

ri �→ 1
∆2

i

M [ri]

of the polynomials ri . This allows us to bring each ri into one of the following six forms:

r = (x2 − 1)(k2x2 − 1), r = x2 − 1, r = x2, r = x, r = 1, r = 0,

according to the six possibilities for the root distribution of r: four simple roots, two simple roots
and one double root, two pairs of double roots, one simple root and one triple root, one quadruple
root, or, finally, r vanishes identically. Note that in the first canonical form it is always assumed
that k �= 0,±1, so that the second and third forms are not considered as special cases of the first
one.

Not every pair of such polynomials is admissible as a pair of polynomials at two adjacent
vertices, since the relative invariants of the polynomials in such a pair must coincide according to
(6). We identify all admissible pairs and then solve the problem of reconstructing the biquadratic
polynomial (3) from the pair

δy(h) = h2
y − 2hhyy = r1(x), δx(h) = h2

x − 2hhxx = r2(y) (18)

of its discriminants; this is equivalent to a system of ten (bilinear) equations for the nine unknown
coefficients of the polynomial h.
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Theorem 2. Biquadratic polynomials with the pair (r1(x), r2(y)) of discriminants in canonical
form exist for the following pairs, up to the permutation of x and y :

(y2 − 1)(k2y2 − 1) y2 − 1 y2 y 1 0
(x2 − 1)(k2x2 − 1) +

x2 − 1 + +
x2 +
x + +
1 + +
0 +

These polynomials h and their relative invariants i2 and i3 are given in the following list :

(r(x), r(y)), r(x) = (x2 − 1)(k2x2 − 1) :

h =
1
2α

(k2α2x2y2 + 2Axy − x2 − y2 + α2), A2 = r(α), (19)

i2 = 3(k2α2 + α−2) − k2 − 1, 4i3 = A(k2α − α−3);

(x2 − δ, y2 − δ) : h =
α

1 − α2
(x2 + y2) − 1 + α2

1 − α2
xy +

δ(1 − α2)
4α

, (20)

i2 =
1 + 10α2 + α4

(1 − α2)2
, i3 =

α2(1 + α2)
(1 − α2)3

;

(x, y) : h =
1
4α

(x − y)2 − α

2
(x + y) +

α3

4
, i2 =

3
4α2

, i3 =
1

32α3
; (21)

(x2, y2) : h = λx2 + µxy + νy2, µ2 − 4λν = 1, i2 = 1 + 12λν, i3 = −λµν; (22)

h = λx2y2 + µxy + ν, µ2 − 4λν = 1, i2 = 1 + 12λν, i3 = λµν; (23)

(1, 1) : h = λ(x ± y)2+ µ(x ± y) + ν, µ2− 4λν = 1, i2 = 12λ2, i3 = ∓2λ3; (24)

(0, 0) : h = (κxy + λx + µy + ν)2, i2 = 12(κν − λµ)2, i3 = 2(κν − λµ)3; (25)

(x2 − 1, y2) : h = αy2 ± xy +
1
4α

, i2 = 1, i3 = 0; (26)

(x, 1) : h = ±1
4
(y − α)2 ∓ x, i2 = 0, i3 = 0; (27)

(1, 0) : h = λy2 + µy + ν, µ2 − 4λν = 1, i2 = 0, i3 = 0. (28)

Proof. The list is obtained by a straightforward solution of system (18) for various canonical
pairs (r1, r2). The exhaustion of cases is shortened if we notice that g3

2 �= 27g2
3 in one case only and

that the relative invariants for the polynomial r1 = ax2 + bx + c are 12g2 = a2 and 216g3 = −a3 ,
so that the second polynomial must be of the form r2 = ay2 + b̃y + c̃. The solution for the pair
(x, 0) turns out to be empty.

5. Classification of Multiaffine Equations of Type Q

It is important to note that after bringing the polynomials ri(xi) into canonical forms one still
has some freedom. Namely, one can use Möbius transformations that do not change the form of
r to further simplify the biquadratics h and the multiaffine equation Q. In particular, the list in
Theorem 2 is slightly more detailed than the list of biquadratics modulo Möbius transformations.

Indeed, the polynomial (22) turns into (23) under the inversion of x; the change x �→ −x allows
to fix the signs in the polynomials (24) and (26); in case (27), the sign is fixed by the change
x �→ −x, y �→ iy; the polynomials (25) and (28) admit further simplification.

However, a transformation of any one of the four variables for a quadrilateral affects the bi-
quadratic polynomials on the two edges adjacent to the correspondent vertex, and therefore it
cannot a priori be guaranteed that all four biquadratics can be brought to some definite form
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simultaneously. For example, if the polynomial ri = x2
i corresponds to each vertex, then the poly-

nomials corresponding to the edges may have the form (22) or (23). We do not know a priori
that these polynomials can be always brought into the same form (even with different coefficients).
Actually, this is possible, as the proof of the following theorem shows.

The next step is the reconstruction of the multiaffine polynomials from the biquadratic ones.
Since our goal is only the classification of systems of type Q equations, we will not solve this problem
in full generality. We leave aside cases (26), (27), and (28), since the corresponding biquadratics
are degenerate. For the same reason, we impose additional restrictions on the parameter values:
λν �= 0 in cases (22) and (23), λ �= 0 in case (24), and κν − λµ �= 0 in case (25).

Theorem 3. Any multiaffine equation of type Q is equivalent, up to Möbius transformations,
to one of the equations in the following list :

sn(α) sn(β) sn(α + β)(k2x1x2x3x4 + 1) − sn(α)(x1x2 + x3x4)

− sn(β)(x1x4 + x2x3) + sn(α + β)(x1x3 + x2x4) = 0, (29)

(α−α−1)(x1x2 +x3x4) + (β −β−1)(x1x4 +x2x3)− (αβ −α−1β−1)(x1x3 + x2x4)

+
δ

4
(α − α−1)(β − β−1)(αβ − α−1β−1) = 0, (30)

α(x1 − x4)(x2 − x3) + β(x1 − x2)(x4 − x3)

− αβ(α + β)(x1 + x2 + x3 + x4) + αβ(α + β)(α2 + αβ + β2) = 0, (31)

α(x1 − x4)(x2 − x3) + β(x1 − x2)(x4 − x3) − δαβ(α + β) = 0. (32)

Proof. Let the polynomials h12 , h23 , h34 , and h14 be of the form (19) with parameters (α, A),
(β, B), (α̃, Ã) and (β̃, B̃), respectively, lying on the elliptic curve A2 = r(α). The relative invariants
i2 and i3 of h12 and h34 must coincide by virtue of (5), and one can readily verify that this condition
allows only the following possible values for (α̃, Ã):

(α, A), (−α,−A),
1

kα2
(α,−A),

1
kα2

(−α, A);

similar values are possible for (β̃, B̃). At first glance, it seems as if we have to examine 16 quadruples
of hij , but actually the situation is much better. Indeed, according to (2), a Möbius change of
variables in the equation Q = 0 yields

δxk,xl
(M [Q]) = ∆k∆lM [δxk,xl

(Q)] =
C

∆i∆j
M [hij ],

where C = ∆1∆2∆3∆4 . Since Q is only defined up to a multiplicative constant, we can assume
that a Möbius change of variables induces the transformations

hij �→ 1
∆i∆j

M [hij ]

of the biquadratic polynomials hij . In particular, if

h34 = h(x3, x4,−α,−A) or h34 = h
(
x3, x4,

1
kα

,− A

kα2

)
,

then the respective Möbius transformation x3 �→ −x3 or x3 �→ 1/(kx3) will reduce h34 to the form

−h(−x3, x4;−α,−A), respectively, − kx2
3h

(
1

kx3
, x4;

1
kα

,− A

kα2

)
, (33)

which coincides with h(x3, x4, α, A) owing to symmetries of the polynomial (19). Thus, performing
a suitable Möbius transformation of the variable x3 (which does not affect the polynomial r(x3)),
we can assume without loss of generality that (α̃, Ã) = (α, A). After that, the polynomial h14

is uniquely found according to formula (8), and it turns out that the relation (β̃, B̃) = (β, B)
is satisfied automatically. Thus, a change of one variable allows one to achieve the equality of the
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parameters corresponding to the opposite edges of the square. A straightforward computation using
formula (10) yields the equation

αβγ(k2x1x2x3x4 + 1) + α(x1x2 + x3x4) + β(x1x4 + x2x3) + γ(x1x3 + x2x4) = 0,

where γ = (αB + βA)/(k2α2β2 − 1), and the final change α → sn(α), A → sn′(α) and similarly
for β brings it to the form (29).

In the other cases, suitable Möbius changes of the variables x2 , x3 , and x4 also allow us to bring
the polynomials into the form h12 = h(x1, x2, α), h23 = h(x2, x3, β), h34 = h(x3, x4, α). Moreover,
a straightforward computation using formula (8) proves that, in addition, h14 = h(x1, x4, β). Then
the answer is found with the use of (10).

In more detail, the polynomials (20) give rise to equation (30). In this case, equations (5) imply
that the parameters α of the polynomials h12 and h34 differ at most in sign. This is compensated
for by the change of variables x3 → −x3 , which is possible in view of the symmetry h(x, y, α) =
−h(−x, y,−α).

In cases (22), (23), appropriate scalings and, if necessary, inversions of the variables x2 , x3 ,
and x4 allow us to bring h12 , h23 , and h34 into the form (20) without the constant term; thus, we
arrive at the same case for δ = 0.

The polynomial (21) corresponds to equation (31). This is the simplest case, since the param-
eters are already fixed by condition (5).

In case (24), appropriate shifts and, if necessary, changes of sign of the variables x2 , x3 , and
x4 allow us to bring h12 , h23 , and h34 into the form 2h(x, y, α) = α−1(x − y)2 − δα with δ = 1.
Likewise, in case (25) an appropriate Möbius transform of general form brings h12 , h23 , and h34

into the same form with δ = 0. In both cases, the invariants are i2 = 3α−2 and 4i3 = α−3 ,
and therefore, the parameters of h12 and h34 coincide and no further changes are necessary. The
resulting equation is (32).

6. Classification of 3D-Consistent Systems of Type Q

Theorem 1 provides very strong necessary conditions for 3D-consistency for the case in which
all equations are of type Q. This allows us to classify such systems in this section. At this final step,
we have to arrange the obtained equations around the cube and choose the parameters in such a
way that condition (14) be satisfied. This condition can result in a change of sign or an inversion
of one of the parameters.

In the following theorem, we return to the notation of the variables and parameters correspond-
ing to shifts on the lattice. The ordering of the equations corresponds to the preceding theorem,
and we label these equations as in [3].

Theorem 4. Each 3D-consistent system (13) of type Q is, up to Möbius transformations, one
of the systems in the following list :

sn(α(i)) sn(α(j)) sn(α(i) − α(j))(k2xxixjxij + 1) + sn(α(i))(xxi + xjxij)

− sn(α(j))(xxj + xixij) − sn(α(i) − α(j))(xxij + xixj) = 0, (Q4)(
α(i) − 1

α(i)

)
(xxi + xjxij) −

(
α(j) − 1

α(j)

)
(xxj + xixij) −

(α(i)

α(j)
− α(j)

α(i)

)
(xxij + xixj)

− δ

4

(
α(i) − 1

α(i)

)(
α(j) − 1

α(j)

)(α(i)

α(j)
− α(j)

α(i)

)
= 0, (Q3)

α(i)(x − xj)(xi − xij) − α(j)(x − xi)(xj − xij) + α(i)α(j)(α(i) − α(j))(x + xi + xj + xij)

− α(i)α(j)(α(i) − α(j))((α(i))2 − α(i)α(j) + (α(j))2) = 0, (Q2)

α(i)(x − xj)(xi − xij) − α(j)(x − xi)(xj − xij) + δα(i)α(j)(α(i) − α(j)) = 0. (Q1)

Proof. First of all, note that equations of different types (29)–(32) cannot be consistent with
each other, since the corresponding singular curves are different. In particular, the parameters k2
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in case (29) and δ in cases (30) and (32) must be the same on all faces of the cube. Moreover, each
equation in the list possesses the square symmetry, that is, is invariant with respect to the changes
(x1 ↔ x2 , x3 ↔ x4) and (x1 ↔ x3 , α ↔ β).

Therefore, the equations on all faces may differ only in the values of α and β . Consider the
equations corresponding to three faces meeting in one vertex, say, x:

Q(x, x1, x2, x12, α, β̃) = 0, Q(x, x2, x3, x23, β, γ̃) = 0, Q(x, x3, x1, x13, γ, α̃) = 0.

Let
δx2,x12Q(x, x1, x2, x12, α, β̃) = κ(α, β̃)h(x, x1, α).

Then, owing to the symmetry,

δx1,x12Q(x, x1, x2, x12, α, β̃) = κ(β̃, α)h(x, x2, β̃),

and according to Theorem 1, the parameters should be related as follows:

h(x, x1, α)
h(x, x1, α̃)

= m(α, α̃),
h(x, x2, β)
h(x, x2, β̃)

= m(β, β̃),
h(x, x3, γ)
h(x, x3, γ̃)

= m(γ, γ̃),

κ(α, β̃)κ(β, γ̃)κ(γ, α̃)
κ(β̃, α)κ(γ̃, β)κ(α̃, γ)

m(α, α̃)m(β, β̃)m(γ, γ̃) = −1.

In case (29), a straightforward computation proves that κ(α, β) = 2 sn(α) sn(β) sn(α + β) and

h(x, y, α) =
1

2 sn(α)
(k2 sn2(α)x2y2 + 2 sn′(α)xy − x2 − y2 + sn2(α));

therefore, α̃ can take the values ±α, and the same is true for β and γ . Obviously, up to renumbering,
two cases are possible:

α̃ = −α, β̃ = −β, γ̃ = −γ or α̃ = α, β̃ = β, γ̃ = −γ.

Moreover, this is actually only one case, since we can make the change (α, β̃) → (−α,−β̃), which
keeps the equation Q(x, x1, x2, x12, α, β̃) = 0 invariant, as one can readily see from (29). It is not
difficult to verify that we can always adjust the signs on the whole cube as in system (Q4).

Now consider case (30). Here

κ(α, β) = −(1 − α2β2)(1 − α2)(1 − β2)
α2β2

,

h(x, y, α) =
α

1 − α2
(x2 + y2) − 1 + α2

1 − α2
xy +

(1 − α2)δ
4α

,

and α̃ = α or α̃ = 1/α. Taking into account the invariance of equation (30) with respect to the
simultaneous inversion of α and β , we can set, without loss of generality,

α̃ = 1/α, β̃ = 1/β, γ̃ = 1/γ,

which results in system (Q3). In cases (31) and (32), we accordingly have

κ(α, β) = −4αβ(α + β), h(x, y, α) =
1
4α

(x − y)2 − α

2
(x + y) +

α3

4
,

κ(α, β) = −2αβ(α + β), h(x, y, α) =
1
2α

(x − y)2 − αδ

2
,

and we can set α̃ = −α, β̃ = −β , and γ̃ = −γ exactly as before. This leads to systems (Q2) and
(Q1).

The master equation (Q4) in the list was first derived in [2] and further studied in [5]. A
Lax representation for (Q4) was found in [19] with the help of the method based on the three-
dimensional consistency. Equations (Q1) and (Q3 |δ=0) go back to [21]. Equations (Q2) and (Q3 |δ=1)
first appeared explicitly in [3].



15

7. Examples of Type H Systems

In contrast to type Q systems, systems of type H can be viewed as “degenerate.” Their classi-
fication seems to be a rather tedious task. Presently, we cannot suggest any effective procedure to
solve this problem. On the other hand, the examples given in Section 3 demonstrate that this class
should not be just neglected as “pathological.” Indeed, the discrete KdV example (17) suggests that
in some cases the degeneracy of the biquadratics is just an unessential coincidence that does not
spoil the integrability properties of an equation. Here we consider some more examples of this kind,
corresponding to cases (22) and (23) with λµ = 0, (24) with λ = 0, and (25) with κν − λµ = 0,
which were excluded in the previous section. It turns out that if we apply the same algorithm in
these cases (in spite of the fact that there is no justification for this) then the list H from our
previous paper [3] will be reproduced:

α(i)(xxi + xjxij) − α(j)(xxj + xixij) + δ((α(i))2 − (α(j))2) = 0, (H3)

(x − xij)(xi − xj) + (α(j) − α(i))(x + xi + xj + xij) + (α(j))2 − (α(i))2 = 0, (H2)

(x − xij)(xi − xj) + α(j) − α(i) = 0. (H1)

One can directly verify that all assertions of Theorem 1 remain valid for these equations, in spite
of the degeneracy of the biquadratics.

Considering the asymmetric cases (26), (27), and (28) with different polynomials associated
with different vertices, one finds that the following cases are possible, up to permutations:

(x2
1 − 1, x2

2, x
2
3, x

2
4), (x2

1 − 1, x2
2 − 1, x2

3, x
2
4), (x2

1 − 1, x2
2 − 1, x2

3 − 1, x2
4),

(x1, 1, 1, 1), (x1, x2, 1, 1), (x1, x2, x3, 1), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0).

(There is clearly no distinction between edges and diagonals when we are dealing with a single

equation.) A straightforward verification shows that the cases like
(

r2(x4) r1(x3)
r1(x1) r2(x2)

)
are realizable

and lead to the following list of 3D-consistent equations:

α(x1x2 + x3x4) − β(x1x4 + x2x3) + (α2 − β2)
(
δ +

εx2x4

αβ

)
= 0, (Hε

3)

(x1 − x3)(x2 − x4) + (β − α)(x1 + x2 + x3 + x4) + β2 − α2

+ ε(β − α)(2x2 + α + β)(2x4 + α + β) + ε(β − α)3 = 0, (Hε
2)

(x1 − x3)(x2 − x4) + (β − α)(1 + εx2x4) = 0. (Hε
1)

This list can be viewed as a deformation of the list H , which corresponds to the case ε = 0. However,
we use the notation with cyclic indices rather than shifts, since owing to lack of symmetry the
arrangement of the equations on the faces of a cube requires a more explicit description (see below).
Note that in (Hε

1 ) the polynomial 1+εx2x4 can be replaced by the polynomial κx2x4+µ(x2+x4)+ν
with arbitrary coefficients. The corresponding biquadratic polynomials and their discriminants are
given in the following table (up to multiplication by a suitable constant, Q → µ(α, β)Q):

h(x1, x2) r1(x1) r2(x2)

(Hε
3) x1x2 + εα−1x2

2 + δα x2
1 − 4δε x2

2

(Hε
2) x1 + x2 + α + 2ε(x2 + α)2 1 − 8εx1 1

(Hε
1) 1 + εx2

2 −4ε 0

Each of these equations possesses the rhombic symmetry

Q(x1, x2, x3, x4, α, β) = −Q(x3, x2, x1, x4, β, α) = −Q(x1, x4, x3, x2, β, α)

but not the square symmetry, since the vertices x1 and x2 correspond to polynomials with zeroes of
different multiplicities. The equation is 3D-consistent on the black-white lattice i + j + k (mod 2).
That is, each face must carry a copy of the equation in such a way that the parameters on opposite
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edges coincide and the vertices x, x12, x13, x23 are of the same type (here we again switch to the
notation where the indices denote shifts, as in Figure 3):

Q(x, xi, xij , xj , α
(i), α(j)) = 0, Q(xik, xk, xjk, x123, α

(i), α(j)) = 0, {i, j, k} = {1, 2, 3}.
Obviously, the equations on opposite faces of the cube do not coincide, but the equation may
nevertheless be extended to the entire lattice Z

3 . The tetrahedron property is satisfied.
Finally, note that it is also possible to combine equations with square and trapezoidal symmetry.

Consider equation (Q1) again. Let one pair of opposite faces carry the equations

Q1(x, x1, x12, x2; α(1), α(2))δ=1 = 0, Q1(x3, x13, x123, x23; α(1), α(2))δ=0 = 0,

and let the other two pairs carry the equations

Q(x, xi, xi,3, x3, α
(i), ε) = 0, Q(xj , xij , x123, xj,3, α

(i), ε) = 0, {i, j} = {1, 2},
where the polynomial

Q(x1, x2, x3, x4, γ, ε) = (x1 − x2)(x3 − x4) + γ(ε−1 − εx3x4)

actually coincides with (Hε
1 ) up to the permutation of x2 and x3 . This awkward structure is

3D-consistent and, surprisingly, satisfies the tetrahedron property. It can be also extended to the
lattice Z

3 .

8. Concluding Remarks

Noncommutative analogs of some of the equations in the Q-list are known. In particular, a
quantum version of (Q1 |δ=0) appeared in [27]. In [11], the consistency approach was extended to
the noncommutative context, where the fields take values in an arbitrary associative algebra. The
definition of three-dimensional consistency remains the same in this case; however, the assumption
of the multiaffine property is replaced by the requirement that the equation can be brought to the
linear form px = q with respect to any variable x. These two properties are not equivalent in the
noncommutative case, as is seen from the following examples. The first one was found in [11], and
the other two were discovered by V. V. Sokolov and V. E. Adler (unpublished):

α(1)(x − x2)(x2 − x12)−1 = α(2)(x − x1)(x1 − x12)−1, (Q̂1|δ=0)

α(1)(x1 − x12 + α(2))(x − x1 − α(1))−1 = α(2)(x2 − x12 + α(2))(x − x2 − α(2))−1, (Q̂1|δ=1)

(1 − (α(1))2)(x1 − α(2)x12)(α(1)x − x1)−1 = (1 − (α(2))2)(x2 − α(1)x12)(α(2)x − x2)−1. (Q̂3|δ=0)

The existence of noncommutative analogs of (Q2), (Q3 |δ=1) and (Q4) remains an open question.
Although the analysis of singular solutions can still be useful as a general principle, our technique
is based on the algebraic properties of multiaffine and biquadratic polynomials and therefore does
not apply to this problem.

More general quantum systems with consistency property were found recently in [8], [7].
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