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Exploring surfaces through methods from the theory

of integrable systems: The Bonnet problem

Alexander I. Bobenko

§1. Quaternionic Description of Surfaces. Bonnet Problem

1.1. Differential equations of surfaces
Let F be a smooth orientable surface in 3-dimensional Euclidean

space. The Euclidean metric induces a metric Ω on this surface, which
in turn generates the complex structure of a Riemann surface R. Under
such a parametrization, which is called conformal, the surface F is given
by an immersion

F = (F1, F2, F3) : R → R
3,

and the metric is conformal: Ω = eu dzdz̄, where z is a local coordinate
on R.

One should keep in mind that a complex coordinate is defined up
to holomorphic z → w(z) transformation. This freedom will be used to
simplify the corresponding equations.

The conformal parametrization gives the following normalization of
F (z, z̄):

< Fz , Fz >=< Fz̄ , Fz̄ >= 0, < Fz , Fz̄ >=
1
2
eu,(1)

where the brackets denote the scalar product

< a, b >= a1b1 + a2b2 + a3b3,

and Fz and Fz̄ are the partial derivatives ∂F
∂z and ∂F

∂z̄ , where

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.
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The vectors Fz , Fz̄, as well as the normal N , with

< Fz , N >=< Fz̄ , N >= 0, < N, N >= 1,(2)

define a moving frame on the surface, which due to (1, 2) satisfies the
following Gauss-Weingarten equations:

σz = Uσ, σz̄ = Vσ, σ = (Fz , Fz̄ , N)T ,(3)

U =

⎛
⎝ uz 0 Q

0 0 1
2Heu

−H −2e−uQ 0

⎞
⎠ ,(4)

V =

⎛
⎝ 0 0 1

2Heu

0 uz̄ Q̄
−2e−uQ̄ −H 0

⎞
⎠ ,

where

Q =< Fzz , N >, < Fzz̄ , N >=
1
2
Heu.(5)

The quadratic differential Qdz2 is called the Hopf differential. The first
and the second fundamental forms

< dF, dF > = < I

(
dx

dy

)
,

(
dx

dy

)
>, z = x + iy,

− < dF, dN > = < II

(
dx

dy

)
,

(
dx

dy

)
>

are given by the matrices

I = eu

(
1 0
0 1

)
, II =

(
Q + Q̄ + Heu i(Q − Q̄)

i(Q − Q̄) −(Q + Q̄) + Heu

)
.(6)

The principal curvatures k1 and k2 are the eigenvalues of the matrix
II · I−1. This gives the following expressions for the mean and the
Gaussian curvatures:

H = 1
2 (k1 + k2) = 1

2 tr (II · I−1),

K = k1k2 = det (II · I−1) = H2 − 4QQ̄e−2u.

A point P of the surface F is called umbilic if the principal cur-
vatures at this point coincide k1(P ) = k2(P ). The Hopf differential
vanishes Q(P ) = 0 exactly at umbilic points of the surface.



The Bonnet problem 3

Coordinates in which both fundamental forms are diagonal are called
curvature line coordinates and the corresponding parametrization (not
necessarily conformal) is called a curvature line parametrization. A cur-
vature line parametrization always exists in a neighborhood of a non-
umbilic point. Near umbilic points, curvature lines form more compli-
cated patterns.

The Gauss–Codazzi equations, which are the compatibility condi-
tions of equations (3, 4),

Uz̄ − Vz + [U ,V ] = 0,

have the following form:

(7) Gauss equation uzz̄ + 1
2 H2 eu − 2|Q|2 e−u = 0,

Codazzi equation Qz̄ = 1
2 Hz eu.

These equations are necessary and sufficient for existence of the
corresponding surface.

Theorem 1. (Bonnet theorem). Given a metric eu dzdz̄, a qua-
dratic differential Q dz2, and a function H on R satisfying the Gauss–
Codazzi equations, there exists an immersion

F : R̃ → R
3

with the fundamental forms (6). Here R̃ is the universal covering of R.
The immersion F is unique up to Euclidean motions in R3.

We finish this section with some basic facts about a special class of
surfaces. A conformal curvature line parametrization is called isother-
mic. In this case the preimages of the curvature lines are the lines
x = const and y = const on the parameter domain, where z = x+ iy is a
conformal coordinate. A surface is called isothermic if it allows isother-
mic parametrization. Isothermic surfaces are divided by their curvature
lines into infinitesimal squares. Written in terms of an isothermic coor-
dinate z the Hopf differential Q(z, z̄)dz2 of an isothermic surface is real,
i.e. Q(z, z̄) ∈ R.

In terms of arbitrary conformal coordinates, isothermic surfaces can
be characterized as follows.

Lemma 1. Let F : R → R3 be a conformal immersion of an umbilic
free surface in R3. The surface is isothermic if and only if there exists
a holomorphic non-vanishing differential f(z)dz2 on R and a function
q : R → R∗ such that the Hopf differential is of the form

(8) Q(z, z̄) = f(z) q(z, z̄).

It is easy to see that w =
∫ √

f(z)dz is an isothermic coordinate.
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1.2. Quaternionic description of surfaces
We construct and investigate surfaces in R3 by analytic methods.

For this purpose it is convenient to use the Lie algebra isomorphism
so(3) = su(2) and to rewrite the equations (3, 4) for the moving frame
in terms of 2 by 2 matrices. This quaternionic description turns out
to be useful for analytic studies of general curves and surfaces in 3-
and 4-spaces as well as for investigation of special classes of surfaces
[Bob1, KS2, DPW, Bob2, KPP, PP].

Let us denote the algebra of quaternions by H, the multiplicative
quaternion group by H∗ = H\{0}, and their standard basis by {1, i, j,k},
where

ij = k, jk = i, ki = j.(9)

This basis can be represented by the Pauli matrices σα as follows:

σ1 =
(

0 1
1 0

)
= i i, σ2 =

(
0 −i
i 0

)
= i j,

σ3 =
(

1 0
0 −1

)
= i k, 1 =

(
1 0
0 1

)
.(10)

We identify H with 4-dimensional Euclidean space

q = q01 + q1i + q2j + q3k ←→ q = (q0, q1, q2, q3) ∈ R
4.

The sphere S3 ⊂ R4 is then naturally identified with the group of unitary
quaternions H1 = SU(2). 3-dimensional Euclidean space is identified
with the space of imaginary quaternions Im H

X = −i

3∑
α=1

Xασα ∈ Im H ←→ X = (X1, X2, X3) ∈ R
3.(11)

The scalar product of vectors in terms of quaternions and matrices is
then

< X, Y >= −1
2
(XY + Y X) = −1

2
trXY.(12)

We will also denote by F and N the matrices obtained in this way from
the vectors F and N .

Let us take Φ ∈ H∗ which transforms the basis i, j,k into the frame
Fx, Fy, N :

(13) Fx = eu/2Φ−1iΦ, Fy = eu/2Φ−1jΦ, N = Φ−1kΦ.
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Then

Fz = −ieu/2Φ−1

(
0 0
1 0

)
Φ, Fz̄ = −ieu/2Φ−1

(
0 1
0 0

)
Φ,(14)

and all the conditions (1) are automatically satisfied.
The quaternion Φ satisfies linear differential equations. To derive

them we introduce matrices

(15) U = ΦzΦ−1, V = Φz̄Φ−1.

The compatibility condition Fzz̄ = Fz̄z for (14) implies

V22 − V11 =
uz̄

2
, U11 − U22 =

uz

2
, U21 = −V12,

where Ukl and Vkl are the matrix elements of U and V . In the same way
one obtains from (14)

Fzz̄ =
1
2
HeuN → U21 = −V12 =

1
2
Heu/2

Fzz = uzFz + QN → U12 = −Qe−u/2

Fz̄z̄ = uz̄Fz̄ + Q̄N → V21 = Q̄e−u/2.

Recall that Φ is defined up to multiplication by a scalar factor. We
normalize this factor by the condition

(16) det Φ = e
u
2 ,

for reasons which will be clarified in the next section. For the traces of
U and V this implies

tr U =
uz

2
, tr V =

uz̄

2
.

Finally one arrives at the following

Theorem 2. By the isomorphism (11), the moving frame Fz , Fz̄, N
of a conformally parametrized surface (z is a conformal coordinate) is
described by formulae (13),(14), where Φ ∈ H∗ satisfies the equations
(15) with U , V of the form

U =

⎛
⎝

uz

2
−Qe−u/2

1
2
Heu/2 0

⎞
⎠ ,(17)

V =

⎛
⎝ 0 −1

2
Heu/2

Q̄e−u/2 uz̄

2

⎞
⎠ .
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Corollary 1. The conformal frame Φ satisfies the Dirac equation

(18) e−u/2

(
0 ∂z

−∂z̄ 0

)
Φ =

1
2
HΦ.

It turnes out that at this point the whole construction can be re-
versed. Namely, starting with a solution to the Dirac equation one
can derive a Weierstrass type representation (see (21) below) for con-
formally parametrized surfaces. This idea was recently developed by
Konopelchenko [Kon] and further in [Tai, PP, KS2], although in other
forms the Weierstrass representation of surfaces was known already to
Eisenhart [Eis] and Kenmotsu [Ken].

Theorem 3. Let D ⊂ C be a simply connected domain and (s1, s̄2)T :
D → C2 be a solution to the Dirac equation with the potential p ∈
C∞(D)

(19)
(

0 ∂z

−∂z̄ 0

) (
s1

s̄2

)
= p

(
s1

s̄2

)
.

Then

(20) Φ =
(

s1 −s2

s̄2 s̄1

)
: D → H∗

is a conformal frame (14) of the conformally immersed surface

F1 + iF2 =
∫

s2
1 dz − s̄2

2 dz̄

F3 =
∫

s1s2 dz + s̄1s̄2 dz̄.(21)

The metric and the mean curvature of the surface are given by

(22) eu dzdz̄ = (| s1 |2 + | s2 |2)2 dzdz̄, H = 2pe−u/2.

Proof. Note that (−s2, s̄1)T is also a solution to (19) due to the
symmetry of the Dirac equation. At this point Φ given by (20) can
be identified with the conformal frame Φ of Corollary 1. The formula
for the metric (22) follows from (16). Substituting it into our previous
formulae (14) for conformal frame one defines

Fz := −i

(
s1s2 −s2

2

s2
1 −s1s2

)
, Fz̄ := −i

(
s̄2s̄1 s̄2

1

−s̄2
2 −s̄2s̄1

)
.

These formulae are automatically compatible. Integrating them one
arrives at (21).
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1.3. Spinor description of surfaces
As shown in [Bob2], the quaternionic description of the previous

section is actually a global one. Let ∪iDi = R be an open covering of
R with local coordinates zi : Di → C. Conditions (14, 16) determine a
quaternionic valued smooth Φ(zi, z̄i) uniquely up to sign on each Di. To
establish the global nature of Φ recall that a holomorphic line bundle S
is called a spin bundle if it satisfies S⊗S = K, where K is the canonical
bundle.

Denote the first column of Φ by
(

S1

S̄2

)
.

Lemma 2. S1 and S2 are smooth sections of the same holomorphic
spin bundle S.

Proof. Consider two intersecting Di ∩ Dj 	= ∅ with corresponding
Φi(zi, z̄i) and Φj(zj , z̄j). Identifying the representations for the Gauss
map in terms of Φi and Φj one obtains on Di ∩ Dj

Φi =
(

cij 0
0 c̄ij

)
Φj .

with some cij : Di ∩ Dj → C∗. Further, identifying the tangent frames
Fzi = Fzj

dzj

dzi
and using Φσ2ΦT σ2 = detΦ one obtains

ΦT
i

(
1 0
0 0

)
Φi =

dzj

dzi
ΦT

j

(
1 0
0 0

)
Φj ,

which finally implies c2
ij = dzj

dzi
. The transition functions cij : Di ∩Dj →

C∗ defined through Φi obviously satisfy the cocycle condition cijcjk =
cik and thus define a line bundle S with S ⊗ S = K.

In local coordinates the Sn may be written as Sn = sn(zi, z̄i)
√

dzi.
Using the equivalence of spinor representation of conformal frames

of surfaces and solutions of the Dirac equation, proven in Corollary 1
and Theorem 3, we arrive at the following global reformulation [Tai, PP]
of Theorem 3.

Theorem 4. A half-density p (i.e. a smooth section of K
1
2 ⊗ K̄

1
2 )

and two not simultaneously vanishing spinors S1, S2 (i.e. smooth sec-
tions of S ∼= K

1
2 with (S1, S2) 	= (0, 0) ∀P ∈ R) satisfying the Dirac

equation (19) determine through

F1 + iF2 =
∫

S2
1 − S̄2

2

F3 =
∫

S1S2 + S̄1S̄2(23)



8 A. I. Bobenko

a conformal immersion F : R̃ → R3, where R̃ is the universal covering
of R. The metric and the mean curvature of the immersion are given
by

eu dzdz̄ = (| S1 |2 + | S2 |2)2, H = 2pe−u/2.

Remark. In the case of minimal surfaces H = 0 the spinors S1 and
S2 are holomorphic and the representation (23) is known as the spinor
Weierstrass representation [Sul, Bob2, KS1].

On a Riemann surface of genus g there exist 22g non-isomorphic
spin bundles which are distinguished by different spin structures. For
a geometric interpretation of the spin structure of the spin bundle S in
terms of the immersion (23) we refer to [Bob2]. Spin structures classify
regular homotopies of immersions [Pin].

1.4. Alternative descriptions of surfaces and the Bonnet
problem

Bonnet Theorem 1 characterizes surfaces via the coefficients eu, H, Q
of their fundamental forms. These coefficients are not independent and
are subject to the Gauss–Codazzi equations (7). A natural question is
whether some of these data are superfluous. The following natural can-
didates for more “economic” characterization of surfaces were studied.

(i) The most geometric setting of the problem is the oldest one and
is due to Bonnet. He posed the question whether one can eliminate
the Hopf differential from the description of surfaces, i.e. whether the
metric eu and the mean curvature function H alone suffice to describe
a surface completely. Generic surfaces are determined uniquely by the
metric and the mean curvature function. Bonnet himself [Bon] made
the initial progress in the investigation of the special surfaces where it is
not the case, i.e. which possess non-congruent isometric “relatives” with
the same mean curvature function. The rest of these lectures is devoted
to this problem, which is fairly named the Bonnet problem.

(ii) The conformal Hopf differential q := Qe−
u
2 . Note that whereas

the Hopf differential is a quadratic differential, i.e. a section of the line
bundle K2, the conformal Hopf differential is more exotic - it is a section
of K

3
2 ⊗ K̄− 1

2 . The reason for its introduction by U. Pinkall is that q
is invariant with respect to the Möbius transformations of the ambient
R3. A non-isothermic surface is uniquely determined by q up to Möbius
transformations. Counting dimensions, one immediately observes that
generic sections of K

3
2 ⊗ K̄− 1

2 do not correspond to surfaces in R3. A
proper equation for q of surfaces in R3 is still unknown.

(iii) The Dirac potential or mean-curvature half-density p = 1
2He−

u
2 .

As one can see from its definition, this potential is a half-density, i.e. a
section of the line bundle K

1
2 ⊗ K̄

1
2 . Recently, description of surfaces
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through Dirac spinors attracted much attention [KS2, Tai, PP]. Unfor-
tunately, one has neither existence nor uniqueness in this description. A
generic Dirac operator (with generic potential) has trivial kernel, thus
generic half-densities do not yield surfaces. On the other hand, there
may exist many immersions with the same potential p, for example all
special surfaces appearing in the Bonnet problem.

Returning to the Bonnet problem, note that already Bonnet indi-
cated all special surfaces which possess non-congruent isometric “rela-
tives” with the same mean curvature function. There are three cases
when this happens.

1. Constant mean curvature surfaces. Let F be a surface with
constant mean curvature H . The Gauss–Codazzi equations (7) are ob-
viously invariant with respect to the transformation

Q → Qt = eitQ, t ∈ R.

Applying the Bonnet theorem one obtains the one parameter family
Ft, F = F0 of isometric surfaces with the same constant mean curvature
H . In the last ten years there was much interest in studying global
properties of surfaces with constant mean curvature and now they are
rather well investigated by various methods (see for example [Wen, PS,
Kap, Bob1, GKS]) including methods of the theory of integrable systems.

2. Bonnet pairs are exactly two non-congruent isometric surfaces F ′

and F ′′ with the same mean curvature function. The theory of Bonnet
pairs is very closely related [Bia2, KPP] to the theory of isothermic
surfaces and as such belongs also to geometry described by integrable
systems. Up to now, global theory of Bonnet pairs is not well developed,
in particular it is unknown whether there exist compact Bonnet pairs, a
question first posed in [LT].

3. Bonnet families. In [Bon], Bonnet himself was able to show that
besides the surfaces with constant mean curvature there exists a class
of surfaces, depending on finitely many parameters which possess one-
parameter family of isometries preserving the mean curvature. These
surfaces were studied by many authors [Haz, Gra, Car, Che, BE1, Rou]
and recently global classification [BE2] of them was obtained using meth-
ods from the theory of integrable systems.

The remaining three sections are devoted to consideration of these
three cases.



10 A. I. Bobenko

§2. Constant mean curvature surfaces

2.1. Associated family
If the mean curvature of F is constant, then the Gauss-Codazzi

equations

uzz̄ +
1
2
H2eu − 2QQ̄e−u = 0, Qz̄ = 0,

are invariant with respect to the transformation

Q → Qt = ΛQ, |Λ| = 1,(24)

Integrating the equations for the moving frame with the coefficient Q
replaced by Qt = ΛQ we obtain a one-parameter family F t of surfaces.
All the surfaces F t are isometric and have the same constant mean
curvature. Treating t as a deformation parameter we obtain the first
family of special surfaces indicated by Bonnet (see Section 1.4).

Theorem 5. Every constant mean curvature surface has a one-pa-
rameter family of isometric deformations preserving the mean curvature.
The deformation is described by the transformations (24).

Without loss of generality we normalize H = 1. The quaternion
Φ(z, z̄, Λ) solving the system (15, 17) with Qt = ΛQ describes the moving
frame Fz , Fz̄, N (13, 14) of the corresponding surface. Knowing the
family Φ(z, z̄, Λ) in a neighbourhood of Λ = e2it allows us to derive an
immersion formula without integration the frame with respect to z, z̄,
but just by differentiation by t. Before presenting this important formula
we pass to a gauge equivalent frame function

(25) Φ0 = e−u/4

(
1√
iλ

0
0

√
iλ

)
Φ, Λ = λ2,

normalized by

(26) Φ0(z, z̄, λ = eit) ∈ SU(2), t ∈ R.

Although it is known that compact CMC surfaces exist for any genus g
[Kap], their analytic description remains an open problem. Its solution
requires a development of new analytic methods. Until now the theory
of integrable systems was successfully applied for description of planes,
cylinders, tori [PS, Bob1] (g = 1) and punctured spheres [KMS]. In this
section we are dealing essentially with the theory of CMC tori whhich
can be completely classified through analytic methods from the theory
of integrable systems. Since the canonical bundle in this case is trivial,
introducing a global complex coordinate, one can describe spinors in
terms of doubly-periodic functions (see Section 2.3).
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Theorem 6. [Bob1] Let Φ0(z, z̄, λ = eit) be a solution of the system

(27) Φ0 z = U0(λ)Φ0, Φ0 z̄ = V0(λ)Φ0,

U0(λ) =

⎛
⎝

uz

4
iλQe−u/2

λ
i

2
eu/2 −uz

4

⎞
⎠ , V0(λ) =

⎛
⎜⎝ −uz̄

4
i

2λ
eu/2

i

λ
Q̄e−u/2 uz̄

4

⎞
⎟⎠(28)

normalized by (26). Then F and N , defined by the formulae

F = −Φ−1
0

∂

∂t
Φ0 +

i

2
Φ−1

0 σ3Φ0, N = −iΦ−1
0 σ3Φ0,(29)

describe a CMC surface and its Gauss map, with metric eu, mean cur-
vature H = 1, and Hopf differential Qt = e2itQ.

Conversely, let F be a conformal parametrization of a CMC surface
with metric eu, mean curvature H = 1, and Hopf differential Qt. Then
F is given by formula (29) where Φ0 is a solution of (27, 28) as above.

Proof. First we note that both F and N are imaginary quaternions
and therefore can be identified with vectors in R3. By identification
(25) the system (28) coincides with the quaternionic representation (17)
for the equations for the moving frame with the Hopf differential λQ.
Differentiating (29) we get

Fz = −Φ−1
0

∂U0(λ)
∂t

Φ0 +
i

2
Φ−1

0 [σ3, U0(λ)]Φ0 = −ieu/2Φ−1

(
0 0
1 0

)
Φ,

Fz̄ = −ieu/2Φ−1

(
0 1
0 0

)
Φ,

which coincides with (14).
Remark. In a neighborhood of a non-umbilic point Q 	= 0 by a

conformal change of coordinate z → w(z) one can always normalize
Q = 1

2 . Thus, umbilic free CMC surfaces are isothermic. In this paramet-
rization the Gauss equation becomes the elliptic sinh-Gordon equation

(30) uzz̄ + sinh u = 0.

2.2. Loop group formulation
The matrices A = U0 + V0, B = i(U0 − V0) corresponding to real

vector fields ∂x = ∂z +∂z̄ and ∂y = i(∂z −∂z̄) belong to the loop algebra

gH [λ] = {ξ : S1 → su(2) : ξ(−λ) = σ3ξ(λ)σ3},
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and Φ0 in (27) lies in the corresponding loop group

(31) GH [λ] = {φ : S1 → SU(2) : φ(−λ) = σ3φ(λ)σ3}.

Here S1 is the set |λ| = 1. When defined for general complex λ, elements
of gH [λ] and GH [λ] satisfy the real reduction

ξ(λ) = σ2ξ(
1
λ̄

)σ2, φ(λ) = σ2φ(
1
λ̄

)σ2.

For applying analytic methods of the theory of integrable systems it is
crucial that CMC surfaces can be characterized in terms of this loop
group completely without referring to the special geometric nature of
the coefficients of A and B. It is not difficult to prove the following

Theorem 7. Let φ : D → GH [λ] be a smooth map on D ⊂ C

satisfying φzφ
−1 = Aλ + B with A : D → GL(2, C). Then the gauge

equivalent

Φ0 = exp(
i

2
arg A21 σ3)φ

satisfies (27) with U0, V0 of the form (28) and describes the conformal
frame of the immersion

F = −φ−1 ∂

∂t
φ +

i

2
φ−1σ3φ, λ = eit

of D in R3 with the mean curvature H = 1.

2.3. CMC Tori. Analytic formulation
Methods of Section 2.2 can be used not only in local but also in

global studies of CMC surfaces. It is a classical result of Hopf [Hop]
that the only CMC surface of genus zero is a round sphere. Indeed
the holomorphic quadratic differential Q dz2 on a sphere must vanish
identically. Then (4) implies in particular N + F = C = const, which
yields < F − C, F − C >= 1.

Classification of CMC tori is not as simple as of spheres but analytic
tools enable us to achieve success in this case also. The reason for
a simplification in the case g = 1 is the fact that, unlike the case of
Riemann surfaces of genus g ≥ 2, on a torus it is possible to introduce
a global complex coordinate.

Any Riemann surface of genus 1 is conformally equivalent to the
factor of the complex plane by a lattice C/L. The corresponding con-
formal parametrization of a torus is given by a doubly-periodic mapping
F : C/L → R3. The metric and the Hopf differential in this parametriza-
tion are described by doubly-periodic functions u(z, z̄), Q(z, z̄). Note
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that H = const implies Qz̄ = 0 and Q(z) is a bounded elliptic function,
thus a constant. This constant is not zero, otherwise, as follows from
the consideration above the surface is a sphere. Thus CMC tori have no
umbilic points. As before we normalize the Gauss equation to (30) by
Q = 1

2 .
Denoting the generators of L by Z1 = X1 + iY1, Z2 = X2 + iY2 one

obtains the following

Proposition 1. Any torus with mean curvature H = 1 can be con-
formally parametrized by a doubly-periodic immersion F : C → R3

F (z + Zi, z̄ + Z̄i) = F (z, z̄), i = 1, 2

with the Hopf differential Q = 1
2 . In this parametrization the metric

u(z, z̄) is a doubly-periodic solution to the elliptic sinh-Gordon equation
(30).

Note that due to the ellipticity of equation (30) all CMC tori are
real analytic.

To describe all CMC tori one should solve the following problems.
1. Describe all doubly-periodic solutions u(z, z̄) of the elliptic sinh-
Gordon equation (30).
2. Integrate linear system (27) with U0(λ), V0(λ) respectively given by

1
2

(
uz

2 iλe−u/2

iλeu/2 −uz

2

)
,

1
2

(
−uz̄

2
i
λeu/2

i
λe−u/2 uz̄

2

)
(32)

to find Φ0(z, z̄, λ = eit).
3. Formula (29) for F describes the corresponding CMC immersion.
In general, this immersion is not doubly-periodic. One should specify
parameters of the solution u(z, z̄), which yield doubly-periodic F (z, z̄).

These three problems can be solved simultaneously using methods
of the finite-gap integration theory. In the rest of the lecture we give an
idea of how this solution is found.

2.4. Higher flows and the fundamental theorem
Let u(z, z̄) be a solution of the sinh-Gordon equation. The pertur-

bation uε(z, z̄) = u(z, z̄)+εv(z, z̄) of u(z, z̄) satisfies (30) up to the terms
of order O(ε2) if and only if v(z, z̄) is a solution of the linearized elliptic
sinh-Gordon equation

(33) (∂zz̄ + coshu(z, z̄))v(z, z̄) = 0.

The elliptic sinh-Gordon equation is one of the possible real versions
of the sine-Gordon equation, which is one of the basic models of the the-
ory of integrable systems. Integrable systems possess infinitely many
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conservation laws, which induce infinitely many commuting flows of the
corresponding dynamical system. In particular, applying standard alge-
braic tools of the theory to the sine-Gordon equation one can prove that
there exists v(uz, . . . , u

(k)
z ), which solves (33) and is a polynomial in all

its arguments. Such a polynomial can be treated as a tangential vector
field to the space of solutions of the elliptic sinh-Gordon equation. These
vector fields induce flows on the phase space of the dynamical system
(30), which in the theory of solitons are called higher flows.

There exists a regular algebraic description of these commuting flows
through formal Killing field (see [FPPS]), which is in our case a sym-
metric K0(−λ) = σ3K0(λ)σ3 formal power series solution

(34) K0(λ) =
∞∑

m=1

Kmλ−m

of
K0(λ)z =

[
U0(λ), K0(λ)

]
, K0(λ)z̄ =

[
V0(λ), K0(λ)

]
.

Coefficients Km can be computed recursively.

Lemma 3. The diagonal terms K2n = vnσ3, n = 1, . . . of the
formal Killing field (34) define tangential vector fields vn

(35) (∂zz̄ + coshu)vn = 0.

vn are polynomials in uz, . . . , u
(2n−1)
z .

Any complex vector field vn generates two real tangential vector
fields

w2n−1 = vn + v̄n, w2n = i(vn − v̄n), n = 1, . . .

Lemma 4. Let u(z, z̄) be a doubly periodic solution

u(z + Zi, z̄ + Z̄i) = u(z, z̄), i = 1, 2 Im Z1/Z2 	= 0

of the elliptic sinh-Gordon equation and wn, n = 1, . . . be the correspond-
ing tangential real vector fields. Only finitely many tangential vectors wn

are linearly independent.

Proof. All wn are also doubly-periodic. Equation (35) determines
an elliptic operator L on the torus T :

Lwn = (∂z∂z̄ + coshu)wn = 0.

It is well known that the spectra of this operator is discrete, which
implies in particular that all the eigenspaces are finite dimensional. All
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tangential vectors wn belong to the kernel of L. This observation proves
the lemma: dim span{wn}n=1,... < ∞.

This lemma is the reason for the existence of a polynomial Killing
field.

Theorem 8. Let u(z, z̄) be a doubly-periodic solution of the elliptic
sinh-Gordon equation (30), and U0, V0 are given by (32). Then in the
loop algebra gH [λ] there exists a polynomial Killing field

(36) W0(λ) =
2N−1∑

n=−(2N−1)

Wnλn

which satisfies

W0(λ)z =
[
U0(λ), W0(λ)

]
,

W0(λ)z̄ =
[
V0(λ), W0(λ)

]
.(37)

This fundamental theorem in different forms appeared first in [PS,
Hit]. For a recent elegant proof see [FLPPS].

The coefficients of Wn, n > 0 are polynomials in uz, . . . , u
(2N−1−n)
z

and e±u/2, those of Wn, n < 0 are polynomials in uz̄, . . . , u
(2N−1+n)
z̄ and

e±u/2, W0 is a polynominal of uz, uz̄, . . . , u
(2N−1)
z , u

(2N−1)
z̄ . The leading

coefficient is of the form

W2N−1 = α

(
0 e−u/2

eu/2 0

)
, 0 	= α ∈ C.

Solutions possessing polynomial Killing fields are called solutions
of finite type or finite-gap solutions. The theory of finite-gap solutions
is a well established branch [DKN, BBEIM] of the theory of integrable
equations. Due to Theorem 8, all doubly-periodic solutions of the elliptic
sinh-Gordon equation are finite-gap.

2.5. The spectral curve and Baker-Akhiezer function
Let u(z, z̄) be a solution of the elliptic sinh-Gordon equation with

the polynomial Killing field W0(λ). The curve

(38) det(W0(λ) − μI) = 0

is called the spectral curve of the solution u(z, z̄). The spectral curve is
independent of z, z̄.

Compactified at μ = ∞ the hyperelliptic curve (38) determines a
compact Riemann surface Ĉ of genus ĝ. Due to symmetries of the loop
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algebra gH [λ], besides the hyperelliptic involution (μ, λ) → (−μ, λ) it
possesses two more involutions: a holomorphic

(39) π : (μ, λ) → (μ,−λ)

and an anti-holomorphic τ̂ : (μ, λ) → (μ̄, 1
λ̄
).

The factor Riemann surface C = Ĉ/π plays central role for the
explicit construction of section 2.6. The covering Ĉ → C, (μ, λ) �→
(μ, Λ), Λ := λ2 is unramified and C is a Riemann surface of genus g,
where ĝ = 2g − 1. The anti-holomorphic involution

(40) τ : (μ, Λ) → (μ̄,
1
Λ̄

).

acts on C.
Due to (37) the system

φz = U0φ, φz̄ = V0φ, W0φ = μφ

has a common vector valued solution φ(P, z, z̄), which is called the
Baker-Akhiezer function. Here P = (μ, λ) is a point on Ĉ. In the finite-
gap integration theory of the sine-Gordon equation, usually a gauge
equivalent function

ψ =
(

eu/4 0
0 e−u/4

)
φ

is used. Immersion formula (29) is obviously invariant with respect to
this transformation.

Suitably normalized as ψ(P, 0, 0) =
(

1
∗

)
, this function satisfies

(41) ψ(πP, z, z̄) = σ3ψ(P, z, z̄).

The Baker-Akhiezer function ψ has essential singularities at the points
∞±, 0± ∈ Ĉ defined by λ(∞±) = ∞, λ(0±) = 0. The involution π
interchanges these points π(∞+) = ∞−, π(0+) = 0−. Denote their
projection on C by ∞ and 0 respectively. Due to the symmetry (41) the
pole divisor of ψ on Ĉ \{∞±, 0±} is the lift of a divisor D on C \{∞, 0}.

Finally after some computations one can prove the following analytic
properties of ψ.

Theorem 9. The Baker-Akhiezer function ψ possesses the following
analytic properties:
1. ψ is transformed by (41) under the action of the involution π,
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2. ψ is meromorphic on Ĉ \ {∞±, 0±}. The pole divisor D of ψ on
C \ {∞, 0} is independent of z, z̄, and is a non-special divisor of degree
g. The Abel map A(D) of D on C satisfies

(42) A(D − τD) = A(0 −∞),

3. ψ has essential singularities at the points ∞±, 0± of the form

ψ(P, z, z̄) =
((

1
±1

)
+ o(1)

)
exp(± iλz

2
), P → ∞±.

ψ(P, z, z̄) = O(1) exp(∓ iz̄

2λ
), P → 0±.

2.6. Baker-Akhiezer function. Formulae
Due to the symmetry (41) the Baker-Akhiezer function ψ can be

described in terms of the data {C,D}. Here C is a hyperelliptic Rie-
mann surface of genus g with the anti-holomorphic involution (40) and
branch points at λ = 0,∞ and D is a non-special divisor of degree g
on C satisfying (42). We call these data admissible. It is crucial that
the construction of Section 2.5 can be reversed and a result similar to
Theorem 7 holds.

Theorem 10. Let {C,D} be admissible data. There exists a Baker-
Akhiezer function ψ with these data and ψ is uniquely characterized by
the analytic properties listed in Theorem 9.

Admissible {C,D} generate a finite-gap solution of the elliptic sinh-
Gordon equation and thus a surface with constant mean curvature H =
1, which we call a CMC surface of finite type. It follows from Sections
2.4, 2.5 that all CMC tori are CMC surfaces of finite type.

The Baker-Akhiezer functions and hence CMC surfaces of finite type
can be described explicitly. Let

M2 = Λ
g∏

i=1

(Λ − Λi)(Λ − 1
Λ̄i

), | Λi |< 1 ∀i

be a non-singular hyperelliptic curve C with an anti-holomorphic involu-
tion τ : Λ → 1

Λ̄
. Choose a canonical homology basis a1, b1, . . . , ag, bg with

ai-cycles surrounding the cuts [Λi,
1
Λ̄i

], i.e. τai = −ai. Let ω1, . . . , ωg

be the dual basis
∫

an
ωm = 2πiδnm of holomorphic differentials. The

period matrix Bnm =
∫

bn
ωm determines the Riemann theta function

θ(u) =
∑
k∈Zg

exp(
1
2
(Bk, k) + (u, k)), u ∈ C

g.
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We need also the Abelian differentials of the second kind Ω∞, Ω0 nor-
malized by the condition∫

an

Ω∞ =
∫

an

Ω0 = 0, n = 1, . . . , g

and the following asymptotics at the singularities

Ω∞ → d
√

Λ, Λ → ∞
Ω0 → d 1√

Λ
, Λ → 0.

Denote the vector of b-periods of Ω∞ by

U = (U1, . . . , Ug), Un =
∫

bn

Ω∞.

Finally note that in explicit description one can replace the divisor D
of admissible data by its Abel map D ∈ Jac(C). One can show that in
the chosen normalizations the reality condition (42) is equivalent to the
condition D ∈ iRg.

Theorem 11. The Baker-Akhiezer function with the data {C, D}
is given by the formulae

ψ1(P, z, z̄) =
θ(

∫ P

∞ ω + W )θ(D)

θ(
∫ P

∞ ω + D)θ(W )
exp(

i

2

∫ P

∞
(zΩ∞ + z̄Ω0))

ψ2(P, z, z̄) =
θ(

∫ P

∞ ω + W + Δ)θ(D)

θ(
∫ P

∞ ω + D)θ(W + Δ)
exp(

i

2

∫ P

∞
(zΩ∞ + z̄Ω0)).

Here Δ = πi(1, . . . , 1), the vector D ∈ iRg is arbitrary,

W = iRe (Uz) + D

and the integration paths in all the integrals are identical. The corre-
sponding solution to the sinh-Gordon equation is given by

(43) u(z, z̄) = 2 log
θ(W + Δ)

θ(W )
.

Applying now Theorem 6 to ψ(P, z, z̄) with P = P0 = (M0, Λ0),
| Λ0 |= 1 one arrives at the following final formulae for CMC immersions
of finite type [Bob1].
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Theorem 12. The quaternion valued solution Φ(z, z̄, λ0) of the lin-
ear system (27, 32) with the finite-gap coefficient (43) is given by Φ =

i√
θ(W )θ(W + Δ)

(
θ(W + l) θ(W − l)

θ(W + Δ + l) −θ(W + Δ − l)

)
exp(iσ3Re (zL)),

where l =
∫ P0

∞ ω is the Abel map of P0 = (M0, Λ0) chosen on the unit
circle Λ0 = λ2 = e2it and L =

∫ P0

∞ Ω∞. The matrix Φ is normalized by

detΦ = 2
θ(l)θ(l + Δ)

θ(0)θ(Δ)
.

The corresponding CMC immersion is given by (29). This immersion
is doubly-periodic granted a lattice L with the basic vectors Z1, Z2 exists
such that

(44) Re (ZkU) ∈ 2πZ
g, Re (2Zk

∫ P0

∞
Ω∞) ∈ 2πZ, k = 1, 2,

and the differential Ω∞ vanishes at the point P0

(45) Ω∞(λ0) = 0.

CMC tori are singled out from general quasiperiodic immersions
of finite type by the periodicity conditions (44, 45), which are in fact
conditions on the corresponding hyperelliptic curve C of genus g only.
One can show [Jag, Bob1] that there are no CMC tori with g = 1 and
that for g > 1 there exists a discrete set of spectral curves C generating
CMC tori. The parameter D ∈ iRg remains arbitrary. So the CMC tori
with g > 2 (changes of D in the plane span{Re U, ImU} are equivalent
to reparametrization of the torus) possess commuting deformation flows.
These deformations are area preserving [Bob1].

2.7. Examples of CMC Tori
All finite-gap solutions of the sinh-Gordon equation of genus g = 1

and g = 2 are doubly-periodic. There are no CMC tori with g = 1. The
simplest CMC tori were found by Wente [Wen] and analytically studied
by Abresch [Abr] and Walter [Wal]. These tori presented in Figures 1,
2 possess a family of plane curvature lines. This implies the additional
symmetry Λ → 1/Λ of the corresponding spectral curve of genus g = 2.
The Wente torus in Figure 1 comprises three congruent fundamental
domains shown in Figure 2.

Spectral curves of genus g = 2 without additional symmetries also
generate CMC tori. An example is presented in Figure 3.
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Fig. 1. A Wente torus having a threefold symmetry

Fig. 2. Wente torus: one fundamental piece

Fig. 3. Twisted Wente torus

Taking spectral curves with g = 3 and the symmetry Λ → 1/Λ one
obtains all CMC tori with spherical curvature lines. The fundamental
domain of such an example is shown in Figure 4.

Figure 5 visualizes a CMC torus corresponding to a curve of genus
g = 5. This torus possesses a 3-parameter family of area preserving
deformations. Finally Figure 6 presents classical surfaces of Delaunay
which correspond to spectral curves of genus g = 1 and are CMC surfaces
of revolution.

The figures of this section are produced by Matthias Heil using
formulae presented in this lecture and the software for calculations on
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Fig. 4. One fundamental piece of a torus with spherical cur-
vature lines

Fig. 5. A torus with spectral curve of genus g = 5

Fig. 6. Delaunay surface

hyperelliptic Riemann surfaces developed by him for Sfb288 in Berlin.
Further examples can be found in [Hei].
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§3. Bonnet Pairs

In this section we present some preliminary results on local and
global geometry of Bonnet pairs.

3.1. Basic Facts about Bonnet Pairs
Let F1,F2 ⊂ R3 be a smooth Bonnet pair (Bonnet mates), i.e. two

isometric non-congruent surfaces with coinciding mean curvatures at the
corresponding points. As conformal immersions of the same Riemann
surface

F1 : R → R
3, F2 : R → R

3

they are described by the corresponding Hopf differentials Q1, Q2, the
common metric eu dzdz̄ and the mean curvature function H . Since the
surfaces are non-congruent the Hopf differentials differ Q1 	≡ Q2.

The Gauss-Codazzi equations immediately imply

Proposition 2. Let Q1 and Q2 be the Hopf differentials of a Bonnet
pair F1 and F2 → R3. Then

(46) h = Q2 − Q1

is a holomorphic quadratic differential h dz2 on R and

(47) | Q1 |=| Q2 | .

Due to the second statement of Proposition 2 the umbilic points of
F1 and F2 correspond. Denote by

U = {P ∈ R : Qk(P ) = 0}

the corresponding set of umbilic points on R.

Proposition 3. Let Q1 and Q2 be the Hopf differentials of a Bon-
net pair F1 and F2 → R3. Then there exist a holomorhic quadratic
differential h on R and a smooth real valued function α : R → R such
that

(48) Q1 =
1
2
h(iα − 1), Q2 =

1
2
h(iα + 1).

Proof. Define a smooth quadratic differential g dz2 by g = Q1 + Q2.
Identity (47) implies hḡ + gh̄ = 0. Thus the quotient α = −i g

h is a real
valued smooth function α : R\Uh → R, where Uh = {P ∈ R : h(P ) = 0}
is the zero set of h. Let us show that α can be smoothly extended to
the whole of R. At any z0 ∈ Uh the holomorphic differential h is of the
form

h(z) = (z − z0)Jh0(z), h0(z0) 	= 0, J ∈ N.
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Real-valuedness of α near z0 implies g(z) = (z − z0)Jg0(z) with g0

smooth, which in its turn implies smoothness of α at z0.

Corollary 2. Umbilic points of a Bonnet pair are isolated. The
umbilic set coincides with the zero set of h, U = Uh.

The number −J where J is defined above is called the index of the
umbilic point. We call the zero divisor Du = (h) of h the umbilic divisor
of a Bonnet pair.

For compact Riemann surfaces R, Propositions 2, 3 imply the fol-
lowing

Theorem 13.
(i) There exist no Bonnet pairs of genus g = 0.
(ii) Bonnet pairs of genus g = 1 have no umbilic points.
(iii) The umbilic divisor Du of a Bonnet pair of genus g ≥ 1 is of degree
4g − 4 and its class is Du ≡ 2K, where K is the canonical divisor.

Proof. A holomorphic quadratic differential on a sphere vanishes
identically h ≡ 0, which means Q1 = Q2, and the surfaces are congruent.
A holomorphic quadratic differential on a torus does not have zeros, thus
U = ∅ for tori.

The point (i) of Theorem 13 was proven in [LT].
Taking into account the similarity of the analytic description of Bon-

net surfaces and CMC surfaces and the progress in the investigation of
CMC surfaces achieved by methods from the theory of integrable sys-
tems (see Section 2), the most promising open problem to attack by
these methods seems to be the problem of existence and description of
Bonnet tori mates.

For tori one has R = C/L. Scaling the lattice L appropriately one
can always normalize h = −i, i.e.

(49) Q1 =
1
2
(α + i), Q2 =

1
2
(α − i).

The corresponding Gauss-Codazzi equations of Bonnet mates become

2uzz̄ + H2eu − (1 + α2)e−u = 0,

αz̄ − euHz = 0,(50)
αz − euHz̄ = 0.
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Note that the Gauss-Codazzi equations of isothermic surfaces Q = α/2 ∈
R differ only slightly

2uzz̄ + H2eu − α2e−u = 0,

αz̄ − euHz = 0,(51)
αz − euHz̄ = 0.

3.2. Lax Representation and Connection to Isothermic
Surfaces

Looking for a Lax representation for Bonnet pairs, it is natural to try
to merge the frame equations of two Bonnet mates. For tori, cylinders,
or simply connected domains it is enough to consider the case of R
being a domain D in C. Cylinders and tori are distinguished by the
corresponding periodicity lattices L. Since our main interest lies in the
investigation of tori let us restrict ourselves to the case of umbilic free
Bonnet pairs. As in Section 2, introducing a global complex variable
z on D we normalize the corresponding frame matrices traceless and
the Hopf differentials as in (49). The following theorem can be checked
directly.

Theorem 14. Normalized by (49), conformal frames Φ1, Φ2 : D →
SU(2) of a Bonnet pair

Φk z = UkΦk, Φk z̄ = VkΦk

Uk =
(

uz

4 −Qke−u/2

H
2 eu/2 −uz

4

)
, Vk =

(
−uz̄

4 −H
2 eu/2

Q̄ke−u/2 uz̄

4

)

can be extended

(52) Φ(z, z̄, λ = 0) =
(

Φ1 0
0 Φ2

)
(z, z̄)

to Φ(z, z̄, λ) satisfying

(53) Φz = UΦ, Φz̄ = V Φ

with

U =

⎛
⎜⎜⎝

U1
0 0

−iλeu/2 0
0 −iλe−u/2

0 0
U2

⎞
⎟⎟⎠ ,(54)

V =

⎛
⎜⎜⎝

V1
0 −iλeu/2

0 0
0 0

−iλe−u/2 0
V2

⎞
⎟⎟⎠ .
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Conversely, the linear system (54) with Q1 = Q 	= Q2 = Q̄ is compatible
if and only if the metric eu, the mean curvature function H, and the
Hopf differentials Q1, Q2 on D satisfy the Gauss-Codazzi equations of
Bonnet pairs. Conformal frames of the Bonnet mates are determined
through (52) by a suitably normalized common solution Φ(z, z̄, λ) of (53)
evaluated at λ = 0.

Remark. In the general case of an arbitrary Riemann surface R and
holomorphic quadratic differential h, a spinor form of the Lax represen-
tation for Bonnet pairs similar to (14) can be easily made by merging
the spinor frames (see Section 1) of the corresponding surfaces.

Remark. In the case Q1 = Q2 = Q = Q̄ system (53, 54) becomes
a Lax representation for isothermic surfaces in R3 in isothermic coordi-
nates.

The matrices U +V and i(U −V ) corresponding to real vector fields
∂x and ∂y possess the symmetries

A(−λ) =
(

1 0
0 −1

)
A(λ)

(
1 0
0 −1

)
,(55)

A(λ̄) =
(

σ2 0
0 σ2

)
A(λ)

(
σ2 0
0 σ2

)
.(56)

Denote by

gB[λ] = {A : R → gl(2, H) | A(−λ) =
(

1 0
0 −1

)
A(λ)

(
1 0
0 −1

)
}

the corresponding loop algebra, and by

GB[λ] = {φ : R → GL(2, H) | φ(−λ) =
(

1 0
0 −1

)
φ(λ)

(
1 0
0 −1

)
}

the corresponding loop group.
By the normalization (52) the solution Φ(z, z̄, λ) is determined uniquely

up to right multiplication by a matrix depending only on λ

(57) Φ(z, z̄, λ) → Φ(z, z̄, λ)G(λ), G(0) = 1.

Φ(z, z̄, λ) can be chosen to lie in GB [λ]. Then the matrix

(58)
(

0 S
T 0

)
:= Φ−1Φλ |λ=0

is off-diagonal and its coefficients are quaternion valued functions of z
and z̄.
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For a description of the geometry of S and T , the notion of isother-
mic surfaces in R4 and of the dual isothermic surface is required. An
immersion f : D → R

4 is called isothermic if it is conformal and the
vector fxy lies in the tangent plane fxy ∈ span{fx, fy}. It is convenient
to describe isothermic surfaces in R4 = H in quaternionic form, i.e. as
mappings f : D → H with the coordinates

f = f01 + f1i + f2j + f3k.

Its differential is df = fx dx + fy dy. An important property of an
isothermic immersion f : D → H is the closedness of the form

(59) df∗ := −f−1
x dx + f−1

y dy

The corresponding immersion determined up to translation by this form
and denoted by f∗ : D → H is also isothermic and is called the dual
isothermic surface. Note that the dual isothermic surface is defined
through one-forms and therefore the periodicity properties of f are not
respected. The relation (59) is an involution. Moreover one can check
that

Lemma 5. The transformation (59) is characteristic for isothermic
surfaces.

Proposition 4.
(i) Let Q1 and Q2, normalized by (49), be Hopf differentials of a Bonnet
pair F1 and F2 : D → Im H. Then T : D → H defined by (58) is an
isothermic surface in the three-dimensional sphere S3 ⊂ R4 = H and
S : D → H in (58) is its dual S = T ∗. The isothermic surfaces S and
T are related to the Bonnet pair by

dF1 = dS T = dT ∗ T(60)
dF2 = T dS = T dT ∗.

(ii) Let Q1 = Q2 = Q in (54) be real. Then S : D → Im H given by (58)
is the isothermic surface determined by the fundamental forms with the
coefficients eu, H, Q, and T : D → Im H is its dual T = S∗.

Proof. Let us prove the first statement. Formula (58) implies

d

(
0 S
T 0

)
= Φ−1 (Uλdz + Vλdz̄) Φ |λ=0

or equivalently

(61) dS = eu/2Φ−1
1 (idx + jdy)Φ2, dT = e−u/2Φ−1

2 (idx − jdy)Φ1.
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These frames are obviously conformal and are related by (59). Lemma
5 implies that T is isothermic. Moreover dT can be integrated explicitly

(62) T = Φ−1
2 Φ1.

Indeed, differentiating the last expression one obtains

dT = Φ−1
2 (dΦ1Φ−1

1 − dΦ2Φ−1
2 )Φ1 =

e−u/2Φ−1
2

(
(Q2 − Q1)

(
0 1
0 0

)
dz + (Q̄1 − Q̄2)

(
0 0
1 0

)
dz̄

)
Φ1

which coincides with the previous expression for dT . Integrating, one
obtains T = Φ−1

2 Φ1 + const. The constant can be normalized to zero by
transformation (57) with an appropriate G(λ) ∈ GB [λ]. Obviously the
surface given by (62) lies in the three sphere S3 = H1. Using (62) we
obtain

dS T = −ie−u/2Φ−1
1

(
0 dz̄
dz 0

)
Φ1

TdS = −ie−u/2Φ−1
2

(
0 dz̄
dz 0

)
Φ2

which coincides with (60).
The proof of the second claim is even simpler (see [BP]).
The next theorem is essentially due to Bianchi [Bia2]. A modern

version of it in terms of quaternions is derived in [KPP].

Theorem 15. F1 and F2 : D → Im H = R3 build a Bonnet pair if
and only if there exists an isothermic surface T : D → H1 = S3 ⊂ R

4

(or equivalently an isothermic surface R : D → Im H = R3) such that

dF1 = dT ∗ T =
1
2
(1 − R)dR∗(1 + R)

dF2 = TdT ∗ =
1
2
(1 + R)dR∗(1 − R).(63)

Proof. Let us show first the equivalence of the representations in
terms of T and R. The class of isothermic surfaces is invariant under
Möbius transformations. In particular, isothermic surfaces in S3 and in
R

3 are related by stereographic projection, which in quaternionic form
can be represented by T = 1+R

1−R with R ∈ Im H = R3, T ∈ H1 = S3. For
the frames this implies

dT = 2(1 − R)−1dR(1 − R)−1

dT ∗ =
1
2
(1 − R)dR∗(1 − R),
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which proves the equivalence of the two representations of the theorem.
The passing from Bonnet pairs to isothermic surfaces is proven in Propo-
sition 4. Conversely, given R, the representation (63) shows that dF1

and dF2 are conformal and lie in Im H. Due to dF2 = TdF1T
−1 the

immersions are isometric.
Similarly one can show (see [KPP]) that the forms dF1, dF2 defined

by (63) are closed and that the mean curvature functions of the corre-
sponding surfaces coincide.

To study a global version of Theorem 15 in the case of Bonnet tori
mates let F1 and F2 : C → R3 be a Bonnet pair with doubly periodic
frames dF1 and dF2 with the same period lattice L. The frames Φ1 and
Φ2 are periodic up to a sign

Φk(z + Zi) = (−1)pikΦk(z),

where Z1, Z2 are generators of L and pik ∈ Z2 characterize the spin struc-
tures of the immersions. The isothermic surface given by (62) is a torus
in S3 if the spin structures of F1 and F2 coincide (pi1 = pi2, i = 1, 2) and
is a torus in three dimensional real projective space RP 3 = S3/{−1}
if the spin structures differ. Conversely, an isothermic immersion T :
C/L → S3/{−1} generates by (63) a Bonnet pair with frames dF1 and
dF2 defined on C/L. The spin structures of these two surfaces are the
same iff T is an immersion to S3 with the lattice L.

Corollary 3. Bonnet mates with doubly periodic frames dF1 and
dF2 are in one to one correspondence with isothermic tori in RP 3. Bon-
net mates with doubly periodic frames dF1,2 and coinciding spin struc-
ture are in one to one correspondence with isothermic tori in S3. The
corresponding relations are given by formulae (63).

Formula (63) allows us to control the periodicity of the frame of a
Bonnet pair. To be able to control the periodicity of the immersion one
needs an analog of formula (29) describing the corresponding immersion
without integration. We call a solution

Φ : D × R → GB [λ]
(z, λ) �→ Φ(z, z̄, λ)

of (53, 54) normalized (see proof of Proposition 4) if the coefficient T of
its decomposition (58) at λ = 0 is a unitary quaternion T : D → H1, i.e.
(62) holds. Obviously this solution can be extended to all λ ∈ C.

Proposition 5. Let Φ(z, z̄, λ) a normalized solution of (54) with
Q of the form (49). Then the corresponding Bonnet pair F1(z, z̄) and
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F2(z, z̄) is restored by the following coefficients of quaternionic 2 by 2
matrices (

F1 0
0 ∗

)
=

1
2
Φ−1Φλλ |λ=0,(64) (

∗ 0
0 F2

)
=

1
2
Φ−1Φλλ −

(
Φ−1Φλ

)
λ
|λ=0.(65)

Proof. To prove the formula for dF1 let us differentiate it by z and
z̄ to obtain

d(
1
2
Φ−1Φλλ) = Φ−1(Uλdz + Vλdz̄)Φλ,

where we used Uλλ = Vλλ = 0. Evaluating this expression at λ = 0
using (52), (62) and (61), one finally obtains

d(
1
2
Φ−1Φλλ)|λ=0 =

(
dS T 0

0 dT S

)
.

Now the formula for dF1 follows from (60). The formula for dF2 is
proven by an analogous computation

d(
1
2
Φ−1Φλλ −

(
Φ−1Φλ

)
λ
)|λ=0 =

(
S dT 0

0 T dS

)
.

3.3. Loop Group Description
As we have seen already in Proposition 4 the theory developed in

Section 3.2 includes two different cases: the case of Bonnet pairs when
the Hopf differentials Q1 = Q and Q2 = Q̄ are different and thus gen-
erate two non-congruent surfaces, and the case Q = Q̄ of isothermic
surfaces in R3. The loop group GB [λ] and the loop algebra gB[λ] of
Bonnet pairs are described in Section 3.2. In the case of isothermic sur-
faces Q = Q̄, the corresponding loop group and algebra are specialized
further as follows:

GI [λ] = {φ ∈ GB[λ] | φT (λ)
(

0 σ2

σ2 0

)
φ(λ) =

(
0 σ2

σ2 0

)
}

gI [λ] = {A ∈ gB[λ] | AT (λ) = −
(

0 σ2

σ2 0

)
A(λ)

(
0 σ2

σ2 0

)
}.

As in the previous sections the main strategy for applying analytic
methods of the theory of integrable systems consists of two steps: first,
to characterize the frame equations through analytic properties of Φ as
a function of λ without referring to the special geometric nature of the
coefficients of the frame equations and, second, to construct those Φ(λ)
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explicitly. For this purpose it is more convenient to pass to a gauge
equivalent

(66) Ψ =
(

e−u/41 0
0 eu/41

)
Φ

to (53), linear problem

(67) Ψz = U0Ψ, Ψz̄ = V0Ψ

U0 =

⎛
⎜⎜⎝

0 −Qe−u/2 0 0
H
2 eu/2 −uz

2 −iλ 0
0 −iλ uz

2 −Q̄e−u/2

0 0 H
2 eu/2 0

⎞
⎟⎟⎠ ,(68)

V0 =

⎛
⎜⎜⎝

−uz̄

2 −H
2 eu/2 0 −iλ

Q̄e−u/2 0 0 0
0 0 0 −H

2 eu/2

−iλ 0 Qe−u/2 uz̄

2

⎞
⎟⎟⎠ ,

normalizing the solution at λ = ∞. Note that all immersion formulae
(64, 58) are preserved under this gauge transformation.

Proposition 6. Let

Ψ : D × R → GB [λ]
z, λ �→ Ψ(z, z̄, λ)

be a smooth mapping satisfying

(69) ΨzΨ−1 = A(z, z̄)λ + B(z, z̄)

with some A(z, z̄) and B(z, z̄), having the asymptotics

(70) Ψ(z, z̄, λ) = (L + M(z, z̄)λ−1 + o(λ−1)) exp(−iλ(J1z + J2z̄))C(λ)

at λ → ∞ with

L =

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞
⎟⎟⎠

and

J1 =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠ , J2 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎞
⎟⎟⎠
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for some M(z, z̄) and C(λ). If, for the coefficients of M , one has

(71) M31(z, z̄) = −M42(z, z̄),

then

(72) U0 := ΨzΨ−1, V0 := Ψz̄Ψ−1

can be parametrized as in (68) with some real valued u(z, z̄), H(z, z̄). If
in addition

(73) M21(z, z̄) = −M12(z, z̄),

then Q(z, z̄) in (68) is also real valued.

Proof. Due to the assumption of the theorem, U0 is of the form
U0 = Aλ + B. Substituting the asymptotics (70) one obtains for the
coefficients

A = −iLJ1L
−1, B = [ML−1, A].

Similarly the symmetry (55) and the asymptotics (70) imply V0 = Cλ+
D with

C = −iLJ2L
−1, D = [ML−1, C].

The matrices A and C are of the required form. For the matrices B and
D a simple computation gives

B = −i

⎛
⎜⎜⎝

0 M12 0 0
−M31 M22 − M32 0 0

0 0 M32 − M22 −M21

0 0 M42 0

⎞
⎟⎟⎠(74)

D = −i

⎛
⎜⎜⎝

M11 − M41 −M42 0 0
M21 0 0 0
0 0 0 M31

0 0 −M12 M41 − M11

⎞
⎟⎟⎠ ,

where we have used the symmetry of M⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ M

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ = −M.

The anti-holomorphic involution λ → λ̄ of the loop group implies

M12 = M̄21, M42 = M̄31, M11 = −M̄22, M32 = −M̄41.
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Finally, comparing the coefficients and using the compatibility condi-
tions one shows that U0, V0 are of the form (68).

The result of Proposition 6 is not optimal. Whereas the conditions
(69) and (70) are quite standard for the loop group description of inte-
grable systems, the constraint (71) is difficult to take into account by
analytic construction of the Ψ-function. For isothermic surfaces the sit-
uation is more fortunate. Ψ-functions satisfying both constraints (71),
(73) can be characterized in terms of the corresponding loop group GI [λ].

Theorem 16. Let

Ψ : D × R → GI [λ]
z, λ �→ Ψ(z, z̄, λ)

be a smooth mapping satisfying (69) and (70). Then its logarithmic
derivatives (72) can be parametrized as in (68) with some real valued
u(z, z̄), H(z, z̄), Q(z, z̄). The corresponding isothermic surface R : D →
R3 and its dual R∗ : D → R3 are given by

(75)
(

0 R
R∗ 0

)
= Ψ−1Ψλ |λ=0 .

Proof. Both constraints (71, 73) follow from the condition U0 =
Aλ+B ∈ gI [λ] and formula (74). The immersion formula for isothermic
surfaces mentioned as part (ii) of Proposition 4 is preserved by the gauge
transformation (66).

The Kamberov-Pedit-Pinkall formula (63) for the frame of a Bonnet
pair also can be explicitly integrated in terms of the Ψ-function of the
corresponding isothermic surface in R3. The corresponding formula was
obtained jointly with P. Grinevich.

Theorem 17. Let Ψ : D×R → GI [λ] be a Ψ-function of an isother-
mic surface R : D → R3, i.e. it satisfies (67) with Q = Q̄. Then the
Bonnet pair F1,2 : D → R3 corresponding to it by (63) is given by

F1 =
1
2
(R∗ − RB + C + A + B − RR∗)

F2 =
1
2
(R∗ − RB + C − A − B + RR∗),(76)

where the quaternionic coefficients are defined by (75) and

(77)
(

A 0
0 B

)
=

1
2
Ψ−1Ψλλ |λ=0

(
0 C
D 0

)
=

1
6
Ψ−1Ψλλλ |λ=0 .
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Proof. Since all the immersion formulae are invariant with respect
to the gauge transformation (66) one can use any of the extended frames
Φ or Ψ of the isothermic surface performing computations. The diagonal
or off-diagonal structure of the matrices (75) and (77) follows from the
symmetry (55). Introducing W := Udz+V dz̄ and using Wλλ = Wλλλ =
0 one obtains

dΨ = WΨ
d(Ψ−1Ψλ) = Ψ−1WλΨ

d(Ψ−1Ψλλ) = 2Ψ−1WλΨλ = 2d(Ψ−1Ψλ)Ψ−1Ψλ

d(Ψ−1Ψλλλ) = 3Ψ−1WλΨλλ = 3d(Ψ−1Ψλ)Ψ−1Ψλλ.

For the coefficients at λ = 0 this implies

dA = (dR)R∗

dB = (dR∗)R
dC = (dR)B = d(RB) − R(dR∗)R
dD = (dR∗)A = d(R∗A) − R∗(dR)R∗.

Using these expressions all the terms in the formula (63) can be trans-
formed to differentials

(dR∗)R − RdR∗ = dA + dB − d(RR∗)
R(dR∗)R = d(RB − C).

Integrating one arrives at (76).

3.4. Surfaces of Finite Type
We have shown that isothermic surfaces and Bonnet pairs can be

studied in frames of the theory of integrable systems. Applying standard
methods one can define for these surfaces higher flows, the Bäcklund-
Darboux transformations1, finite-gap solutions etc.

In contrast to the case of CMC surfaces, the linearizations of the
Gauss-Codazzi equations of isothermic surfaces (51) and of Bonnet pairs
(50) are not elliptic. This fact prevents us from applying the arguments
of Section 2 and claiming that all corresponding immersions with dou-
bly periodic fundamental forms are generated by finite-gap solutions.
We call surfaces corresponding to the finite-gap solutions of the Gauss-
Codazzi equations or equivalently surfaces with a polynomial Killing

1The Bäcklund-Darboux transformations of isothermic surfaces are known
already in local differential geometry [Dar, Bia3] and in theory of solitons [Cie]
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field (see Section 2) surfaces of finite type. This class of surfaces is
worth studying, in particular, since it may contain Bonnet tori mates.

A polynomial Killing field W (λ) of an isothermic surface or a Bon-
net pair of finite type is an element of the loop algebra gI [λ]. The
coresponding spectral curve Ĉ

det(W (λ) − μI) = 0

is a four-sheeted covering Ĉ → C̄ � μ. Due to symmetries of the loop
algebra it possesses the holomorphic involutions π : (μ, λ) → (μ,−λ) and
σ̂ : (μ, λ) → (−μ, λ), and an anti-holomorphic involution τ̂ : (μ, λ) →
(μ̄, λ̄). The Riemann surface C = Ĉ/π is an algebraic curve of μ and
Λ = λ2. It also possesses the symmetries σ : (μ, Λ) → (−μ, Λ) and
τ : (μ, Λ) → (μ̄, Λ̄). The factor curve Cσ := C/σ is quadratic in μ2 and
thus a hyperelliptic one.

Proposition 7. The spectral curve C of an isothermic surface and
of a Bonnet pair is a double covering of a hyperelliptic curve.

Let us indicate the steps of construction of the finite-gap solutions in
this case. Although the considerations are similar to those of Section 2,
technically they are more involved. By more or less standard technique
one describes explicitly finite-gap solutions of the complexified system
(51), i.e. of the system corresponding to the loop algebra without the real
reduction (56). The spectral curve in this case remains to be a double
covering of a hyperelliptic curve, but does not necessarily possess the real
involution τ . The differentials analogous to the differentials Ω1 and Ω2

turn out to be Abelian differentials of the second kind with singularities
at the branch points of the covering C → Cσ. They are odd with respect
to the involution σ. Their vectors of b-periods describing the velocity of
the linear dynamics on the Jacobian lie in the odd part of the Jacobian
with respect to the involution σ. The dynamic of the corresponding
nonlinear system lies on the Prym variety Prymσ(C) of the covering
C → Cσ.

The real reduction (56) leads to constraints on parameters of the
finite-gap solution. It is a technical but rather involved problem to clas-
sify all possible cases leading to real finite-gap solutions of (51) and thus
to isothermic surfaces and Bonnet pairs of finite type. This is not yet
done. Note that due to explicit formulae (75, 76) for the corresponding
immersions, the isolation of tori from general surfaces of finite type is
then straightforward.
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§4. Bonnet Families

4.1. Definition of Bonnet Surfaces and Simplest Properties
A natural question is whether there may exist more then two isomet-

ric surfaces with the same mean curvature function, for example three
such surfaces (Bonnet triple). It was known already to Bonnet that a
Bonnet triple implies the existence of a one-parameter family of isomet-
ric surfaces with the same mean curvature function. We will prove this
result in Section 4.4 after we learn more about these families.

Let F be a smooth surface in R
3 with non-constant mean curvature

function. F is called a Bonnet surface if it possesses a one-parameter
family

Fτ , τ ∈ (−ε, ε), ε > 0, F0 = F
of non-trivial2 isometric deformations preserving the mean curvature
function. The family (Fτ )τ∈(−ε,ε) is called a Bonnet family. A Bonnet
family can be described as a conformal mapping

(78)
F : (−ε, ε) ×R −→ R3

(τ, z) �→ F (τ, z, z̄) ε > 0,

where z is a local coordinate z on the Riemann surface R.
The set U ⊂ R of preimages of the umbilic points on Fτ is indepen-

dent of τ (see Section 3). Obviously, the set V = {P ∈ R : dH(P ) = 0}
of preimages of critical points of the mean curvature function on Fτ is
also τ -independent.

Similarly to Proposition 3 one can prove

Proposition 8. The holomorphic quadratic differential

(79) ϕ(z, τ) dz2 :=
∂

∂τ
Q(z, z̄, τ) dz2.

vanishes exactly at the umbilic points.

In a neighbourhood of a non-umbilic point Q(P ) 	= 0 there exist
smooth real-valued functions ψ(z, z̄, τ), q(z, z̄) such that Q(z, z̄, τ) =
eiψ(z,z̄,τ) q(z, z̄). Differentiating we obtain

(80) Q(z, z̄, τ) = −i
ϕ(z, τ)

ψτ (z, z̄, τ)

This representation is a special case of (8), which implies

2We call an isometry of a surface non-trivial if it is not induced by an
isometry of the ambient space.
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Corollary 4. Bonnet surfaces are isothermic away from umbilic
points.

Representation (80) implies that ψτ is a harmonic function on R\U .
Moreover, from a more detailed analysis of the local behaviour at an
umbilic point one can deduce [BE2] that the function ψτ can be extended
to a nowhere vanishing harmonic function ψτ : R → R∗.

With ψτ defined this way, the identity

(81) ϕ = i ψτ Q

holds on all R.

Theorem 18. Let F be a Bonnet surface. Then
(i) Umbilic points are critical points U ⊂ V of the mean curvature func-
tion.
(ii)The set V of critical points of the mean curvature function is discrete
in R.

Proof: From the Codazzi equations it follows that dH = 0 if and
only if Qz̄ = 0. Differentiating (81) with respect to z̄ one obtains

i ψτ z̄ Q + i Qz̄ ≡ 0.

Thus Q = 0 implies Qz̄ = 0. To show that V is a discrete subset of R,
we use

Qz̄ = 0 ⇐⇒ i ψτ z̄ Q = 0 ⇐⇒ i ψτz Q = 0 ⇐⇒ ψτz Qτ

ψτ
= 0

where we use that ψτ is a non-vanishing harmonic function on R. Since
ψτz Qτ dz3 is a cubic holomorphic differential, its zeros (which comprise
the set V) are discrete.

4.2. Local Theory away from Critical Points

In this section we develop local theory of Bonnet surfaces in R3

away from possible critical points of the mean curvature function F :
(−ε, ε) × R \ V → R3. The preimages of holomorphic local charts z :
U ⊂ R \ V → C are always assumed to be simply connected.

The following “stationary” characterisation of Bonnet surfaces is
classical [Gra].

Theorem 19. An umbilic free surface F is a Bonnet surface if and
only if
(i) F is isothermic.
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(ii) 1/Q is harmonic, i.e.

(82)
(

1
Q(z, z̄)

)
zz̄

= 0,

where z is an isothermic coordinate and Q dz2 is the Hopf differential.

Proof: “⇒”: follows from Corollary 4, (80), and harmonicity of ψτ .
“⇐”: Let z be an isothermic coordinate and eu(z,z̄), H(z, z̄), Q(z, z̄) be
a solution to the Gauss-Codazzi equations (7) with Q satisfying (82).
Locally there exists a holomorphic function h(z) such that Q(z, z̄) =
1/(h(z) + h̄(z̄)). Define Q(z, z̄, τ) via

(83) Q(z, z, τ) =

(
1 − i T h(z)
1 + i T h(z)

)
1

h(z) + h(z)
,

where T is a deformation parameter equivalent to τ . One can easily
check that |Q(z, z̄, τ)| = |Q(z, z̄)| and Qz̄(z, z̄, τ) = Qz̄(z, z̄) holds. Thus
eu(z,z̄), H(z, z̄), Q(z, z̄, τ) is also a solution of (7) for all T . The surfaces
corresponding to different T are isometric and have the same mean cur-
vature. They form a Bonnet family.

It is easy to see that the Codazzi equations imply

h′(z)Hz(z, z̄) = h′(z)Hz̄(z, z̄).

Introducing locally the new conformal coordinate

(84) w =
∫

1
h′(z)

dz

one finds that the mean curvature function depends on t = w + w̄ only.
This finally leads to the fact that the Gauss-Codazzi equations can be
reduced to an ordinary differential equation, which is derived below.

One can directly check that Q satisfies

Qw̄(w, w̄, T ) = Q̄w(w, w̄, T ) = −|Q(w, w̄, T )|2.

Inserting

(85) eu =
2 Qw̄

Hw
= −2 |Q|2

H ′

into the Gauss equation one obtains

(86)
(

H ′′(t)
H ′(t)

)′
− H ′(t) = |Q|2

(
2 − H2(t)

H ′(t)

)
, ′ =

d

d t
.
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For a general holomorphic function h(w), equation (86) does not possess
a solution depending on t only.

The identity |Q|2w = |Q|2w̄ implies(
h′′(w)
h′(w)

− h′′(w)
h′(w)

) (
h(w) + h(w)

)
= 2 (h′(w) − h′(w)).

This equation can be solved explicitly. Up to appropriate normalizations
h(w) is one of the following five forms

h1(w) = w, h2(w) = e4 i w, h3(w) = − 1
w

,

h4(w) = tanh(2 w), h5(w) = tan(2 w).

Finally one arrives at the following classical result of E. Cartan [Car]
(see also [BE1, BE2] for detail).

Theorem 20. Away from umbilic points there are 3 types of Bonnet
families, which are characterized by the modulus of the Hopf differential:

Type A : |QA(w, w̄, T )|2 =
4

sin2(2t)
.

Type B : |QB(w, w̄, T )|2 =
4

sinh2(2t)
.

Type C : |QC(w, w̄, T )|2 =
1
t2

.

The families are given by the surfaces with the fundamental forms pre-
sented in Table 1.

Here H(t) is any smooth solution with H ′ < 0 of the correspond-
ing ordinary differential equation in Table 1. The corresponding one-
parameter families of isometries are intrinsic isometries of the surface
described by imaginary translations of the coordinate w

(87) w → w + i ρ(T ).

The surfaces of type A1 and A2 are isometric with the same mean cur-
vature function.

Corollary 5. Bonnet surfaces are real analytic.

The equations for the mean curvature function in Table 1 were first
derived by N. Hazzidakis in [Haz]. We call them Hazzidakis equations.

A Bonnet surface in R3 is said to be of type A, B, or C, respectively,
if away from critical points of the mean curvature function it is of the
corresponding type. One can show that a Bonnet surface is exactly of
one of the types A, B, or C.
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Type Q(w, w̄) H solves eu

A1 −2
(

sin(2w̄)
sin(2w)

)
1

sin(2 t)

A2 2
(

cos(2w̄)
cos(2w)

)
1

sin(2 t)

((
H′′

H′

)′
− H′

)
sin2(2t)

4
= 2 − H2

H′ − 8
sin2(2t)H′

B −2
(

sinh(2w̄)
sinh(2w)

)
1

sinh(2 t)

((
H′′

H′

)′
− H′

)
sinh2(2t)

4
= 2 − H2

H′ − 8
sinh2(2t)H′

C − w̄

w

1
t

((
H′′

H′

)′
− H′

)
t2 = 2 − H2

H′ − 2
t2H′

Table 1. Table of fundamental functions

4.3. Local Theory at Critical Points
In this section we derive a differential equation describing Bonnet

surfaces near (isolated) critical points.
The identity (81) at an umbilic point implies the following local

representation of the Hopf differential.

Proposition 9. Let P ∈ U ⊂ R be an umbilic point of a Bonnet
surface. Then there exists a neighbourhood U of P , a local conformal
chart z : U → C with z(P ) = 0, a holomorphic non-vanishing function
ϕ : U → C∗, and an integer J > 0 such that the Hopf differential on U
is

(88) Q(z, z̄, τ) = −i zJ

(
ϕ(z, τ)

ψτ (z, z̄, τ)

)
.

The function ψτ z is holomorphic on U and therefore can be repre-
sented as ψτz = zM θ(z), θ(0) 	= 0 with some M ≥ 0. Analysing the
Codazzi equations
(89)

Q̄z = z̄J zM θ

(
i ϕ
ψ2

τ

)
=

1
2

Hz̄ eu, Qz̄ = zJ z̄M θ̄

(
i ϕ
ψ2

τ

)
=

1
2

Hz eu.

one obtains

(90) ψτz = zJ+1 θ(z), θ(0) 	= 0.

Non-umbilic critical points correspond to J = 0. We call −J with J
given by (88, 90) the index of the critical point.
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The derivation of an ordinary differential equation at a critical point
is similar to the one of section 4.2. The Codazzi equations (89) imply

(91)
(

θ

i ϕ

)
z Hz =

(
θ

i ϕ

)
z̄ Hz̄ ∈ R.

Introducing a new conformal parameter w(z) by

(92)
z

f

∂

∂ z
=

w

f(0)
∂

∂ w
,

with w(0) = 0 and f(z) = −i ϕ(z)/θ(z), one arrives at w Hw = w̄ Hw̄.
The last identity shows that the mean curvature function is a function
of s = |w|2 only. Proceeding further as in Section 4.2, after apropriate
normalizations (see [BE2] for detail) one obtains the following

Theorem 21. Let F be a Bonnet surface in R3 with an (isolated)
critical point of index −J . Then there exists a local conformal chart w
at the critical point w = 0 such that the coefficients of its fundamental
forms are given by
(93)

Q(w, w̄) dw2 = (J + 2)
(

1 − w̄J+2

1 − wJ+2

)
wJ

1 − sJ+2
dw2,

eu(w,w̄) |dw|2 = −2 (J + 2)2
sJ

(1 − sJ+2)2 H ′(s)
|dw|2,

s = |w|2 ,

and H(w, w̄) = H(|w|2) is a solution of

(94)
(

sH ′′(s)
H ′(s)

)′
− H ′(s) =

(J + 2)2 sJ+1

(1 − sJ+2)2

(
2 − H2(s)

s H ′(s)

)
, ′ =

d

d s
,

with the asymptotics

(95) H(s) = H(0) + sJ+1 B(s)

at s = 0, where B(s) is a non-vanishing, smooth function. Conversely,
any solution of (94) with the asymptotics (95) at s = 0 via (93) deter-
mines a Bonnet surface with critical point of index −J . The Bonnet
family is given by the intrinisic isometry

(96) w → ei α w, α ∈ R.

The existence of Bonnet surfaces in R3 with critical points of the
mean curvature function will be proven in Section 4.6.
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Finally note that Bonnet surfaces with critical points are necessarily
of type B. The relation between the corresponding coordinates w of this
section and wB = w of Section 4.2 is given by

(97) w = e−
4

J+2 wB .

We call a Bonnet surface with an isolated critical point a Bonnet surface
of type BV .

4.4. Bonnet Triple implies Bonnet Family
Theorem 22. Let F1, F2, F3 be a Bonnet triple, i.e. isometric non-

congruent immersions Fi : U → R3, i = 1, 2, 3 with the same mean
curvature. Then there exists a one-parameter family of such surfaces
Ft, t ∈ (−ε, ε) with Ft=0 = F1.

The proof is divided into several Lemmas. The statement is local,
and since the umbilic points of Bonnet pairs are isolated (Corollary 2)
it is enough to consider the case of umbilic free surfaces Fi : U → R3.
Denote by Qi the corresponding Hopf differentials. Proposition 3 implies
that there exist smooth functions a, b, c : U → R3 and holomorphic non-
vanishing h1, h2, h3 such that

Q1 = h2(1 + ic) = h3(−1 + ib),
Q2 = h3(1 + ib) = h1(−1 + ia),
Q3 = h2(−1 + ic) = h1(1 + ia).

By change of the conformal variable the differential Q1 can be brought
to the form

(98) Q1(z) = 1 + ic = h(−1 + ib),

with holomorphic non-vanishing h.

Lemma 6. Function c(z, z̄) in (98) satisfies

(99) czz̄(1 + c2) = 2c czcz̄.

Proof. Eliminating b from (98) yields h−1(1+ic)+ h̄−1(1−ic) = −2.
Differentiating by z and substituting h̄ one obtains that

2icz

1 + c2
=

hz

(h + 1)h

is holomorphic, which implies (99).
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Lemma 7. Let c : U → R be a smooth solution of (99). Then there
exists harmonic r : U → R+ such that

(100) f := (1 + ic)r

is holomorphic.

Proof. The Cauchy-Riemann equations for (100) with real valued r
read

rx(1 + c2) + r(ccx − cy) = 0

ry(1 + c2) + r(ccy + cx) = 0,

where z = x+ iy. The compatibility condition for this system is exactly
(99). By direct computation one can check rxx + ryy = 0.

Lemma 8. A surface with the Hopf differential Q1(z)dz2 given by
(98) is isothermic. The isothermic parametrization w is determined by

(
dw

dz

)2

= f

with f given by (100). In the isothermic coordinate w the Hopf differ-
ential of F1 equals 1

r dw2.

Proof. Written in the coordinate z the Hopf differential equals

Q1(z)dz2 =
f

r
dz2.

The conformal coordinate w of Lemma 8 is isothermic since the differ-
ential in this coordinate is real.

Since r is harmonic, the statement of Theorem 22 now follows from
the characterization of the Bonnet families in Theorem 19.

4.5. Bonnet Surfaces via Painlevé Transcendents
In this section we give an explicit description of Bonnet surfaces

in terms of solutions of Painlevé equations, which are certain ordinary
differential equations of the second order

(101) y′′ = R(y′, y, x).

Solutions of the Painlevé equations – Painlevé transcendents – are
treated nowadays as non-linear special functions. The theory of these
special functions is rather well developed (see for example [IN, IKSY,
Its]). In Section 4.6 we use elements of this theory for global classification
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of Bonnet surfaces. Of special importance for us is the Painlevé property
of these equations. Recall that a differential equation (101) is said to
possess the Painlevé property if it is free of movable branch and essential
singular points, i.e. the only singularities of the solutions which change
their position if one varies the initial data are poles.

Regarding examples of the Bonnet surfaces of type B, let us expain
how the quaternionic representation of Bonnet surfaces naturally leads
to the above mentioned remarkable connection. Note that the Hazzi-
dakis equations of types A and B are analytically equivalent HA(it) =
−iHB(t).

Since the mean curvature and the metric of a Bonnet surfaces of type
B depend on t = w+ w̄ only, it is natural to change the parametrization
once more using t (or a function of t) as one of the variables. After some
computations one arrives to the idea of considering

(102) x = e−4 (w+w̄), λ = e−4 w

as new variables. In these coordinates the Hazzidakis equation is

(103) 4
(

x
H′′(x)
H′(x)

)′
+ H′(x) =

4
(x − 1)2

(
2 +

H2(x)
4 xH′(x)

)
,

where H(x) ≡ H(t). The frame equations (15, 17) in parametrization
(102) are now

∂Φ
∂λ

Φ−1 =
B0(x)

λ
+

B1(x)
λ − 1

+
Bx(x)
λ − x

,(104)

∂Φ
∂x

Φ−1 = −Bx(x)
λ − x

+ C(x),(105)

where all the coefficients of the matrices are given by some explicit for-
mulae through H(x), H′(x) and H′′(x). Ignore for the moment the
complicated formulae for the coefficients in the matrices (104). What
is more important is the special dependence of (104) on λ. Equation
(104) is a 2 by 2 matrix dimensional Fuchsian system with four regular
singularities (at λ = 0, 1, x,∞). Equation (105) describes deformations
preserving the monodromy group of the system. It is well known (see
for example [JM]) that such isomonodromic deformations are the is-
sue of the Painlevé VI equation. In particular, all the coefficients of
the matrices can be expressed in terms of solutions of this equation –
Painlevé transcendents. A rather involved calculation (see [BE1]) of
the corresponding gauge transformation identifying the corresponding
descriptions yields finally the following
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Theorem 23. Equation (103) possesses the first integral
(106)

x2

(
H′′(x)
H′(x)

+
2

x − 1

)2

+
xH′(x)

2
+

H2(x)
2 (x − 1)2 H′(x)

+
H(x) (x + 1)

2 (x − 1)
= θ2.

Let H(x) be a solution of (103) with H′(x) 	= 0 and θ be a fixed root
of (106). Then the function y(x) defined by

(107) y(x) ≡ − 2
H′(x)

(
x (x − 1)H′′(x) + (θ − x (θ − 2))H′(x)

H(x) + (x − 1)H′(x)

)2

solves the Painlevé VI equation of the following form
(108)

d2 y

d x2
=

1
2

(
1
y

+
1

y − 1
+

1
y − x

)
y′2 −

(
1
x

+
1

x − 1
+

1
y − x

)
y′+

y (y − 1) (y − x)
2 x2 (x − 1)2

(
θ2 (x − 1)

(y − 1)2
− θ (θ + 2)

x (x − 1)
(y − x)2

)
.

Conversely, for any solution of the Painlevé VI (108) which is not of
the form y(x) = const · x−θ, the function

(109) H(x) ≡ −2
(x − 1) (θ2 y(x)2 − x2y′2(x))

y(x) (y(x) − 1)(y(x) − x)

is a solution of (103) with first integral ±θ (106).
The mappings (107) and (109) with the same θ are inverse one to

another.

In a similar way [BE1] Bonnet surfaces of type C are described
through solutions of the Painlevé V equation.

Corollary 6. The Hazzidakis equations for Bonnet surfaces of all
types possess the Painlevé property.

4.6. Global Classification of Bonnet Surfaces

In this section maximal or global Bonnet immersions F : R → R3

are classified. These surfaces are characterized by the following natural
“maximality” property: given an immersed Bonnet surface F ⊂ R

3 there
exists a global Bonnet immersion containing F , i.e.

F = F (U), U ⊂ R.

Let us first prove the existence of critical points.



The Bonnet problem 45

Theorem 24. For arbitrary H(0) ∈ R, H0 < 0 there exists a real
analytic Bonnet surface of type BV with a critical point of index −J and
with the mean curvature function and the metric at the critical point
given by

H(0) and − 2
(J + 2)2

(J + 1)H0
dw dw̄.

Proof. Substituting the ansatz

H(s) = H(0) + sJ+1
∞∑

i=0

Hi si, H0 	= 0

into equation (94) and using the corresponding recurrence formulae for
Hi, one can prove that the series converges absolutely in a neighbour-
hood of s = 0 (see [BE2]). Thus, for arbitrary H(0) ∈ R, H0 ∈ R∗
there exists a real analytic solution of equation (94) at s = 0 with the
asymptotic

(110) H(s) = H(0) + sJ+1H0 + O(sJ+2).

The claim follows now from Theorem 21.
Let the local coordinate w be defined by (84) for the Bonnet surfaces

of type A, B, and C and by (92) for the Bonnet surfaces of type BV .
We denote by U the largest connected domain in the w-plane, for which
Q (see Table 1 and (93) respectively) is bounded. Furthermore, let
D = {t = w + w̄ |w ∈ U} for the types A, B, and C, and D = {s =
|w|2 |w ∈ U} for the type BV . In the following Table 2, all the cases U,
D, and the harmonic function ψτ , parametrized by w, are listed:

Type U D ψτ

A1, A2 {w ∈ C | 0 < Re(w) <
π

4
} (0,

π

2
) 2 Re(tan(2w))

B {w ∈ C | Re(w) > 0} (0,∞) 2 Re(tanh(2w))

BV {w ∈ C | |w| < 1} [0, 1) 2 Re
(

1 + wJ+2

1 − wJ+2

)
C {w ∈ C | Re(w) > 0} (0,∞) 2 Re(w)

Table 2. Global description of Bonnet surfaces

Proposition 10. Let H be a solution of one of the Hazzidakis equa-
tions of types A, B, C, or BV (see Table 1 and (94)) with H ′(t) < 0 at
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some point t ∈ D (the corresponding domains D are listed in Table 2).
Then H is real analytic on D.

The proof of this proposition is based on using the Painlevé property
(see Corollary 6) together with the following

Lemma 9. Let D � t be an open interval with smooth positive-
valued functions f, g, |Q|2 : D → R+ on it. Let H = H(t) be a real-
valued solution of the generalized Hazzidakis equation

(111)
(

f(t)
H ′′(t)
H ′(t)

)′
− H ′(t) = |Q|2

(
2 − H2(t)

g(t)H ′(t)

)
,

smooth on D\P, where P is a discrete set of poles of H(t). If H ′(t0) < 0
at some t0 ∈ D, then H is smooth everywhere on D, i.e. P = ∅, with
H ′(t) < 0 for all t ∈ D.

To prove smoothness of H(t) one shows that all poles of H(t) are nec-
essarily simple with negative residues and that in addition H ′(t) never
changes its sign. These two properties contradict one another.

It is not difficult to show that immersions F : U → R3 of Bonnet
surfaces of type A, B, C, or BV given in Tables 1 and 2 are maximal.
The function ψτ defined in Table 2 is a non-vanishing function on U. The
continuity of ψτ yields that this function can not be extended beyond
U.

Finally using the arguments of Section 4.2 it is easy to show that
the classified global Bonnet surfaces are all different, i.e. for two global
Bonnet immersions Fi : Ri → R3, i = 1, 2 there exist no open sets
Ui ⊂ Ri, i = 1, 2 on which the surfaces coincide.

Theorem 25. Any Bonnet surface in R3 can be given a conformal
parametrization F : R → R3 by a corresponding global Bonnet immer-
sion F : U → R3, R ⊂ U. The latter are of one of the types A, B, C,
BV . The corresponding domains U are listed in Table 2. Given t0 ∈ D
(see Table 2) and arbitrary H(t0), H ′(t0) < 0, H ′′(t0) there exists a
unique solution H(t) of the Hazzidakis equation of type A, B, C (see
Table 1), real analytic on D. This function determines the fundamental
forms (Table 1) of the corresponding global Bonnet immersions of the
type A, B, C. Given H(0), H0 < 0 there exists a unique solution H(s)
of the Hazzidakis equation (94), real analytic on D, with the asymptotics
(110). It determines by (93) the fundamental forms of the corresponding
global Bonnet surface of type BV .

4.7. Examples of Bonnet Surfaces
Let us present some figures of Bonnet surfaces of types B and BV .

Tubes correspond to parameter lines t = const, i.e. to the trajectories
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Fig. 7. A branched Bonnet surface of type B

of the isometric flow preserving the mean curvature function. Both
the mean curvature function and the metric are preserved along these
lines. The last fact can be clearly observed - the strips bounded by two
consequent parameter lines t = t1 and t = t2 are of constant width. The
isometry is intrinsic, i.e. is not induced by a Euclidean motion of the
ambient R3. The immersion domain U of Bonnet surfaces of type B is
naturally split into fundamental domains

Un = {w ∈ C | (n − 1)
π

2
< Im(w) < n

π

2
}.

Indeed the fundamental forms (see Table 1) are invariant with respect
to the shift

w → w + i
π

2
,

and thus immersed Un with different n’s are congruent in R3. A Bonnet
surface comprising three fundamental domains is shown in Figure 7. For
an appropriate choice of parameters, several copies of the fundamental
domain can close up and thus comprise a closed surface with a critical
point. Figure 8 shows such a case with three fundamental domains. It
is worth mentioning that it was this figure which led us to suggest the
existence of Bonnet surfaces with critical points.

Figures 9 and 10 present another example of type BV . The surface
in Figure 9 is an immersed disk. The index of the critical point is J = 6.
A more detailed view of one of the cusps of this surface is shown in Figure
10. As before, the tubed curves are integral curves of the isometry field.
The surface is probably embedded.

Further examples can be found in [BE1, BE2].
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Fig. 8. Bonnet surface of type BV

Fig. 9. Bonnet disc with a critical point with J = 6

Fig. 10. Cusp of the surface in Fig. 9
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ometry of Surfaces, Lecture Notes in Math., 1753, Springer-Verlag,
2000.

[BP] A. Bobenko and U. Pinkall, Discrete isothermic surfaces, J. Reine
Angew. Math., 475 (1996), 187–208.

[Bon] O. Bonnet, Mémoire sur la théorie des surfaces applicables, J. Ec.
Polyt., 42 (1867), 72–92.

[Car] E. Cartan, Sur les couples de surfaces applicables avec conversation
des courbieres principles, Bull. Sc. Math., 66 (1942), 1–30.

[Che] S. S. Chern, Deformation of Surfaces Preserving Principal Curvatures,
In: Differential Geometry and Complex Analysis, (eds. I. Chavel and
H. Farkas), Springer-Verlag, 1985, pp. 155–163.

[Cie] J. Cieslinski, The Darboux-Bianchi transformation for isothermic sur-
faces. Classical results versus the soliton approach, Diff. Geom.
Appl., 7 (1997), 1–28.

[Dar] G. Darboux, Sur les surfaces isothermiques, Comptes Rendus, 122
(1899), 1299–1305, 1483–1487, p. 1538.

[DKN] B. A. Dubrovin, I. M. Krichever and S. P. Novikov, Integrable systems
I, In: Contemprorary problems of mathematics, Fundamental Direc-
tions, Itogi nauki i Tekhniki, VINITI AN SSSR, Moscow, 4 (1985),
210–315.

[DPW] J. Dorfmeister, F. Pedit and H. Wu, Weierstrass type representation
of harmonic maps into symmetric spaces, Commun. Anal. Geom., 6
(1998), 633–668.

[Eis] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and
Surfaces, Allyn and Bacon, Boston, 1909.

[FLPPS] D. Ferus, K. Leschke, F. Pedit and U. Pinkall, Quaternionic Holomor-
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J. Reine Angew. Math., 117 (1887), 42–56.

[Hei] M. Heil, Numerical tools for the study of finite gap solutions of inte-
grable systems, Ph.D. thesis, TU Berlin, 1995.

[Hit] N. J. Hitchin, Harmonic maps from a 2-torus to the 3-sphere, J. Diff.
Geom., 31 (1991), 627–710.

[Hop] H. Hopf, Differential geometry in the large, Lecture Notes in Math.,
1000, Springer-Verlag, 1983.
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