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Abstract. Two discretizations, linear and nonlinear, of basic notions of the com-
plex analysis are considered. The underlying lattice is an arbitrary quasicrystallic rhombic
tiling of a plane. The linear theory is based on the discrete Cauchy-Riemann equations, the
nonlinear one is based on the notion of circle patterns. We clarify the role of the rhombic
condition in both theories: under this condition the corresponding equations are integrable
(in the sense of 3D consistency, which yields also the existense of zero curvature repre-
sentations, Bäcklund transformations etc.). We demonstrate that in some precise sense the
linear theory is a linearization of the nonlinear one: the tangent space to a set of integrable
circle patterns at an isoradial point consists of discrete holomorphic functions which take
real (imaginary) values on two sublattices. We extend solutions of the basic equations of
both theories to Zd , where d is the number of di¤erent edge slopes of the quasicrystallic
tiling. In the linear theory, we give an integral representation of an arbitrary discrete
holomorphic function, thus proving the density of discrete exponential functions. We
introduce the d-dimensional discrete logarithmic function which is a generalization of
Kenyon’s discrete Green’s function, and uncover several new properties of this function.
We prove that it is an isomonodromic solution of the discrete Cauchy-Riemann equations,
and that it is a tangent vector to the space of integrable circle patterns along the family of
isomonodromic discrete power functions.

1. Introduction

There is currently much interest in finding discrete counterparts of various structures
of the classical (continuous, smooth) mathematics. In the present paper we are dealing with
the discretization of the classical complex analysis.
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There are two approaches to this problem. The first one, which we shall call the linear

theory, is based on a discretization of the Cauchy-Riemann equations. Since the latter are
linear, straightforward discretizations are linear as well. A discretization preserving appar-
ently the most number of important structural features has been developed in [F], [D1],
[D2], [M1], [K]. The first two references are dealing with discrete holomorphic functions

f : Z2 ! C on the regular square lattice, satisfying the following discrete Cauchy-Riemann

equations:

fm;nþ1 � fmþ1;n ¼ ið fmþ1;nþ1 � fm;nÞ:ð1Þ

A pioneering step was undertaken by Du‰n [D2], where the combinatorics of Z2 was given
up in favor of arbitrary planar graphs with rhombic faces. A far reaching generalization of
these ideas is given in [M1], where the linear theory is extended to discrete Riemann sur-
faces. Planar graphs with rhombic faces are called critical in [M1]. Kenyon [K] developed
a theory of the Dirac operator and constructed Green’s function in the framework of the
linear theory on critical graphs. See [CY], [G] for combinatorial, resp. numerical aspects of
Green’s functions on graphs.

The second approach, which we will call the nonlinear theory, is based on the ideas by
Thurston [T], and declares circle patterns to be natural discrete analogs of analytic func-
tions [BeS], [DS], [Sch], [S]. One of the most important achievements of this theory is the
proof that the Riemann map can be (constructively) approximated by circle packings [RS],
[MR], [HS]. The variational approach to circle patterns is discussed in detail in [BSp]. The
word ‘‘nonlinear’’ refers to the basic feature of equations describing circle patterns. Often,
the so-called cross-ratio system is used for this. For a function f : Z2 ! C on the regular
square lattice, this system was introduced in [BP1], [NC]:

ð fmþ1;n � fm;nÞð fmþ1;nþ1 � fm;nþ1Þ
ð fm;nþ1 � fm;nÞð fmþ1;nþ1 � fmþ1;nÞ

¼ �1:ð2Þ

For circle patterns with more sophisticated combinatorics, a generalization of this system
to an arbitrary quad-graph (planar graph with quadrilateral faces) is required [BS].

It is not di‰cult to see in what sense solutions of equations like (1), (2) can be
considered as discretized analytic functions. Indeed, assume that Z2 is embedded in the
complex plane C with the grid size e, i.e., the pair ðm; nÞ A Z2 corresponds to ðm þ inÞe A C.
Then restrictions of analytic functions to this grid satisfy the corresponding equations up to
Oðe2Þ. More precisely, if f : C ! C is analytic, then

f ðz þ ieÞ � f ðz þ eÞ
f ðz þ eþ ieÞ � f ðzÞ ¼ i þ Oðe2Þ;

and �
f ðz þ eÞ � f ðzÞ

��
f ðz þ eþ ieÞ � f ðz þ ieÞ

��
f ðz þ ieÞ � f ðzÞ

��
f ðz þ eþ ieÞ � f ðz þ eÞ

� ¼ �1 þ Oðe2Þ:

Similar relations hold on more general graphs.
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For a long time, the linear and the nonlinear theories of discrete analytic functions
were considered separately. In the present paper, we show that in some precise sense the
former is a linearization of the latter. We work in the set-up of rhombic tilings of a plane.
The theory becomes especially rich for quasicrystallic tilings—those with a finite number of
di¤erent edge slopes. This class includes double periodic tilings (which are naturally con-
sidered on a torus), as well as non-periodic ones, like the Penrose tiling. We clarify the
importance of rhombic embeddings of quad-graphs in both the linear and the nonlinear
theories. Namely, we show that the rhombic property implies (actually, is almost synony-
mous with) integrability. Note that interrelations of circle patterns with the theory of in-
tegrable systems were already uncovered and studied in [BP2], [AB1], [AB2], [BHS], [BH].
Note also that some of the ideas behind our unified treatment of integrability of linear and
nonlinear systems, such as the use of zero curvature representations in both situations, are
similar to the philosophy of Fokas’s unified transform method for linear and nonlinear
di¤erential equations based on the Riemann-Hilbert boundary problem [Fo]. Our main
results are the following.

� Discrete Cauchy-Riemann equations on a rhombically embedded quad-graph
D, with weights given by quotients of diagonals of the corresponding rhombi, are
integrable. Integrability is understood here as 3D consistency [BS]. Therefore, discrete
holomorphic functions on rhombic embeddings can (and should) be extended to multi-
dimensional lattices. In particular, discrete holomorphic functions on a quasicrystallic
rhombic embedding D with d di¤erent edge slopes can be considered as restrictions
of discrete holomorphic functions on Zd to a certain two-dimensional subcomplex WD

in Zd .

� Cross-ratio equations on a rhombically embedded quad-graph D, with cross-
ratios read o¤ the corresponding rhombi, are integrable as well. Therefore, solutions of
the cross-ratio equations on a quasicrystallic rhombic embedding D are naturally extended
to Zd .

� For a circle pattern, the centers and the intersection points of the circles yield
a solution of cross-ratio equations, with the cross-ratios depending on the pairwise inter-
section angles of the circles. We say that a circle pattern is integrable, if the corresponding
cross-ratio system is integrable. The combinatorics and intersection angles belong to an
integrable circle pattern, if and only if they admit an isoradial realization. This latter real-
ization gives a rhombic immersion of the corresponding quad-graph, and generates also a
dual isoradial circle pattern. An integrable circle pattern can be alternatively described by
the radii of the circles and the rotation angles of the configurations at the intersection
points with respect to the isoradial realization. These data comprise a solution of an in-
tegrable Hirota system.

� The tangent space to the set of integrable circle patterns, at the point corresponding
to an isoradial pattern, coincides with the space of discrete holomorphic functions on the
corresponding rhombically embedded quad-graph, which take real (resp. pure imaginary)
values on the white (resp. black) vertices. This holds in the description of circle patterns in
terms of circle radii and rotation angles at the intersection points (Hirota equations). Dis-
crete holomorphic functions obtained from these ones by discrete integration, comprise the
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tangent space to the set of integrable circle patterns, described in terms of circle centers and
intersection points (cross-ratio equations).

� We define (in the linear theory) discrete exponential functions on Zd , and prove
that they are dense in the space of discrete holomorphic functions, growing not faster than
exponentially.

� We define (in the linear theory) a discrete logarithmic function on Zd , or, better, on
a branched covering of certain d-dimensional octants4) Sm HZd , m ¼ 1; . . . ; 2d. On each
such octant, the discrete logarithmic function is discrete holomorphic, with the distinctive
property of being isomonodromic, in the sense of the integrable systems theory. We show
that the real part of the discrete logarithmic function restricted to a surface WD in Zd

coming from a quasicrystallic quad-graph D is nothing but Green’s function found in [K].
The integral representation of Green’s function given in [K] is derived within the iso-
monodromic approach.

� We define (in the nonlinear theory) discrete power functions wg�1 (resp. zg) on the
same branched covering of octants Sm HZd , m ¼ 1; . . . ; 2d, where the discrete logarithmic
function is defined. On each such octant, discrete wg�1 (resp. zg) is an isomonodromic so-
lution of the Hirota (resp. cross-ratio) system. The tangent vector to the space of integrable
circle patterns along the curve consisting of patterns wg�1, at the isoradial point corre-
sponding to g ¼ 1, is shown to be the discrete logarithmic function.

In conclusion, we point out some generalizations of the concepts and results of this
paper for the non-rhombic case.

Acknowledgements. Numerous discussions and collaboration with Boris Spring-
born were very important for this research. In particular, results of Sect. 11 were obtained
jointly with him. We thank also Tim Ho¤mann, Ulrich Pinkall and Günter Ziegler for
discussions.

2. Discrete harmonic and discrete holomorphic functions on graphs

We denote by VðGÞ, EðGÞ and ~EEðGÞ the sets of vertices, undirected and directed edges
of a graph G, respectively. Let there be given a complex-valued function n : EðGÞ ! C on
the edges. Then the Laplacian D corresponding to the weight function n is the operator
acting on functions f : VðGÞ ! C by

ðDf Þðx0Þ ¼
P

x@x0

nðx0; xÞ
�

f ðxÞ � f ðx0Þ
�
:ð3Þ

Here the summation is extended over the set of all vertices x connected to x0 by an edge.
We will use the notation starðx0Þ ¼ starðx0;GÞ for the set of all edges of G incident to x0,
see Fig. 1.

4) We use this term for a subset of Zd defined by fixing one of 2d possible combinations of signs of the

coordinates. An octant in the proper sense corresponds to d ¼ 3, while by d ¼ 2 this object is called quadrant.
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Definition 1. A function f : VðGÞ ! C is called discrete harmonic (with respect to
the weights n), if Df ¼ 0.

Of course, the most interesting case of these notions is that of real positive weights
n : EðGÞ ! Rþ.

In the continuous case, there is a canonical correspondence between harmonic and
holomorphic functions on C: the real and the imaginary parts of a holomorphic function
are harmonic, and any real-valued harmonic function can be considered as a real part of a
holomorphic function. This relation can be generalized for functions on graphs, but these
two classes of functions live then on di¤erent graphs. Discrete holomorphic functions live
on quad-graphs.

Definition 2. A cell decomposition D of the plane C is called a quad-graph, if all its
faces are quadrilaterals.

A more general version of this definition deals with cell decompositions of an arbi-
trary oriented surface. So, quad-graphs are not just graphs, but are additionally assumed to
be embedded in an oriented surface; we will deal with the case of C only.

To establish a relation with discrete harmonic functions, we consider the latter ones on
graphs G with an additional structure, namely on those that come from general (not nec-
essarily quadrilateral) cell decompositions of C. We will denote by FðGÞ the set of faces (2-
cells) of G. To any such G there corresponds canonically a combinatorial quad-graph called
its double (or diamond [M1]), constructed from G and its dual G�. Recall that, in general, a
dual cell decomposition G� is only defined up to isotopy, but it can be fixed uniquely with
the help of the Voronoi/Delaunay construction. The dual G� is characterized as follows.
Vertices of G� are in a one-to-one correspondence to faces of G, see Fig. 2. Each e A EðGÞ
separates two faces of G, which in turn correspond to two vertices of G�. It is declared
that these two vertices are connected by the edge e� A EðG�Þ dual to e. Finally, the faces
of G� are in a one-to-one correspondence with the vertices of G: if x0 A VðGÞ, and
x1; . . . ; xn A VðGÞ are its neighbors connected with x0 by the edges

e1 ¼ ðx0; x1Þ; . . . ; en ¼ ðx0; xnÞ A EðGÞ;

Figure 1. The star of the vertex x0 in the graph G.
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then the face of G� corresponding to x0 is defined by its boundary e�1 W � � �W e�n (cf. Fig. 3).
If one assigns a direction to an edge e A EðGÞ, then it will be assumed that the dual edge
e� A EðG�Þ is also directed, in a way consistent with the orientation of the underlying sur-
face, namely so that the pair ðe; e�Þ is oriented directly at its crossing point. This orientation
convention implies that e�� ¼ �e.

Now the double D is constructed from G, G� as follows. The set of vertices of the
double D is VðDÞ ¼ VðGÞ t VðG�Þ. Each pair of dual edges, say e ¼ ðx0; x1Þ A EðGÞ and
e� ¼ ðy0; y1Þ A EðG�Þ, defines a quadrilateral ðx0; y0; x1; y1Þ. These quadrilaterals consti-
tute the faces of the cell decomposition (quad-graph) D, see Fig. 4. The edges of D belong
neither to EðGÞ nor to EðG�Þ. A star of a vertex x0 A VðGÞ produces a flower of adjacent
quadrilaterals from FðDÞ around the common vertex x0, see Fig. 5.

Figure 2. Vertex of G� dual to a face of G.

Figure 3. Face of G� dual to a vertex of G.

Figure 4. A face of the double D.
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Observe that the double D is automatically bipartite, since its vertices VðDÞ are de-
composed into two complementary halves, VðDÞ ¼ VðGÞ t VðG�Þ (‘‘black’’ and ‘‘white’’
vertices), such that the ends of each edge from EðDÞ are of di¤erent colours. An arbitrary
quad-graph embedded in C is automatically bipartite, and the above construction can be
reversed for it, to produce a cell decomposition G along with its dual G�. The decomposi-
tion of VðDÞ into VðGÞ and VðG�Þ is unique, up to interchanging the roles of G and G�.
Edges of G (say) connect two ‘‘black’’ vertices along the diagonal of each face of D.

Let there be given a function n : EðGÞ ! C on undirected edges of G. (It is assumed
that both directed representatives Ge of any edge carry the same value nðeÞ ¼ nð�eÞ as the
underlying undirected one.) Extend the function n to undirected edges of G� according to
the rule

nðe�Þ ¼ 1=nðeÞ:ð4Þ

Definition 3. A function f : VðDÞ ! C is called discrete holomorphic (with respect
to the weights n), if for any positively oriented quadrilateral ðx0; y0; x1; y1Þ A FðDÞ there
holds:

f ðy1Þ � f ðy0Þ
f ðx1Þ � f ðx0Þ

¼ inðx0; x1Þ ¼ � 1

inðy0; y1Þ
:ð5Þ

These equations are called discrete Cauchy-Riemann equations.

Again, the most interesting case corresponds to the real positive weights
n : EðGÞ t EðG�Þ ! Rþ. The theory of discrete holomorphic functions was developed in
[M1]. In [K] a discrete Dirac operator was introduced, the kernel of which consists of dis-
crete holomorphic functions. In the present paper, like in [M1], our attention belongs not to
the discrete Dirac operator but to its kernel only. The next statement follows immediately.

Proposition 4. (a) If a function f : VðDÞ ! C is discrete holomorphic, then its re-

strictions to VðGÞ and to VðG�Þ are discrete harmonic.

(b) Conversely, any discrete harmonic function f : VðGÞ ! C admits a family of dis-

crete holomorphic extensions to VðDÞ, di¤ering by an additive constant on VðG�Þ. Such an

extension is uniquely defined by a value at one arbitrary vertex y A VðG�Þ.

Figure 5. Faces of D around vertex x0.
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3. Rhombic embeddings and labelings of a quad-graph

The paper [KS] studies rhombic embeddings of a quad-graph D in C, i.e., embeddings
with the property that each face of D is mapped to a rhombus. A combinatorial criterion
for the existence of a rhombic embedding of a given quad-graph D found in [KS] is as
follows.

Definition 5. A strip S in D is a path fa�
j g

y
j¼�y in D� with the following prop-

erty: for any two consecutive dual edges a�
j ; a

�
jþ1 A SHEðD�Þ with the common point

a�
j X a�

jþ1 ¼ qj A VðD�ÞFFðDÞ, the corresponding edges aj; ajþ1 A EðDÞ are two opposite

sides of the quadrilateral qj. The edges fajgyj¼�y are called the traverse edges of the strip S.

Theorem 6 ([KS]). A planar quad-graph D admits a rhombic embedding in C if and

only if the following two conditions are satisfied:

� No strip crosses itself or is periodic.

� Two distinct strips cross each other at most once.

A rhombic embedding determines rhombus angles that are naturally assigned to the
edges of G and G�, see Fig. 6. Such systems of rhombus angles f : EðGÞ t EðG�Þ ! ð0; pÞ
are characterized, according to [KS], by the following two conditions: first,

fðe�Þ ¼ p� fðeÞ; Ee A EðGÞ;ð6Þ

and, second,

P
e A starðx0;GÞ

fðeÞ ¼ 2p;
P

e� A starðy0;G
�Þ
fðe�Þ ¼ 2p; Ex0 A VðGÞ; y0 A VðG�Þ:ð7Þ

As mentioned in [KS], to each rhombic embedding of D there corresponds a set of
parallelogram embeddings (wherein each face is mapped to a parallelogram), which are
obtained by replacing each traverse edge of a strip with a real multiple (a di¤erent multiple
for each strip).

Definition 7. A labeling is a function a : ~EEðDÞ ! C such that að�aÞ ¼ �aðaÞ for any
a A ~EEðDÞ, and the values of a on two opposite and equally directed edges of any quadri-
lateral from FðDÞ are equal to one another.

Figure 6. A rhombic embedding of a quadrilateral ðx0; y0; x1; z1Þ A F ðDÞ, e ¼ ðx0; x1Þ, e� ¼ ðy0; y1Þ.

Bobenko, Mercat and Suris, Linear and nonlinear theories of discrete analytic functions124



This definition is illustrated in Fig. 7. Note that if edges of any given face of D are
directed as on this figure (from black to white), then any two opposite edges carry opposite
labels. For any labeling a : ~EEðDÞ ! C of directed edges, the function a2 can be considered
as a labeling of undirected edges, i.e., as a function a2 : EðDÞ ! C such that its values on
two opposite edges of any quadrilateral from FðDÞ are equal to one another, see Fig. 8.
Conversely, any labeling of undirected edges comes as a square of some labeling of directed
edges.

The existence of a labeling a : ~EEðDÞ ! C is equivalent to the existence of a par-

allelogram immersion of the quad-graph D. Indeed, given a parallelogram immersion
p : VðDÞ ! C, one defines canonically a labeling by

aðx; yÞ ¼ pðyÞ � pðxÞ; Eðx; yÞ A ~EEðDÞ:ð8Þ

Conversely, given a labeling a : ~EEðDÞ ! C, the formula (8) correctly defines a function
p : VðDÞ ! C and assures that the p-image of any quadrilateral face of D is a parallelo-
gram. If the labels a take values in S1 ¼ fy A C : jyj ¼ 1g, then the corresponding immer-
sion is rhombic.

Definition 8. A parallelogram immersion p : VðDÞ ! C of a quad-graph D is called
quasicrystallic, if the set of values of the corresponding labeling a : ~EEðDÞ ! C, defined by
(8), is finite, say A ¼ fGa1; . . . ;Gadg.

It will be supposed that any two non-opposite elements of A are linearly independent
over R. This implies, in particular, that all parallelograms are non-degenerate.

It will be of a central importance for us that any quasicrystallic parallelogram im-
mersion p can be seen as a sort of a projection of a certain two-dimensional subcomplex

Figure 7. Labeling of directed edges.

Figure 8. Labeling of undirected edges.

Bobenko, Mercat and Suris, Linear and nonlinear theories of discrete analytic functions 125



(combinatorial surface) WD of a multi-dimensional regular square lattice Zd . The vertices of
WD are given by a map P : VðDÞ ! Zd constructed as follows. Fix some x0 A VðDÞ, and
set Pðx0Þ ¼ 0. For all other vertices of D, their images in Zd are defined recurrently by the
property:

� For any two neighbors x; y A VðDÞ, if pðyÞ � pðxÞ ¼Gai A A, then
PðyÞ � PðxÞ ¼Gei,

where ei is the i-th coordinate vector of Zd . The edges and faces of WD correspond to edges
and faces of D. So, the combinatorics of WD is that of D, and therefore Theorem 6 can be
used to decide whether a given two-dimensional subcomplex of Zd corresponds in this way
to some rhombic embedding of a quad-graph in C.

4. 3D consistency

We now study a question about integrability of the discrete Cauchy-Riemann equa-
tions (5). These equations are just a specific linear issue of general equations on quad-
graphs [BS]

F
�

f ðx0Þ; f ðy0Þ; f ðx1Þ; f ðy1Þ
�
¼ 0;ð9Þ

relating four fields f sitting on the four vertices of an arbitrary (oriented) face
ðx0; y0; x1; y1Þ A FðDÞ of a quad-graph D. Here the function F may depend on some
parameters (in the case of discrete Cauchy-Riemann equations these are the weights n), and
it is supposed that equation (9) is uniquely solvable for any one of the fields in terms of
other three (which is, of course, the case for discrete Cauchy-Riemann equations with non-
vanishing weights n).

The approach pushed forward in [BS] is based on the idea that integrability of such
equations on quad-graphs is synonymous with their 3D consistency. To describe the latter
notion, we extend the planar quad-graph D into the third dimension. Formally speaking,
we consider the second copy D̂D of D and add edges connecting each vertex x A VðDÞ with
its copy x̂x A VðD̂DÞ. On this way we obtain a ‘‘three-dimensional quad-graph’’ D, whose set
of vertices is

VðDÞ ¼ VðDÞ t VðD̂DÞ;

whose set of edges is

EðDÞ ¼ EðDÞ t EðD̂DÞ t fðx; x̂xÞ : x A VðDÞg;

and whose set of faces is

FðDÞ ¼ FðDÞ t FðD̂DÞ t fðx; y; ŷy; x̂xÞ : ðx; yÞ A EðDÞg:

Elementary building blocks of D are cubes ðx0; y0; x1; y1; x̂x0; ŷy0; x̂x1; ŷy1Þ, as shown on
Fig. 9.
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Clearly, if D is bipartite, then so is D: each x̂x A VðD̂DÞ has the colour opposite to
the colour of its counterpart x A VðDÞ. Hence, we can extend the ‘‘black’’ graph G to a 3D
object G, with edges

EðGÞ ¼ EðGÞ t EðcG�G�Þ t fðx; ŷyÞ : x A VðGÞ; y A VðG�Þ; ðx; yÞ A EðDÞg:

Edges of EðGÞ within Fig. 9 are ðx0; x1Þ, ð ŷy0; ŷy1Þ, ðx0; ŷy0Þ, ðx0; ŷy1Þ, ðx1; ŷy0Þ, and ðx1; ŷy1Þ,
forming the black tetrahedron. Similarly, we have a 3D white graph G�.

Definition 9. Equation (9) is called 3D consistent if it can be imposed on all faces
of any elementary cube of D, in such a manner that opposite faces carry one and the same
equation (i.e., the same parameters).

This should be understood as follows. Consider an elementary cube of D, as on Fig. 9.
Suppose that the values of the function f are given at the vertex x0 and at its three neigh-
bors y0, y1, and x̂x0. Then equation (9) uniquely determines the values of f at x1, ŷy0, and ŷy1.
After that equation (9) delivers three a priori di¤erent values for the value of the field f at
the vertex x̂x1, coming from the faces ðy0; x1; x̂x1; ŷy0Þ, ðx1; y1; ŷy1; x̂x1Þ, and ðx̂x0; ŷy0; x̂x1; ŷy1Þ, re-
spectively. The 3D consistency means that these three values for f ðx̂x1Þ actually coincide,
independently on the choice of initial conditions.

As discussed in detail in [BS], the 3D consistency of a given system (9) allows one to
construct Bäcklund transformations and to find in an algorithmic way a zero curvature
representation for it, which are traditionally considered as main attributes of integrability.
Briefly, the constructions are as follows.

1) Given a solution f : VðDÞ ! C to (9) and an arbitrary value f ðx̂x0Þ ¼ f̂f0 at some
vertex x̂x0 A D̂D, the 3D consistency allows one to extend the solution f to the whole of VðDÞ.
Its restriction to VðD̂DÞ is thus a well-defined function f : VðD̂DÞ ! C which also solves the
original equation (9). Setting f̂f ðxÞ ¼ f ðx̂xÞ for all x A VðDÞ, one can interpret this function

as f̂f : VðDÞ ! C, and this f̂f is called the Bäcklund transformation of f (defined by the value
f̂f0 and the parameters sitting on the vertical faces).

2) Suppose that the function Fðu1; u2; u3; u4Þ in (9) is a‰ne-linear in all its arguments,
so that this equation can be solved uniquely for an arbitrary argument ui in terms of other
three arguments, the solution being given by a fractional-linear function. For an arbitrary

Figure 9. Elementary cube of D.
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edge a ¼ ðx; yÞ A ~EEðDÞ, consider the vertical face ðx; y; ŷy; x̂xÞ A FðDÞ over this edge. The
solution of equation F

�
f ðxÞ; f ðyÞ; f ð ŷyÞ; f ðx̂xÞ

�
¼ 0 can be written as

f ð ŷyÞ ¼ L
�

f ðyÞ; f ðxÞ
�
� f ðx̂xÞ;ð10Þ

where L
�

f ðxÞ; f ðyÞ
�
A PGL2ðCÞ, and the standard notation for the action of PGL2ðCÞ on

C by Möbius transformations is used:

a b

c d

� �
� u ¼ au þ b

cu þ d
:

One assigns the matrix above to the edge a, so that LðaÞ ¼ L
�

f ðyÞ; f ðxÞ
�
. Now it follows

from the 3D consistency that for an arbitrary face ðx0; y0; x1; y1Þ A FðDÞ one has:

L
�

f ðx1Þ; f ðy0Þ
�
L
�

f ðy0Þ; f ðx0Þ
�
¼ L

�
f ðx1Þ; f ðy1Þ

�
L
�

f ðy1Þ; f ðx0Þ
�
:ð11Þ

This expresses the flatness of the discrete connection L on D with values in PGL2ðCÞ,
hence (11) is called the zero curvature representation of system (9). It is often possible to
use suitable normalizations in order to lift this representation to the one with values in
GL2ðCÞ.

5. 3D consistent Cauchy-Riemann equations

To apply the notion of the 3D consistency to the discrete Cauchy-Riemann equation
(5), one has to explain how to impose it on the vertical faces of D. For this, we assume that
the function n is extended to EðGÞ t EðG�Þ, still satisfying the condition nðe�Þ ¼ 1=nðeÞ,
and with an additional condition that opposite edges carry the same values of n.

An interesting problem is, of course, to find functions n on the ‘‘ground floor’’
EðGÞ t EðG�Þ which can be extended to the edges of EðGÞ t EðG�Þ lying in the ‘‘vertical’’
faces to give a 3D consistent system.

Theorem 10. The function n : EðGÞ t EðG�Þ ! C can be extended to EðGÞ t EðG�Þ
giving a 3D consistent system of discrete Cauchy-Riemann equations, if and only if the fol-

lowing condition is satisfied:

Q
e A starðx0;GÞ

1 þ inðeÞ
1 � inðeÞ ¼ 1;

Q
e� A starðy0;G

�Þ

1 þ inðe�Þ
1 � inðe�Þ ¼ 1;ð12Þ

Ex0 A VðGÞ; y0 A VðG�Þ:

Proof. Consider a flower of quadrilaterals around x0, with ek ¼ ðx0; xkÞ,
e�k ¼ ðyk�1; ykÞ (in notations of Fig. 5). Build the extension of this flower to the third di-
mension (for one of its petals corresponding to k ¼ 1 this extension is shown on Fig. 9).
Denote

nðyk�1; ykÞ ¼ nðe�kÞ ¼ nk; nðyk; x̂x0Þ ¼ mk:ð13Þ
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Lemma 11. Discrete Cauchy-Riemann equations are 3D consistent on the cube over

the k-th petal, if and only if

1 þ nkmk�1 � nkmk þ mk�1mk ¼ 0:ð14Þ

Proof of Lemma 11. Consider the elementary cube on Fig. 9, corresponding to
k ¼ 1. On the first step of checking the 3D consistency we find:

f ðx1Þ ¼ f ðx0Þ þ in1

�
f ðy0Þ � f ðy1Þ

�
;

f ð ŷy0Þ ¼ f ðx0Þ þ im0

�
f ðy0Þ � f ðx̂x0Þ

�
;

f ð ŷy1Þ ¼ f ðx0Þ þ im1

�
f ðy1Þ � f ðx̂x0Þ

�
:

On the second step we find (from the condition that opposite faces support the same
equations):

f ðx̂x1Þ ¼ f ðx̂x0Þ þ in1

�
f ð ŷy0Þ � f ð ŷy1Þ

�
¼ f ðy1Þ þ im0

�
f ðx1Þ � f ð ŷy1Þ

�
¼ f ðy0Þ þ im1

�
f ðx1Þ � f ð ŷy0Þ

�
:

After simple computations we find:

f ðx̂x1Þ ¼ ð1 þ n1m0 � n1m1Þ f ðx̂x0Þ � n1m0 f ðy0Þ þ n1m1 f ðy1Þ

¼ �m0m1 f ðx̂x0Þ � n1m0 f ðy0Þ þ ð1 þ n1m0 þ m0m1Þ f ðy1Þ

¼ �m0m1 f ðx̂x0Þ þ ð1 � n1m1 þ m0m1Þ f ðy0Þ þ n1m1 f ðy1Þ:

Comparison of these expressions leads to 1 þ n1m0 � n1m1 þ m0m1 ¼ 0, which proves the
lemma. r

Continuing the proof of Theorem 10, we derive from (14):

mk ¼ nkmk�1 þ 1

nk � mk�1

¼ nk 1

�1 nk

� �
� mk�1;

where the standard notation for the action of PGL2ðCÞ on C by Möbius transformations
is used. Starting with an arbitrary m0, we can define all mk’s consecutively. This procedure is
consistent, if running around x0 returns the value of m0 we started with. This holds for any

m0, if and only if the matrix product
Qi
k

nk 1

�1 nk

� �
is a scalar matrix. It is easy to see by

induction that the above matrix product may be presented as

A B

�B A

� �
with A ¼ 1

2

�Q
k

ðnk þ iÞ þ
Q
k

ðnk � iÞ
�
; B ¼ 1

2i

�Q
k

ðnk þ iÞ �
Q
k

ðnk � iÞ
�
:
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Therefore, a necessary and su‰cient condition for this matrix to be scalar is

B ¼ 0 ,
Q
k

nk þ i

nk � i
¼ 1;

which is equivalent to the first equality in (12), because of nk ¼ nðe�kÞ ¼ 1=nðekÞ. The second
condition in (12) is proved similarly, by considering a flower of quadrilaterals around
y0 A VðG�Þ. r

As pointed out above, the most interesting case is when n takes values in Rþ. In this
case we will use the notation

nðeÞ ¼ tan
fðeÞ

2
; fðeÞ A ð0; pÞ:ð15Þ

The condition nðe�Þ ¼ 1=nðeÞ is translated in this case into (6). The integrability condition
(12) takes in this case the form

Q
e A starðx0;GÞ

exp
�
ifðeÞ

�
¼ 1;

Q
e� A starðy0;G

�Þ
exp

�
ifðe�Þ

�
¼ 1;ð16Þ

Ex0 A VðGÞ; y0 A VðG�Þ:

The latter condition is a generalization of (7), and is equivalent to saying that the system
of angles f : EðGÞ t EðG�Þ ! ð0; pÞ comes from a realization of the quad-graph D by a
rhombic ramified embedding in C. Flowers of such an embedding can wind around its ver-
tices more than once.

Lemma 12. Let a quad-graph D be a double for a pair of dual cell decompositions G,
G�. Let F : EðGÞ t EðG�Þ ! C be a function satisfying

Fðe�Þ ¼ �1=FðeÞ; Ee A EðGÞ:ð17Þ

Then the necessary and su‰cient condition for the existence of a labeling a : ~EEðDÞ ! C such

that, in the notations of Fig. 7,

FðeÞ ¼ Fðx0; x1Þ ¼
a1

a0
, Fðe�Þ ¼ Fðy0; y1Þ ¼ � a0

a1
;ð18Þ

is given by the equations

Q
e A starðx0;GÞ

FðeÞ ¼ 1;
Q

e� A starðy0;G
�Þ
Fðe�Þ ¼ 1; Ex0 A VðGÞ; y0 A VðG�Þ:ð19Þ

Proof. The necessity is obvious. To prove su‰ciency, we construct a by assigning
an arbitrary value (say, a ¼ 1) to some edge of D, and then extending it successively using
either of the equations (18) and the definition of labeling. Conditions (19) assure the con-
sistency of this procedure. r
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Corollary 13. Integrability condition (12) for the function n : EðGÞ t EðG�Þ ! C is

equivalent to the following one: there exists a labeling a : ~EEðDÞ ! C of directed edges of D,
such that, in notations of Fig. 7,

nðy0; y1Þ ¼
1

nðx0; x1Þ
¼ i

a1 þ a0

a1 � a0
:ð20Þ

Under this condition, the 3D consistency of the discrete Cauchy-Riemann equations is assured

by the following values of the weights n on the edges of EðGÞ t EðG�Þ lying in the vertical

faces:

nðy; x̂xÞ ¼ 1

nðx; ŷyÞ ¼ i
lþ a

l� a
;ð21Þ

where a ¼ aðx; yÞ, and l A C is an arbitrary number having the interpretation of the label

carried by all vertical edges of D: l ¼ aðx; x̂xÞ ¼ aðy; ŷyÞ.

Proof. Apply Lemma 12 with the function

FðeÞ ¼ 1 þ inðeÞ
1 � inðeÞ ;ð22Þ

which satisfies (17) due to the property (4) of the weights n. Note that in the case nðeÞ A Rþ
the notation (15) implies that FðeÞ ¼ exp

�
ifðeÞ

�
. The formula (18) with the function (22)

is clearly equivalent to (20). To prove the second statement, we use notations of Lemma
11, in particular the formula 1 þ n1m0 � n1m1 þ m0m1 ¼ 0. According to (20), we have:

n1 ¼ i
a1 þ a0

a1 � a0
. Parametrize the (arbitrary) value of m0 as m0 ¼ i

lþ a0

l� a0
. Then it follows

from the above formula that m1 ¼ i
lþ a1

l� a1
. An easy induction proves (21) for all edges in

the vertical faces. r

So, integrability of the discrete Cauchy-Riemann equations is equivalent to the exis-
tence of a labeling a of directed edges satisfying (20). Let p : VðDÞ ! C be a parallelogram
realization of D defined by pðyÞ � pðxÞ ¼ aðx; yÞ. Then discrete holomorphic functions are
characterized by

f ðy1Þ � f ðy0Þ
f ðx1Þ � f ðx0Þ

¼ a1 � a0

a1 þ a0
¼ pðy1Þ � pðy0Þ

pðx1Þ � pðx0Þ
:ð23Þ

In other words, the quotient of diagonals of the f -image of any quadrilateral
ðx0; y0; x1; y1Þ A FðDÞ is equal to the quotient of diagonals of the corresponding parallelo-
gram. In the case of positive weights n A Rþ, the labels a take values in S1, and have a ge-
ometric interpretation of edges of a rhombic realization of D.

Proposition 14. The discrete Cauchy-Riemann equations (23) admit a zero curvature

representation (11) in GL2ðCÞ½l�, with transition matrices along ðx; yÞ A ~EEðDÞ given by

Lðy; x; a; lÞ ¼ lþ a �2a
�

f ðxÞ þ f ðyÞ
�

0 l� a

� �
; where a ¼ pðyÞ � pðxÞ:ð24Þ
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Proof. This result is easy to check. It can be also systematically derived using the
procedure outlined at the end of Sect. 4. Indeed, setting l ¼ pðx̂xÞ � pðxÞ, one writes the
equation (23) on the vertical face ðx; y; ŷy; x̂xÞ as

f ðx̂xÞ � f ðyÞ
f ð ŷyÞ � f ðxÞ ¼

l� a

lþ a
, f ð ŷyÞ ¼ lþ a

l� a
f ðx̂xÞ þ f ðxÞ � lþ a

l� a
f ðyÞ

� �
¼ Mðy; x; a; lÞ � f ðx̂xÞ;

where

Mðy; x; a; lÞ ¼ lþ a ðl� aÞ f ðxÞ � ðlþ aÞ f ðyÞ
0 l� a

� �
:

One easily shows that these matrices form a zero curvature representation with values in
GL2ðCÞ½l�, i.e., that (11) holds literally, and not only projectively (up to a scalar factor).
Finally, observe that the matrices L in (24) are gauge equivalent to the matrices M:

Lðy; x; a; lÞ ¼ 1 �f ðyÞ
0 1

� �
Mðy; x; a; lÞ 1 f ðxÞ

0 1

� �
:

This finishes the proof. r

The main result of the present section can be formulated as follows. Discrete Cauchy-

Riemann equations on a quad-graph D are integrable if and only if they come from a paral-

lelogram immersion of D in C, weights in being the quotients of diagonals of the correspond-

ing parallelograms. In the case of real positive weights n the parallelograms are actually

rhombi.

6. Extension of discrete holomorphic functions to Zd

To exploit analytic possibilities provided by 3D consistency of the discrete Cauchy-
Riemann equations, we restrict our considerations to quasicrystallic rhombic embeddings
D, with the set of labels A ¼ fGa1; . . . ;Gadg. Construct the two-dimensional subcomplex
WD in Zd corresponding to D, as explained at the end of Sect. 3. Extend the labeling
a : ~EEðDÞ ! C to all edges of Zd , assuming that all edges parallel to (and directed as) ek

carry the label ak. Now, 3D consistency of the discrete Cauchy-Riemann equations allows
us to impose them not only on WD, but on the whole of Zd .

Definition 15. A function f : Zd ! C is called discrete holomorphic, if it satisfies, on
each elementary square of Zd , the equation

f ðnþ ej þ ekÞ � f ðnÞ
f ðnþ ejÞ � f ðnþ ekÞ

¼ aj þ ak

aj � ak

:ð25Þ

Obviously, for any discrete holomorphic function f : Zd ! C, its restriction to
VðWDÞ@VðDÞ is a discrete holomorphic function on D. To justify the reverse procedure,
i.e., the extension of an arbitrary discrete holomorphic function on D to Zd , keeping the
property of being discrete holomorphic, more thorough considerations are necessary.
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Definition 16. For a given set V HZd , its hull HðVÞ is the minimal set HHZd

containing V and satisfying the condition: if three vertices of an elementary square belong
to H, then so does the fourth vertex.

This notion is tailored for arbitrary 3D consistent four-point equations of the type (9),
including the discrete Cauchy-Riemann equations. It is not di‰cult to show by induction
that the hull of an arbitrary connected subcomplex of Zd is a brick, i.e., a set of the type

Pa;b ¼ fn ¼ ðn1; . . . ; ndÞ A Zd : ak e nk e bk; k ¼ 1; . . . ; d g;ð26Þ

where a ¼ ða1; . . . ; adÞ, b ¼ ðb1; . . . ; bdÞ are some integer vectors, with infinite values
ak ¼ �y, bk ¼ y allowed. (Observe that Definition 15 is equally well applicable to
functions on bricks.) However, there exist combinatorial surfaces W (two-dimensional sub-

complexes of Zd ), like the one shown on Fig. 10, that support discrete holomorphic func-
tions which cannot be extended to Zd : the recursive process of extending an arbitrary dis-
crete holomorphic function from VðWÞ to its hull H

�
VðWÞ

�
will lead to contradictions.

The reason for this is a non-monotonicity of W: it contains pairs of points which cannot be
connected by a path in W with all edges lying in one octant. However, such surfaces do not
come from rhombic embeddings. We will prove the absence of contradictions in the case of
WD.

Proposition 17. For a combinatorial surface WD in Zd coming from a rhombic em-

bedding of a quad-graph D, set

ak ¼ akðWDÞ ¼ min
n AVðWDÞ

nk; bk ¼ bkðWDÞ ¼ max
n AVðWDÞ

nk; k ¼ 1; . . . ; d:ð27Þ

(In case that nk are unbounded from below or from above on VðWDÞ, set akðWDÞ ¼ �y, resp.

bkðWDÞ ¼ y.) Then H
�
VðWDÞ

�
¼ Pa;b, and an arbitrary discrete holomorphic function on

WD can be extended to a discrete holomorphic function on Pa;b in a unique and unambiguous

way.

For a proof of this proposition, a more detailed study of the surface WD will be
necessary. In order to fix the ideas, we will assume, without loss of generality, that the
circular order of the points Gak on the positively oriented unit circle S1 is the following:
a1; . . . ; ad , �a1; . . . ;�ad . We set akþd ¼ �ak for k ¼ 1; . . . ; d, and then define am for all
m A Z by 2d-periodicity.

Figure 10. A non-monotone surface in Z3.
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Consider the set Am ¼ fam; . . . ; amþd�1g of d consecutive edge slopes. The opening
angle of the sector spanned by am and amþd�1 is in ð0; pÞ. The set Am contains exactly one
member �kak of each pair Gak, k ¼ 1; . . . ; d. This associates to any m A Z the set of signs
�� ¼ ð�1; . . . ; �dÞ, �k ¼G1, which will be denoted by ��ðmÞ. The sets of signs ��ðmÞ repeat 2d-
periodically, therefore not all possible sets of signs appear among them, but only the fol-
lowing 2d di¤erent ones. If m A ½1; d �, then the corresponding �� ¼ ��ðmÞ is given by

�kðmÞ ¼ �1; 1e k < m;

þ1; me k e d;

�
and if m A ½d þ 1; 2d �, then

�kðmÞ ¼ þ1; 1e k < m � d;

�1; m � d e k e d:

�

Fix an arbitrary x0 A VðDÞ, and define the ‘‘sector’’ Um on the embedding plane C of
the quad-graph D as the set of all points of VðDÞ which can be reached from x0 along
paths with all edges from Am ¼ fam; . . . ; amþd�1g.

This can be re-formulated in terms of WD as follows. Recall that the map P which
identifies WD with D depends on the choice of the point x0 A VðDÞ corresponding to
0 A VðWDÞ. The map P sends Um to the set of the points of VðWDÞ which can be reached
from 0 along paths in VðWDÞ with all edges from f�1e1; . . . ; �dedg, where �k ¼ �kðmÞ for
k ¼ 1; . . . ; d. To formulate it in a still another way, put into a correspondence to any set of
signs �� ¼ ð�1; . . . ; �dÞ the d-dimensional octant

S�� ¼ ð�1ZþÞ � � � � � ð�dZþÞHZd :ð28Þ

In case of �� ¼ ��ðmÞ, use the notation S��ðmÞ ¼ Sm. Then the definition of Um is equivalent to
saying that Um ¼ P�1

�
VðWDÞXSm

�
. The following statement will be of a key importance.

Lemma 18. The union
S2d

m¼1

Um covers the whole of the quad-graph D. Equivalently, the

combinatorial surface WD coming from a rhombic embedding of D lies entirely in
S2d

m¼1

Sm.

Proof. Clearly, Um lies within the sector of the embedding plane with the tip at x0,
spanned by the directions am and amþd�1. The set Am can be ordered: am � � � � � amþd�1.
The lower boundary U�

m (upper boundary Uþ
m ) of Um can be described as the path in D

from the point x0 obtained by following, at each vertex of the path, the edge with the least
(resp. the largest) slope from Am available at this vertex, with respect to the above men-
tioned ordering in Am. The fact that D is embedded implies that all vertices of D between
U�

m and Uþ
m belong to Um. Indeed, suppose that there are vertices between U�

m and Uþ
m

which cannot be reached from x0 along a path with all edges from Am. Take such a vertex
x, combinatorially nearest to x0. It cannot be reached from x0 along a path with the last

edge from Am. Then one of the corners of one of the faces adjacent to x is free from edges
from Am and therefore has an internal angle larger than p, in a contradiction with em-
beddedness. Thus, Um can be described as a set of vertices between U�

m and Uþ
m . Further,

observe that the boundaries of the sectors Um are interlaced: Um contains all U�
r with

r A ½m þ 1;m þ d � 2�, and all Uþ
r with r A ½m � d þ 2;m � 1�. This yields that the union of

all Um’s covers the whole of D. r

Bobenko, Mercat and Suris, Linear and nonlinear theories of discrete analytic functions134



See Fig. 11 for an illustration.

We say that a subset IHPa;b is an initial values locus, if, prescribing arbitrarily
values of f on I, one can extend f in virtue of the 3D consistent Cauchy-Riemann equa-
tions in a unique and unambiguous way from I to the whole of Pa;b (cf. [AV]). We will use
two types of initial values loci.

� Any monotone path from a to b, with all edges directed positively:

I1 ¼ fnrgN
r¼0 with n0 ¼ a; nN ¼ b; and nrþ1 � nr A fe1; . . . ; edg:ð29Þ

� The intersection of Pa;b with all coordinate axes:

I2 ¼
Sd

k¼1

fn ¼ nek : ak e ne bkg:ð30Þ

Proof of Proposition 17. We have to show that, for any set of signs ��, the values of f

on VðWDÞXS�� determine f uniquely on the hull Pa;b XS��.

First, we prove this for �� ¼ ��ðmÞ, so that S�� ¼ Sm. For the sake of notational sim-
plicity, we do this for m ¼ 1 only, i.e., for the hull H

�
VðWDÞXS1

�
¼ P0;b. Indeed, an

arbitrary point n A VðWDÞXS1 can be reached from 0 along a path in VðWDÞ with all
edges from fe1; . . . ; edg. This is a path of the type I1, as in (29), hence it is an initial value
locus for the brick P0;n. Since the union of the bricks P0;n over all n A VðWDÞXS1 ex-
hausts the brick P0;b, our claim is proved.

The bricks Pa;b XS�� with ��3 ��ðmÞ do not contain points of VðWDÞ in their interior.
However, on the first step of the proof, we obtain values of f on all the coordinate axes.
This gives an initial values locus of the type I2, as in (30), for any brick of this type. r

Figure 11. Sectors of the dual kagome lattice, d ¼ 3, ak ¼ exp
�
ð2k � 1Þpi=6

�
.
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Note that intersections of WD with bricks correspond to combinatorially convex sub-

sets of D, as defined in [M2].

7. Discrete exponential functions

A particularly important discrete holomorphic function on Zd is the discrete expo-

nential function, defined as

eðn; zÞ ¼
Qd
k¼1

z þ ak

z � ak

� �nk

:ð31Þ

For d ¼ 2, this function was considered in [F], [D1]. The discrete Cauchy-Riemann equa-
tions for the discrete exponential function are easily checked: they are equivalent to a sim-
ple identity

z þ aj

z � aj

� z þ ak

z � ak

� 1

� ��
z þ aj

z � aj

� z þ ak

z � ak

� �
¼ aj þ ak

aj � ak

:

At a given n A Zd , the discrete exponential function is rational with respect to the parame-
ter z, with poles at the points �1a1; . . . ; �dad , where �k ¼ sign nk.

Equivalently, one can identify the discrete exponential function by its initial values on
the axes:

eðnek; zÞ ¼
z þ ak

z � ak

� �n

:ð32Þ

A still another characterization says that eð� ; zÞ is the Bäcklund transformation of the zero
solution of discrete Cauchy-Riemann equations on Zd , with the ‘‘vertical’’ parameter z.

Restriction of the function eð� ; zÞ to VðWDÞ@VðDÞ is a discrete exponential function
on D defined and studied in [M1], [M2], [K]. Note that the latter depends on the choice of
the point x0 A VðDÞ. A question posed in [K] asks whether discrete exponential functions
are dense in the space of discrete holomorphic functions on D. We now show that the an-
swer to this question is in a‰rmative, in some natural class of functions (growing not faster
than exponentially).

Theorem 19. Let f be a discrete holomorphic function on VðDÞ@VðWDÞ, satisfying

j f ðnÞje exp
�
Cðjn1j þ � � � þ jnd jÞ

�
; En A VðWDÞ;ð33Þ

with some C A R. Extend it to a discrete holomorphic function on H
�
VðWDÞ

�
. Then in-

equality (33) holds for all n A H
�
VðWDÞ

�
, possibly with some larger constant C. There exists

a function g defined on the disjoint union of small neighborhoods around the points Gak A C

and holomorphic on each one of these neighborhoods, such that

f ðnÞ � f ð0Þ ¼ 1

2pi

Ð
G

gðlÞeðn; lÞ dl; En A H
�
VðWDÞ

�
;ð34Þ
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where G is a collection of 2d small loops, each one running counterclockwise around one of

the points Gak.

Proof. In order to extend f from VðWDÞ to H
�
VðWDÞ

�
, one makes elementary

steps based on eq. (15). For instance, within the octant S1 these elementary steps consist of
calculating the left-hand side of the following equation through the quantities on the right-
hand side:

f ðnþ ej þ ekÞ ¼ f ðnÞ þ aj þ ak

aj � ak

�
f ðnþ ejÞ � f ðnþ ekÞ

�
:

(In other octants everything is similar, but notations become slightly more complicated.) A
simple induction shows that if the constant C in (33) satisfies the inequality

1 þ 2 max
j3k

aj þ ak

aj � ak

				
				 expðCÞe expð2CÞ;

then (33) propagates in the extension process. This proves the first statement of the
theorem.

To prove the second one, it is enough to find gðlÞ such that (34) holds on the coor-
dinate axes, that is,

f ðkÞ
n � f ð0Þ ¼ Res

l¼ak

gðlÞ lþ ak

l� ak

� �n

; f ðkÞ
�n � f ð0Þ ¼ Res

l¼�ak

gðlÞ l� ak

lþ ak

� �n

;ð35Þ

En > 0;

where f
ðkÞ

n are the restrictions of f : H
�
VðWDÞ

�
! C to the coordinate axes:

f ðkÞ
n ¼ f ðnekÞ; akðWDÞe ne bkðWDÞ:

Set gðlÞ ¼
Pd

k¼1

�
gkðlÞ þ g�kðlÞ

�
, where the functions gGkðlÞ vanish everywhere except in

small neighborhoods of the points Gak, respectively, and are given there by convergent
series

gkðlÞ ¼
1

2l

�
f
ðkÞ

1 � f ð0Þ þ
Py
n¼1

l� ak

lþ ak

� �n

ð f
ðkÞ

nþ1 � f
ðkÞ

n�1Þ
�
;ð36Þ

and a similar formula for g�kðlÞ. Convergence of these series is assured by the exponential
growth of f

ðkÞ
n . The easy-to-check formula

Res
l¼ak

1

l

lþ ak

l� ak

� �n

¼ 1 � ð�1Þn; nf 0;

shows that the so defined function g satisfies (35). r
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8. Isomonodromic discrete logarithmic function

We first give a construction of the discrete logarithmic function on D which is
equivalent to Kenyon’s one [K]. This function is defined, after fixing some point x0 A VðDÞ,
by the formula

f ðxÞ ¼ 1

2pi

Ð
G

logðlÞ
2l

eðx; lÞ dl; Ex A VðDÞ:ð37Þ

Here the integration path G is the same as in Theorem 19, and fixing x0 is necessary for the
definition of the discrete exponential function on D. To make (37) a valid definition, one
has to specify which branch of logðlÞ is chosen around each point Gak. This choice de-
pends on x, and is done as follows.

For each m A Z, assign to am ¼ expðiymÞ A S1 a certain value of argument ym A R:
choose a value y1 of the argument of a1 arbitrarily, and then extend it according to the rule

ymþ1 � ym A ð0; pÞ; Em A Z:

Clearly, there holds ymþd ¼ ym þ p, and therefore also ymþ2d ¼ ym þ 2p. It will be conve-
nient to consider the points am, supplied with the arguments ym, as belonging to the Rie-
mann surface ~LL of the logarithmic function (a branched covering of the complex l-plane).

The definition domain of the discrete logarithmic function is a branched covering

~UU ¼
Sy

m¼�y

~UUm

of the quad-graph D. Here ~UUm is the sector Um equipped with additional data—the interval

logðarÞ A ½iym; iymþd�1�; r ¼ m; . . . ;m þ d � 1ð38Þ

of length less than p for the logarithms of the slopes of edges am; . . . ; amþd�1. If m increases
by 2d, the interval on the right-hand side of (38) is shifted by 2pi. Two sectors ~UUm1

and ~UUm2

have a non-empty intersection, if and only if jm1 � m2j < d. It follows from Lemma 18 that
~UU is, indeed, a branched covering of D. Definition (37) should be read as follows: for

x A ~UUm, the poles of eðx; lÞ are exactly the points am; . . . ; amþd�1 A ~LL. Therefore, one can
assume that the integration path G consists of d small loops around these points, and the
values of logðlÞ at these points satisfy (38).

Proposition 20 ([K]). The discrete logarithmic function on D, restricted to VðGÞ, co-

incides with d i sc re te Green ’ s func t ion on G, up to a constant factor 2p.

Proof. It is not di‰cult to see that the restriction of the discrete logarithmic function
to black points does not branch: it is a well-defined real-valued function on VðGÞ. Clearly,
this function is harmonic everywhere except the origin. At the origin, its Laplacian equals
to the increment of f upon running once around the origin through its white neighbors.
The values of f at the vertices neighboring to the origin are nothing but the arguments of
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the corresponding edges. Therefore, the above mentioned increment is equal to 2p. In order
to obtain asymptotic results for the discrete logarithmic function, one can deform the inte-
gration path G into a connected contour lying on a single leaf of the Riemann surface of the
logarithm, and then use standard methods of the complex analysis [K]. This possibility is
due to the fact that functions gk in integral representation (34) of an arbitrary discrete
holomorphic function, defined originally in disjoint neighborhoods of the points ar, in the
case of the discrete logarithmic function are actually restrictions of a single analytic func-
tion logðlÞ=ð2lÞ to these neighborhoods. r

Now we extend the discrete logarithmic function to Zd . To this end, recall that the
sector Um of D is nothing but the preimage w.r.t. P of the part of WD lying in the octant
Sm HZd . Therefore, it is natural to introduce a branched covering

~SS ¼
Sy

m¼�y

~SSm

of the set
S2d

m¼1

Sm HZd . Here ~SSm is the octant Sm equipped with the set of values of logð�kakÞ

satisfying (38). Recall that �k ¼ �kðmÞ, k ¼ 1; . . . ; d, are the signs of the coordinate semi-
axes of Sm, defined in Sect. 6. By definition, ~SSm1

and ~SSm2
intersect, if the underlying octants

Sm1
and Sm2

have a non-empty intersection spanned by the common coordinate semi-axes,
and the data logð�kakÞ for these common semi-axes match. It is easy to see that ~SSm1

and ~SSm2

intersect, if and only if jm1 � m2j < d.

Definition 21. The discrete logarithmic function on ~SS is given by the formula

f ðnÞ ¼ 1

2pi

Ð
G

log l

2l
eðn; lÞ dl; En A ~SS;ð39Þ

where the integration path G consists, for n A ~SSm, of d loops around am; . . . ; amþd�1, and the
branch of the logarithm on G is defined by inequality (38).

The discrete logarithmic function on D can be described as the restriction of the dis-
crete logarithmic function on ~SS to a branched covering of WD@D. This holds for an ar-

bitrary quasicrystallic quad-graph with the set of edge slopes A.

Now we are in a position to give an alternative definition of the discrete logarithmic
function. Clearly, it is completely characterized by its values f ðn�kekÞ on the coordinate
semi-axes of an arbitrary octant ~SSm.

Proposition 22. For the discrete logarithmic function on ~SS, each of d sequences

f
ðkÞ

n ¼ f ðn�kekÞ, k ¼ 1; . . . ; d, solves the di¤erence equation

nð fnþ1 � fn�1Þ ¼ 1 � ð�1Þn;ð40Þ

with the initial conditions

f
ðkÞ

0 ¼ f ð0Þ ¼ 0; f
ðkÞ

1 ¼ f ð�kekÞ ¼ logð�kakÞ:ð41Þ
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Explicitly,

f
ðkÞ

2n ¼
Pn

l¼1

2

2l� 1
; f

ðkÞ
2nþ1 ¼ logð�kakÞ; k ¼ 1; . . . ; d; nf 0:ð42Þ

Here �k ¼ �kðmÞ, and the values logð�kakÞ are chosen in the interval (38).

Proof. According to eq. (36), the values f
ðkÞ

n , with f
ðkÞ

0 ¼ 0, are defined by the ex-
pansion near l ¼ �kak,

logðlÞ ¼ logð�kakÞ þ log
l

�kak

� �
¼ f

ðkÞ
1 þ

Py
n¼1

l� �kak

lþ �kak

� �n

ð f
ðkÞ

nþ1 � f
ðkÞ

n�1Þ:ð43Þ

This is equivalent to

f
ðkÞ

1 ¼ logð�kakÞ; f
ðkÞ

nþ1 � f
ðkÞ

n�1 ¼ 1 � ð�1Þn

n
:ð44Þ

The solution to these recurrent relations is given by (42). r

Observe that values (42) at even (resp. odd) points imitate the behavior of the real
(resp. imaginary) part of the function logðlÞ along the semi-lines argðlÞ ¼ argð�kakÞ. This

can be easily extended to the whole of ~SS. Restricted to black points n A ~SS (those with
n1 þ � � � þ nd even), the discrete logarithmic function models the real part of the logarithm.
In particular, this restricted function is real-valued and does not branch: its values on
~SSm depend on m ðmod 2dÞ only. In other words, it is a well defined function on Sm. On
the contrary, the discrete logarithmic function restricted to white points n A ~SS (those with
n1 þ � � � þ nd odd) takes purely imaginary values, and increases by 2pi, as m increases by
2d. Hence, this restricted function models the imaginary part of the logarithm.

It turns out that recurrent relations (40) are characteristic for an important class of
solutions of the discrete Cauchy-Riemann equations, namely for the isomonodromic ones.
Recall the definition of this class. For a discrete holomorphic function f : Zd ! C, the
transition matrices are (cf. (24)),

Lkðn; lÞ ¼
lþ ak �2ak

�
f ðnþ ekÞ þ f ðnÞ

�
0 l� ak

� �
:ð45Þ

The moving frame Cð� ; lÞ : Zd ! GL2ðCÞ½l� is defined by prescribing some Cð0; lÞ, and by
extending it recurrently according to the formula

Cðnþ ek; lÞ ¼ Lkðn; lÞCðn; lÞ:ð46Þ

Finally, define the matrices Að� ; lÞ : Zd ! GL2ðCÞ½l� by

Aðn; lÞ ¼ dCðn; lÞ
dl

C�1ðn; lÞ:ð47Þ

These matrices are defined uniquely after fixing some Að0; lÞ.
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Definition 23. A discrete holomorphic function f : Zd ! C is called iso-

monodromic5), if, for some choice of Að0; lÞ, the matrices Aðn; lÞ are meromorphic in l,
with poles whose positions and orders do not depend on n A Zd .

It is clear how to extend this definition to functions on the covering ~SS.

Theorem 24. The discrete logarithmic function is isomonodromic.

This is an immediate consequence of the following statement, which we formulate
for functions on S1 ¼ ðZþÞd for notational simplicity, but which holds actually for any
octant S��.

Proposition 25. Let

Að0; lÞ ¼ 1

l

0 1

0 0

� �
;ð48Þ

and let there be d sequences f f
ðkÞ

n gyn¼0 satisfying, for all k ¼ 1; . . . ; d, the recurrent rela-

tion (40). Then the discrete holomorphic function f : ðZþÞd ! C, defined by the values

f ðnekÞ ¼ f
ðkÞ

n on the coordinate semi-axes, is isomonodromic. At any point n A ðZþÞd
there

holds:

Aðn; lÞ ¼ Að0ÞðnÞ
l

þ
Pd

l¼1

Bðl ÞðnÞ
lþ al

þ Cðl ÞðnÞ
l� al

� �
;ð49Þ

with

Að0ÞðnÞ ¼ 0 ð�1Þn1þ���þnd

0 0

� �
;ð50Þ

Bðl ÞðnÞ ¼ nl
1 �

�
f ðnÞ þ f ðn� elÞ

�
0 0

� �
;ð51Þ

Cðl ÞðnÞ ¼ nl

0 f ðnþ elÞ þ f ðnÞ
0 1

� �
:

Moreover, at any point n A ðZþÞd
there holds an isomonodromic constraint,

Pd

l¼1

nl

�
f ðnþ elÞ � f ðn� elÞ

�
¼ 1 � ð�1Þn1þ���þnd :ð52Þ

Proof. The matrices A satisfy a recurrent relation, which results by di¤erentiating
(46),

Aðnþ ek; lÞ ¼
dLkðn; lÞ

dl
L�1

k ðn; lÞ þ Lkðn; lÞAðn; lÞL�1
k ðn; lÞ:ð53Þ

5) This term originates in the theory of integrable nonlinear di¤erential equations, where it is used for

solutions with a similar analytic characterization [IN].
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Fix some k ¼ 1; . . . ; d, and consider the matrices Aðnek; lÞ along the kth coordinate semi-
axis. Formula (53) shows that singularities of Aðnek; lÞ are poles at l ¼ 0 and at l ¼Gak.
It is easy to see that the pole l ¼ 0 remains simple for all n > 0. As one can show (see
Lemma 43 in Appendix A), the recurrent relation (40) for fn ¼ f ðnekÞ assures that the
poles l ¼Gak are simple for all n > 0. So, under condition (40) there holds:

Aðnek; lÞ ¼
Að0ÞðnekÞ

l
þ BðkÞðnekÞ

lþ ak

þ CðkÞðnekÞ
l� ak

;ð54Þ

i.e., eq. (49) is valid on the kth coordinate semi-axis, with Bðl ÞðnekÞ ¼ Cðl ÞðnekÞ ¼ 0 for
l 3 k. The proof continues by induction, whose scheme follows filling out the hull of the
coordinate semi-axes: each new point is of the form nþ ej þ ek, j 3 k, with three points
n, nþ ej and nþ ek known from the previous steps, where the statements of the proposition
are assumed to hold. So, suppose that (49) holds at nþ ej, nþ ek. The new matrix
Aðnþ ej þ ek; lÞ is obtained by two alternative formulas,

Aðnþ ej þ ek; lÞ ¼
dLkðnþ ej; lÞ

dl
þLkðnþ ej; lÞAðnþ ej; lÞ

� �
L�1

k ðnþ ej; lÞ;ð55Þ

and the one with interchanged roles of k and j. Eq. (55) shows that all poles of
Aðnþ ej þ ek; lÞ remain simple, with the possible exception of l ¼Gak, whose orders
might increase by 1. The same statement holds with k replaced by j. Therefore, all poles
remain simple, and (49) holds at nþ ej þ ek. The proof of formulas (50), (51) and of the
constraint (52) is based on computations presented in Appendix A. r

The reason for considering isomonodromic solutions on octants like ðZþÞd is
clear from (40): indeed, this second-order ordinary di¤erence equation has a special
form, enforcing that its solution on the semi-axis nf 0 is completely defined by the values
at n ¼ 0; 1, and does not depend on f�1. Thus, a discrete holomorphic function from
Proposition 25 is uniquely defined by its initial values f ð0Þ ¼ f0 and f ðekÞ ¼ f

ðkÞ
1 for

k ¼ 1; . . . ; d.

Remark. The isomonodromic constraint (52) was found in [NRGO], without any
relation to the discrete logarithmic function. Observe that our formulation allows us to
avoid a major computational problem arising in [NRGO] in this context, namely that of
compatibility of the constraint with the discrete Cauchy-Riemann equations.

Summing up: discrete Green’s function on a quasicrystallic quad-graph is the real part

(i.e., restriction to VðGÞ) of the discrete logarithmic function. The latter can be extended to a

function on a branched covering of certain octants Sm HZd , m ¼ 1; . . . ; 2d. On each such

octant, the discrete logarithmic function is discrete holomorphic, with the distinctive property

of being isomonodromic. This function is uniquely defined either by the integral representation

(39), or by the values on the coordinate semi-axes (42), or else by the initial values (41) and

the constraint (52).

9. 3D consistent cross-ratio equations

The cross-ratio system is one of the simplest and at the same time one of the most
fundamental and important nonlinear integrable systems on quad-graphs. Recall the defi-
nition of the cross-ratio of four complex numbers:
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qðz0; z1; z2; z3Þ ¼
ðz0 � z1Þðz2 � z3Þ
ðz1 � z2Þðz3 � z0Þ

;ð56Þ

which yields the property

qðz0; z1; z2; z3Þ ¼ 1=qðz1; z2; z3; z0Þ:ð57Þ

Let there be given a function Q : EðGÞ t EðG�Þ ! C satisfying the condition

Qðe�Þ ¼ 1=QðeÞ; Ee A EðGÞ:ð58Þ

Definition 26. A function z : VðDÞ ! C is said to solve the cross-ratio equations on
D corresponding to the function Q, if for any positively oriented face ðx0; y0; x1; y1Þ of D
there holds:

q
�
zðx0Þ; zðy0Þ; zðx1Þ; zðy1Þ

�
¼ Qðx0; x1Þ ¼ 1=Qðy0; y1Þ:ð59Þ

Like in Sect. 5, an interesting question is on the 3D consistency of the system of cross-
ratio equations corresponding to a given function Q.

Theorem 27. The function Q : EðGÞ t EðG�Þ ! C can be extended to EðGÞ t EðG�Þ
giving a 3D consistent system of cross-ratio equations, if and only if the following condition is

satisfied:

Q
e A starðx0;GÞ

QðeÞ ¼ 1;
Q

e� A starðy0;G
�Þ

Qðe�Þ ¼ 1; Ex0 A VðGÞ; y0 A VðG�Þ:ð60Þ

Proof. We proceed as in the proof of Theorem 10. Consider a flower of quadri-
laterals around x0, with ek ¼ ðx0; xkÞ, e�k ¼ ðyk�1; ykÞ. Build the extension of this flower to
the third dimension, as in Sect. 4. Denote

Qðx0; xkÞ ¼ QðekÞ ¼ Qk; Qðx0; ŷykÞ ¼ mk:ð61Þ

Then there holds a statement analogous to Lemma 11: the cross-ratio equations are 3D
consistent on the cube over the kth petal, if and only if

mk�1 ¼ Qkmk:ð62Þ

This is done straightforward, as in the proof of Lemma 11. For the cube over the petal with
k ¼ 1, one determines on the first step the values of z at x1, ŷy0 and ŷy1 from

q
�
zðx0Þ; zðy0Þ; zðx1Þ; zðy1Þ

�
¼ Q1;

q
�
zðx0Þ; zðy0Þ; zð ŷy0Þ; zðx̂x0Þ

�
¼ m0;

q
�
zðx0Þ; zðy1Þ; zð ŷy1Þ; zðx̂x0Þ

�
¼ m1:

On the second step one has three alternative values for zðx̂x1Þ from
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q
�
zðx̂x0Þ; zð ŷy0Þ; zðx̂x1Þ; zð ŷy1Þ

�
¼ Q1;

q
�
zðy1Þ; zðx1Þ; zðx̂x1Þ; zð ŷy1Þ

�
¼ m0;

q
�
zðy0Þ; zðx1Þ; zðx̂x1Þ; zð ŷy0Þ

�
¼ m1:

A direct computation shows that these three values for zðx̂x1Þ coincide if and only if
m0 ¼ Q1m1, and then

x̂x1 ¼ m0 y0ðy1 � x̂x0Þ þ m1 y1ðx̂x0 � y0Þ þ x̂x0ðy0 � y1Þ
m0ðy1 � x̂x0Þ þ m1ðx̂x0 � y0Þ þ ðy0 � y1Þ

:

Thus, (62) is proved. This relation yields immediately that running around x0 returns back
an (arbitrary) initial m0, if and only if the first condition in (60) holds. The second one fol-
lows similarly. r

Corollary 28. The integrability condition (60) for the function Q : EðGÞ t EðG�Þ ! C

is equivalent to the existence of a labeling a2 : EðDÞ ! C of undirected edges of D, such that,
in notations of Fig. 8,

Qðx0; x1Þ ¼
1

Qðy0; y1Þ
¼ a2

0

a2
1

:ð63Þ

This formula assures the 3D consistency of the cross-ratio equations, if one assumes that all

vertical edges of D carry one and the same label l2 A C.

Let the labeling a2 come from a labeling a : ~EEðDÞ ! C of directed edges. Let
p : VðDÞ ! C be a parallelogram realization of D defined by pðyÞ � pðxÞ ¼ aðx; yÞ. Then
the cross-ratio equations are written as

q
�
zðx0Þ; zðy0Þ; zðx1Þ; zðy1Þ

�
¼ a2

0

a2
1

¼ q
�

pðx0Þ; pðy0Þ; pðx1Þ; pðy1Þ
�
:ð64Þ

In other words, the cross-ratio of the vertices of the f -image of any quadrilateral
ðx0; y0; x1; y1Þ A FðDÞ is equal to the cross-ratio of the vertices of the corresponding paral-
lelogram.

Proposition 29. The cross-ratio equations (64) admit a zero curvature representation

with the values in GL2ðCÞ½l�, with transition matrices along ðx; yÞ A ~EEðDÞ given by

Lðy; x; a; lÞ ¼
1 zðxÞ � zðyÞ

la2=
�
zðxÞ � zðyÞ

�
1

� �
;ð65Þ

where a ¼ pðyÞ � pðxÞ:

Proof. This result is easy to check. To derive it systematically using 3D consistency
and the procedure outlined at the end of Sect. 4, observe that eq. (64) on the vertical face
ðx; y; ŷy; x̂xÞ can be written as

q
�
zðxÞ; zðyÞ; zð ŷyÞ; zðx̂xÞ

�
¼ la2 , zð ŷyÞ � zðyÞ ¼ Lðy; x; a; lÞ �

�
zðx̂xÞ � zðxÞ

�
;
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where l ¼
�

pðx̂xÞ � pðxÞ
��2

, and the matrices Lðy; x; a; lÞ are as in (65). One easily shows
that these matrices L form a zero curvature representation with values in GL2ðCÞ½l�, i.e.,
that (11) holds as it stands, and not only up to a scalar factor. r

The main result of the present section can be formulated as follows. Integrable cross-

ratio equations on a quad-graph D come from parallelogram immersions of D in C, the co-

e‰cients Q being the cross-ratios of the corresponding parallelograms. In the case of unitary

values Q A S1 the parallelograms are actually rhombi.

10. Circle patterns and the cross-ratio system

Definition 30. A Delaunay decomposition of C is a cell decomposition G such that
the boundary of each face is a polygon inscribed in a circle, and these circles have no ver-
tices in their interior. These circles build a circle pattern with the combinatorics of G.

The vertices z : VðGÞ ! C of a Delaunay decomposition are the intersection points of
the circles of the corresponding pattern. The circle of the pattern corresponding to a face
y A FðGÞ will be denoted by CðyÞ. If two faces y0; y1 A FðGÞ have a common edge ðx0; x1Þ,
then the circles Cðy0Þ and Cðy1Þ intersect in the points zðx0Þ, zðx1Þ. In other words, the
edges of G correspond to pairs of neighboring (intersecting) circles of the pattern. Similarly,
if several faces y1; y2; . . . ; ym of G meet at one vertex x0 A VðGÞ, then the corresponding
circles Cðy1Þ;Cðy2Þ; . . . ;CðymÞ also have a common intersection point zðx0Þ.

Given a circle pattern with the combinatorics of G, we can extend the function z to
the vertices of the dual graph G�, setting

zðyÞ ¼ center of the circle CðyÞ; y A FðGÞFVðG�Þ:

After this extension, the map z is defined on all of VðDÞ ¼ VðGÞ t VðG�Þ, where D is the
double of G. Consider a face of the double. Its vertices x0, x1, y0, y1 correspond to the in-
tersection points and to the centers of two neighboring circles C0, C1 of the pattern. The
following statement is obtained by a simple computation.

Figure 12. Circle pattern.
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Lemma 31. If f is the intersection angle of C0, C1, as on Fig. 13, then

q
�
zðx0Þ; zðy0Þ; zðx1Þ; zðy1Þ

�
¼ expð2ifÞ:ð66Þ

It will be convenient to assign the intersection angle f of Cðy0Þ, Cðy1Þ to the
edge ðy0; y1Þ A EðG�Þ. Extend the function f : EðG�Þ ! ð0; pÞ to EðGÞ by setting
fðeÞ ¼ p� fðe�Þ.

Proposition 32. Let G be Delaunay decomposition of a plane, and consider a circle

pattern with the combinatorics of G and with the intersection angles f : EðG�Þ ! ð0; pÞ. Let

fzðxÞ : x A VðGÞg and fzðyÞ : y A VðG�Þg consist of intersection points of the circles, resp. of

their centers. Then z : VðDÞ ! C satisfies a system of cross-ratio equations with the function

Q : EðGÞ t EðG�Þ ! S1 defined as QðeÞ ¼ exp
�
2ifðeÞ

�
. There holds:

Q
e A starðx0;GÞ

exp
�
2ifðeÞ

�
¼ 1; Ex0 A VðGÞ:ð67Þ

The following condition is necessary and su‰cient for the integrability of the system of cross-

ratio equations:

Q
e� A starðy0;G

�Þ
exp

�
2ifðe�Þ

�
¼ 1; Ey0 A VðG�Þ;ð68Þ

i.e., for each circle of the pattern the sum of its intersection angles with all neighboring circles

of the pattern vanishes ðmod pÞ.

Proof. The relation (67) is obvious for geometrical reasons: for an arbitrary com-
mon intersection point of circles of the pattern, the sum of their consecutive pairwise in-
tersection angles vanishes ðmod pÞ. Now the claim follows from Theorem 27. r

We can formulate the main result of this section as follows. Combinatorial data G and

intersection angles f : EðG�Þ ! ð0; pÞ belong to an integrable circle pattern, if and only if

they admit an isoradial realization. This latter realization gives a rhombic immersion of the

double D, and generates also a dual isoradial circle pattern with the combinatorial data G�

and intersection angles f : EðGÞ ! ð0; pÞ.

Figure 13. Two intersecting circles.
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11. Hirota system

We have seen that integrable circle patterns deliver solutions z : VðDÞ ! C to in-
tegrable cross-ratio systems. These solutions are characterized as follows: the z-image of
any quadrilateral ðx0; y0; x1; y1Þ from FðDÞ is a kite with two pairs of sides of equal length
(incident to the white vertices zðy0Þ, zðy1Þ), and with the prescribed angle p� f at the black
vertices zðx0Þ, zðx1Þ. The following transformation of the cross-ratio system is useful in
order to single out this class of kite solutions.

Definition 33. Let a : ~EEðDÞ ! C be a labeling, and let p : VðDÞ ! C be the
corresponding parallelogram realization of D defined by pðyÞ � pðxÞ ¼ aðx; yÞ. A function
w : VðDÞ ! C is said to solve the corresponding Hirota system, if for any positively ori-
ented face ðx0; y0; x1; y1Þ A FðDÞ there holds, in the notations of Fig. 7:

a0wðx0Þwðy0Þ þ a1wðy0Þwðx1Þ � a0wðx1Þwðy1Þ � a1wðy1Þwðx0Þ ¼ 0;ð69Þ

or, in a more invariant fashion,

wðx0Þwðy0Þ
�

pðy0Þ � pðx0Þ
�
þ wðy0Þwðx1Þ

�
pðx1Þ � pðy0Þ

�
ð70Þ

þ wðx1Þwðy1Þ
�

pðy1Þ � pðx1Þ
�
þ wðy1Þwðx0Þ

�
pðx0Þ � pðy1Þ

�
¼ 0:

Obviously, a black-white scaling, i.e., a transformation w ! cw on VðGÞ and w ! c�1w

on VðG�Þ with a constant c, maps solutions of the Hirota system into solutions. We will
identify solutions related by such a transformation.

Proposition 34. Let w : VðDÞ ! C be a solution of the Hirota system. Then the

relation

zðyÞ � zðxÞ ¼ aðx; yÞwðxÞwðyÞ ¼ wðxÞwðyÞ
�

pðyÞ � pðxÞ
�
; Eðx; yÞ A ~EEðDÞ;ð71Þ

correctly defines a unique (up to an additive constant) function z : VðDÞ ! C which is a so-

lution of the cross-ratio system (64). Conversely, for any solution z of the cross-ratio system

(64), relation (71) defines a function w correctly and uniquely (up to a black-white scaling);
this function w solves the Hirota system (69).

Proof. Simple calculation based on closing conditions around the quadrilateral
ðx0; y0; x1; y1Þ. r

Proposition 35. Let all a A S1, so that p : VðDÞ ! C is a rhombic realization of D.
Let z : VðDÞ ! C be a solution of the corresponding cross-ratio system (64). It corresponds

to a circle pattern, if and only if the corresponding function w satisfies the condition

wðxÞ A S1; wðyÞ A Rþ; Ex A VðGÞ; y A VðG�Þ:ð72Þ

The values w : VðG�Þ ! Rþ have then the interpretation of the radii of the circles.

Proof. The function z corresponds to a circle pattern, if and only if all elementary
quadrilaterals

�
zðx0Þ; zðy0Þ; zðx1Þ; zðy1Þ

�
are of the kite form with the properties:
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– the pairs of edges incident with white vertices have equal length,

– the angles at black vertices are equal to the corresponding angles of the underlying
rhombi.

As easily seen, these conditions are equivalent to:

jwðx0Þj
jwðx1Þj

¼ 1 and
wðy0Þ
wðy1Þ

A Rþ;

respectively. This yields (72), possibly upon a black-white scaling. r

Remark. The conditions (72) form an admissible reduction of the Hirota system
corresponding to a rhombic realization, in the following sense: if any three of the four
points wðx0Þ, wðy0Þ, wðx1Þ, wðy1Þ satisfy the condition (72), then so does the fourth one.
This is immediately seen, if one rewrites the Hirota equation (69) in one of the equivalent
forms:

wðx1Þ
wðx0Þ

¼ a1wðy1Þ � a0wðy0Þ
a1wðy0Þ � a0wðy1Þ

, wðy1Þ
wðy0Þ

¼ a0wðx0Þ þ a1wðx1Þ
a0wðx1Þ þ a1wðx0Þ

:ð73Þ

Proposition 36. (a) Let a : ~EEðDÞ ! C be a labeling, and let p : VðDÞ ! C be the

corresponding parallelogram realization of D defined by pðyÞ � pðxÞ ¼ aðx; yÞ. Then the

corresponding Hirota system is 3D consistent.

(b) Let all a A S1, so that p : VðDÞ ! C is a rhombic realization of D. Consider a

solution w : VðDÞ ! C corresponding to a circle pattern with the combinatorics of G, i.e.,
satisfying (72). Consider its Bäcklund transformation ŵw : VðDÞ ! C with an arbitrary pa-

rameter l A S1 and with an arbitrary initial value ŵwðx0Þ A Rþ or ŵwðy0Þ A S1. Then there

holds:

ŵwðxÞ A Rþ; ŵwðyÞ A S1; Ex A VðGÞ; y A VðG�Þ;ð74Þ

so that ŵw corresponds to a circle pattern with the combinatorics of G�.

Proof. Statement (a) is a matter of a direct computation. In the notations of Fig. 9,
suppose that the Hirota equation (69) holds on all faces of the cube, wherein the vertical
edges carry the (arbitrary) label l. One finds that all three alternative ways to compute
wðx̂x1Þ lead to one and the same result, namely

wðx̂x1Þ ¼
lða2

0 � a2
1Þwðy0Þwðy1Þ þ a1ðl2 � a2

0Þwðy0Þwðx̂x0Þ þ a0ða2
1 � l2Þwðy1Þwðx̂x0Þ

lða2
0 � a2

1Þwðx̂x0Þ þ a1ðl2 � a2
0Þwðy1Þ þ a0ða2

1 � l2Þwðy0Þ
:

Statement (b) follows from the Remark above. r

Proposition 37. The Hirota system (69) admits a zero curvature representation with

the values in GL2ðCÞ½l�, with transition matrices along ðx; yÞ A ~EEðDÞ given by

Lðy; x; a; lÞ ¼ 1 �awðyÞ
�la=wðxÞ wðyÞ=wðxÞ

� �
; where a ¼ pðyÞ � pðxÞ:ð75Þ
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Proof. The matrix (75) is obtained also directly from (65) by the substitution (71),
followed by a simple gauge transformation

L 7! 1 0

0 wðyÞ

� �
L

1 0

0 1=wðxÞ

� �
:

Alternatively, a systematic derivation of this result is based on the 3D consistency and the
procedure outlined at the end of Sect. 4. r

The main result of the present section is as follows. Integrable circle patterns can be

alternatively described by solutions of the Hirota system with a special property of being real-

valued on VðGÞ and unimodular on VðG�Þ.

12. Linearization

Let a : ~EEðDÞ ! C be a labeling, and let p : VðDÞ ! C be the corresponding paral-
lelogram realization of D defined by pðyÞ � pðxÞ ¼ aðx; yÞ. Then the formula

z0ðxÞ ¼ pðxÞ; w0ðxÞ ¼ 1; Ex A VðDÞ;

gives a (trivial) solution of the cross-ratio system (64) and the corresponding (trivial)
solution of the Hirota system. Suppose that z0 : VðDÞ ! C belongs to a di¤erentiable one-
parameter family of solutions z� : VðDÞ ! C, � A ð��0; �0Þ, of the same cross-ratio system,
and denote by w� : VðDÞ ! C the corresponding solutions of the Hirota system. Denote

g ¼ dz�

d�

				
�¼0

; f ¼ w�1
�

dw�

d�

� �
�¼0

:ð76Þ

Proposition 38. Both functions f ; g : VðDÞ ! C solve discrete Cauchy-Riemann

equations (23).

Proof. By di¤erentiating (71), we obtain a relation between the functions
f ; g : VðDÞ ! C:

gðyÞ � gðxÞ ¼
�

f ðxÞ þ f ðyÞ
��

pðyÞ � pðxÞ
�
; Eðx; yÞ A ~EEðDÞ:ð77Þ

The proof of proposition is based on this relation solely. Indeed, the closeness condition for
the form on the right-hand side reads:

�
f ðx0Þ þ f ðy0Þ

��
pðy0Þ � pðx0Þ

�
þ
�

f ðy0Þ þ f ðx1Þ
��

pðx1Þ � pðy0Þ
�

þ
�

f ðx1Þ þ f ðy1Þ
��

pðy1Þ � pðx1Þ
�
þ
�

f ðy1Þ þ f ðx0Þ
��

pðx0Þ � pðy1Þ
�
¼ 0;

which is equivalent to (23) for the function f . Similarly, the closeness condition for f , that
is,

�
f ðx0Þ þ f ðy0Þ

�
�
�

f ðy0Þ þ f ðx1Þ
�
þ
�

f ðx1Þ þ f ðy1Þ
�
�
�

f ðy1Þ þ f ðx0Þ
�
¼ 0;
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yields:

gðy0Þ � gðx0Þ
pðy0Þ � pðx0Þ

� gðx1Þ � gðy0Þ
pðx1Þ � pðy0Þ

þ gðy1Þ � gðx1Þ
pðy1Þ � pðx1Þ

� gðx0Þ � gðy1Þ
pðx0Þ � pðy1Þ

¼ 0:

Under the condition pðy0Þ � pðx0Þ ¼ pðx1Þ � pðy1Þ, this is equivalent to (23) for g. r

Remark. This proof shows that, given a discrete holomorphic function
f : VðDÞ ! C, relation (77) correctly defines a unique, up to an additive constant, function
g : VðDÞ ! C, which is also discrete holomorphic. Conversely, for any g satisfying the
discrete Cauchy-Riemann equations (23), relation (77) defines a function f correctly and
uniquely (up to an additive black-white constant); this function f also solves the discrete
Cauchy-Riemann equations (23). Actually, formula (77) expresses that the discrete holo-
morphic function f is the discrete derivative of g, so that g is obtained from f by discrete

integration. This operation was considered in [D1], [D2], [M1].

Summarizing, we have the following statement.

Theorem 39. (a) A tangent space to the set of solutions of an integrable cross-ratio

system, at a point corresponding to a rhombic embedding of a quad-graph, consists of discrete

holomorphic functions on this embedding. This holds in both descriptions of the above set: in

terms of variables z satisfying the cross-ratio equations, and in terms of variables w satisfying

the Hirota equations. The corresponding two descriptions of the tangent space are related by

taking the discrete derivative (resp. anti-derivative) of discrete holomorphic functions.

(b) A tangent space to the set of integrable circle patterns of a given combinatorics, at a

point corresponding to an isoradial pattern, consists of discrete holomorphic functions on the

rhombic embedding of the corresponding quad-graph, which take real values at white vertices

and purely imaginary values at black ones. This holds in the description of circle patterns in

terms of circle radii and rotation angles at intersection points (Hirota equations).

13. Isomonodromic discrete power function

Like in Sect. 6, one can consider functions z : Zd ! C and w : Zd ! C, satisfying,
on each elementary square of Zd , the cross-ratio and the Hirota equation, respectively, and
ask about isomonodromic solutions. As shown in [AB1], [AB2], [BH], this leads to a dis-
crete analog of the power function. Since the latter references contain a detailed presenta-
tion of these results in terms of the cross-ratio variables z, we restrict ourselves here to
similar results in terms of the Hirota variables w. (Recall that transition matrices in these
two formulations actually coincide, up to a simple gauge transformation by diagonal ma-
trices which do not depend on l.)

Transition matrices for the Hirota system on Zd are:

Lkðn; lÞ ¼
1 �akwðnþ ekÞ

�lak=wðnÞ wðnþ ekÞ=wðnÞ

� �
:ð78Þ

With these transition matrices, isomonodromic solutions are defined in exactly the same
manner as in Sect. 8.
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Proposition 40. Let

Að0; lÞ ¼ 1

l

�g=2 0

0 g=2

� �
;ð79Þ

and let there be d sequences fw
ðkÞ
n gyn¼0 satisfying, for all k ¼ 1; . . . ; d, the recurrent relation

n
wnþ1 � wn�1

wnþ1 þ wn�1
¼ g� 1

2

� ��
1 � ð�1Þn

�
:ð80Þ

Then the solution w : ðZþÞd ! C of the Hirota system, defined by the values wðnekÞ ¼ w
ðkÞ
n

on the coordinate semi-axes, is isomonodromic. At any point n A ðZþÞd
there holds:

Aðn; lÞ ¼ Að0ÞðnÞ
l

þ
Pd

l¼1

Bðl ÞðnÞ
l� a�2

l

;ð81Þ

with

Að0ÞðnÞ ¼ �g=2 �
0 g=2

� �
;ð82Þ

Bðl ÞðnÞ ¼ nl

wðnþ elÞ þ wðn� elÞ
wðnþ elÞ alwðnþ elÞwðn� elÞ

1=al wðn� elÞ

� �
:ð83Þ

The upper right entry of the matrix Að0ÞðnÞ, denoted by the asterisk in (82), is actually given

by

A
ð0Þ
12 ðnÞ ¼ �

Pd

l¼1

B
ðl Þ
12 ðnÞ:ð84Þ

Moreover, at any point n A ðZþÞd
there holds an isomonodromic constraint,

Pd

l¼1

nl

wðnþ elÞ � wðn� elÞ
wðnþ elÞ þ wðn� elÞ

¼ g� 1

2

� ��
1 � ð�1Þn1þ���þnd

�
:ð85Þ

Proof. The scheme of the proof is the same as for Proposition 25. Fix some
k ¼ 1; . . . ; d, and consider the matrices Aðnek; lÞ along the kth coordinate semi-axis. It
follows from formula (53) that singularities of Aðnek; lÞ are poles at l ¼ 0 and at l ¼ a�2

k .
While the pole l ¼ 0 automatically remains simple for all n > 0, this is not necessarily so
for the pole l ¼ a�2

k . As one can show (see Lemma 44 in Appendix B), the recurrent rela-
tion (80) for wn ¼ f ðnekÞ assures that the pole l ¼ a�2

k is simple for all n > 0, and

Aðnek; lÞ ¼
Að0ÞðnekÞ

l
þ BðkÞðnekÞ

l� a�2
k

;ð86Þ

i.e., eq. (81) is valid on the kth coordinate semi-axis, with Bðl ÞðnekÞ ¼ 0 for l 3 k. To prove
that eq. (81) is valid also elsewhere, one argues by induction: suppose that (81) holds at
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nþ ej, nþ ek. Then eq. (55) shows that all poles of Aðnþ ej þ ek; lÞ remain simple, with
the possible exception of l ¼ a�2

k , whose order might increase by 1. The same statement
holds with k replaced by j. Hence, all poles remain simple. Therefore, (81) holds at
nþ ej þ ek, possibly up to a term which does not vanish with l ! y. Such a term is ab-
sent, if the right-hand side of (53) vanishes with l ! y, that is, if

0 0

1 0

� ��
Að0ÞðnÞ þ

Pd

l¼1

Bðl ÞðnÞ
�

0 0

1 0

� �
¼ 0:ð87Þ

Clearly, the latter equation is equivalent to (84). Computations towards the proof of (84),
as well as of (82), (83) and of constraint (85), are presented in Appendix B. r

Remark. Again, the isomonodromic constraint (85) was found in [NRGO]. In the
approach of that paper, consistency of the constraint with the Hirota equations (called
lattice MKdV there) is a di‰cult problem, only manageable with the help of a computer
system for symbolic manipulations. In our formulation, this comes for free, as a natural
consequence of the construction based on the 3D consistency of the Hirota system.

A solution of the Hirota system given in Proposition 40 is completely defined by its

initial values wð0Þ ¼ w0 and wðekÞ ¼ w
ðkÞ
1 for k ¼ 1; . . . ; d. The choice

w0 ¼ 1; w
ðkÞ
1 ¼ expðirkÞ; k ¼ 1; . . . ; d;ð88Þ

with arbitrary constants rk, leads to the following solution on the semi-axes:

w
ðkÞ
2n ¼

Qn
l¼1

l� 1 þ g

l� g
; w

ðkÞ
2nþ1 ¼ expðirkÞ:ð89Þ

Observe the asymptotics at n ! y,

w
ðkÞ
2n ¼ cðgÞn2g�1

�
1 þ Oðn�1Þ

�
:ð90Þ

The following special choice of rk defines the discrete analog of the function w 7! w2g�1 on

ðZþÞd :

irk ¼ ð2g� 1Þ log ak; so that wðekÞ ¼ a
2g�1
k :ð91Þ

Remark. In the variables z the initial values fz
ðkÞ
n gyn¼0 on the semi-axes are given by

the following analog (and consequence) of (80):

n
ðznþ1 � znÞðzn � zn�1Þ

znþ1 � zn�1
¼ gzn;ð92Þ

and then the corresponding solution of the cross-ratio equation satisfies an analog of (85):

Pd

j¼1

nj

�
zðnþ ejÞ � zðnÞ

��
zðnÞ � zðn� ejÞ

�
zðnþ ejÞ � zðn� ejÞ

¼ gzðnÞ:ð93Þ
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Recall also [AB1], [AB2], [BH] that the discrete analog of the function z 7! z2g on ðZþÞd is
characterized by the constraint (92) and the following choice of the initial conditions:

zð0Þ ¼ 0; zðekÞ ¼ a
2g
k ; k ¼ 1; . . . ; d:ð94Þ

Clearly, this choice of initial conditions is equivalent to (88), if one takes into account the
basic relation (71) between the variables z and w.

Like in Sect. 8, isomonodromic solutions similar to those of Proposition 40 can be
defined not only on ðZþÞd but on any octant S��. They are characterized by the initial data

wð0Þ ¼ 0; wð�kekÞ ¼ ð�kakÞ2g�1; k ¼ 1; . . . ; d;ð95Þ

and give discrete analogs of the function w 7! w2g�1 on S��. Such a solution is fixed by
an independent choice of branches of the function w2g�1 at the points w ¼ �kak. This is
equivalent to choosing the branches of the function log w, because of

w2g�1 ¼ exp
�
ð2g� 1Þ log w

�
:

Definition 41. The discrete power function w2g�1 on ~SS is a complex-valued function
whose restriction to ~SSm is defined as the unique isomonodromic solution w : Sm ! C of the
Hirota system on the corresponding Sm with the initial data (95) fixed by the condition (38).

Clearly, the discrete power function takes real values at the white points and uni-
modular values at the black points, so that it corresponds to a circle pattern.

Proposition 42. The tangent vector to the space of integrable circle patterns along the

curve consisting of patterns w2g�1, at the point corresponding to g ¼ 1=2, is the discrete log-

arithmic function.

Proof. We have to prove that the discrete logarithm f and the discrete power func-
tion w2g�1 are related by

f ðnÞ ¼ 1

2

d

dg
w2g�1ðnÞ

� �
g¼1=2

:

It is enough to prove this on the coordinate semi-axes of each octant Sm. But this follows
by di¤erentiating with respect to g constraint (80) and initial conditions (95) at the point
g ¼ 1=2, where all w ¼ 1: the results coincide with (40) and (41), respectively. r

14. Concluding remarks

Results of Sect. 12 can be generalized to the case of linearization at an arbitrary (not
necessarily parallelogram) solution z0 of the cross-ratio system and the corresponding so-
lution w0 of the Hirota system. In this case the relation between derivatives (76), coming to
replace eq. (77), reads:

gðyÞ � gðxÞ ¼
�

f ðxÞ þ f ðyÞ
��

z0ðyÞ � z0ðxÞ
�
; Eðx; yÞ A ~EEðDÞ:ð96Þ
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Arguments similar to those of the proof of Proposition 38 show that in this case the func-
tion f is discrete holomorphic with respect to z0, i.e.,

f ðy1Þ � f ðy0Þ
f ðx1Þ � f ðx0Þ

¼ z0ðy1Þ � z0ðy0Þ
z0ðx1Þ � z0ðx0Þ

; Eðx0; y0; x1; y1Þ A FðDÞ:

The function g, in general, is no longer discrete holomorphic.

Thus, a tangent space to the set of integrable circle patterns of a given combinatorics,
at an arbitrary point, consists of functions, discrete holomorphic with respect to the kite-
form embedding z0 of the corresponding quad-graph. This holds for the description of cir-
cle patterns in terms of circle radii and rotation angles at intersection points (Hirota equa-
tions). The elements of the tangent space are characterized by the property of being real at
white vertices and purely imaginary at black ones.

A number of constructions of the present paper can be generalized to the case of kite-
form (rather than rhombic) embeddings coming from an integrable circle pattern. In par-
ticular, di¤erentiating the discrete w2g�1 with respect to g at a point g3 1=2, one obtains a
sort of the discrete logarithmic (and Green’s) functions on the kite-form quad-graph cor-
responding to z2g.

A. Appendix. Proof of Proposition 25

Lemma 43. Let the matrix Að0; lÞ be as in (48). Fix some k ¼ 1; . . . ; d. Then singu-

larities of the matrices Aðnek; lÞ are poles at l ¼ 0, l ¼Gak. For n > 0, the poles l ¼ 0 and

l ¼ �ak are simple. The pole l ¼ ak is simple for all n > 0, if and only if recurrent relation

(40) holds for fn ¼ f ðnekÞ. In this case there holds (54) with

Að0ÞðnekÞ ¼
0 ð�1Þn

0 0

� �
;ð97Þ

BðkÞðnekÞ ¼ n
1 �ð fn þ fn�1Þ
0 0

� �
; CðkÞðnekÞ ¼ n

0 fnþ1 þ fn

0 1

� �
:ð98Þ

Proof. Proceeds by induction. Putting matrices (45) into the recurrent definition
(53), one finds immediately:

A11ðnek; lÞ ¼
n

lþ ak

; A22ðnek; lÞ ¼
n

l� ak

;

and the following recurrent relation for the upper right entry of the matrix Að� ; lÞ,

A12

�
ðn þ 1Þek; l

�
¼ lþ ak

l� ak

A12ðnek; lÞ þ
2akð fnþ1 þ fnÞ

l� ak

n þ 1

lþ ak

� n

l� ak

� �
:
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Assume that there holds eq. (54). Then it holds also with n 7! n þ 1, if and only if no higher
order pole appears at l ¼ ak by this transition, what is equivalent to

C
ðkÞ
12 ðnekÞ ¼ nð fnþ1 þ fnÞ:ð99Þ

This has to be considered as a recursive definition of the sequence f fng (isomonodromic
constraint). Under this condition, we find the recurrent relations for the upper right entries
of the matrices Að0Þ, BðkÞ, CðkÞ:

A
ð0Þ
12

�
ðn þ 1Þek

�
¼ �A

ð0Þ
12 ðnekÞ;ð100Þ

B
ðkÞ
12

�
ðn þ 1Þek

�
¼ �ðn þ 1Þð fnþ1 þ fnÞ;ð101Þ

C
ðkÞ
12

�
ðn þ 1Þek

�
¼ ðn þ 1Þð fnþ1 þ fnÞ þ B

ðkÞ
12 ðnekÞ þ C

ðkÞ
12 ðnekÞ þ 2A

ð0Þ
12 ðnekÞ:ð102Þ

Now (100), (101) yield:

A
ð0Þ
12 ðnekÞ ¼ ð�1Þn; B

ðkÞ
12 ðnekÞ ¼ �nð fn þ fn�1Þ:ð103Þ

Adding all three equations (100)–(102), we find that

A
ð0Þ
12 ðnekÞ þ B

ðkÞ
12 ðnekÞ þ C

ðkÞ
12 ðnekÞ ¼ 1;ð104Þ

and this together with (99), (103) implies explicit form (40) of the isomonodromic con-
straint. r

Proof of Proposition 25, continued. As shown in the main text, the induction from
nþ ej, nþ ek to nþ ej þ ek proves formula (49). From the diagonal part of eq. (55) one
easily derives that for all n A Zd ,

A11ðn; lÞ ¼
Pd

l¼1

nl

lþ al

; A22ðn; lÞ ¼
Pd

l¼1

nl

l� al

:

The following formula is an easy consequence of eq. (55) under the limit l ! y:

A
ð0Þ
12 ðnÞ þ

Pd

l¼1

�
B
ðl Þ
12 ðnÞ þ C

ðl Þ
12 ðnÞ

�
¼ 1:ð105Þ

It remains to show that the following relations propagate in the evolution defined by the
recurrent relation (55):

A
ð0Þ
12 ðnÞ ¼ ð�1Þn1þ���þnd ;ð106Þ

B
ðl Þ
12 ðnÞ ¼ �nl

�
f ðnÞ þ f ðn� elÞ

�
; C

ðl Þ
12 ðnÞ ¼ nl

�
f ðnþ elÞ þ f ðnÞ

�
:ð107Þ

Indeed, constraint (52) follows then immediately, because it coincides with (105), if one
takes (106)–(107) into account. Writing now the upper right entry of eq. (55) in length, we
find the following recurrent relations:
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A
ð0Þ
12 ðnþ ej þ ekÞ ¼ �A

ð0Þ
12 ðnþ ejÞ;ð108Þ

B
ðl Þ
12 ðnþ ej þ ekÞ ¼

al � ak

al þ ak

B
ðl Þ
12 ðnþ ejÞð109Þ

� 2ak

al þ ak

ðnl þ dlj þ dlkÞ
�

f ðnþ ej þ ekÞ þ f ðnþ ejÞ
�
;

C
ðl Þ
12 ðnþ ej þ ekÞ ¼

al þ ak

al � ak

C
ðl Þ
12 ðnþ ejÞð110Þ

� 2ak

al � ak

ðnl þ dljÞ
�

f ðnþ ej þ ekÞ þ f ðnþ ejÞ
�
;

the latter formula being valid for l 3 k only. For C
ðkÞ
12 ðnþ ej þ ekÞ there holds a similar but

much longer formula, which we actually will not need. Now, eq. (108) readily yields (106).
By the induction hypothesis, eqs. (109) and (110) with l 3 k can be rewritten as

B
ðl Þ
12 ðnþ ej þ ekÞ

¼ �ðnl þ dljÞ
al � ak

al þ ak

�
f ðnþ ejÞ þ f ðnþ ej � elÞ

�
þ 2ak

al þ ak

�
f ðnþ ej þ ekÞ þ f ðnþ ejÞ

�� �
;

C
ðl Þ
12 ðnþ ej þ ekÞ

¼ ðnl þ dljÞ
al þ ak

al � ak

�
f ðnþ ej þ elÞ þ f ðnþ ejÞ

�
� 2ak

al � ak

�
f ðnþ ej þ ekÞ þ f ðnþ ejÞ

�� �
:

But the discrete Cauchy-Riemann equation for the corresponding elementary squares imply
that the latter two equations are equivalent to

B
ðl Þ
12 ðnþ ej þ ekÞ ¼ �ðnl þ dljÞ

�
f ðnþ ej þ ekÞ þ f ðnþ ej þ ek � elÞ

�
;

C
ðl Þ
12 ðnþ ej þ ekÞ ¼ ðnl þ dljÞ

�
f ðnþ ej þ ek þ elÞ þ f ðnþ ej þ ekÞ

�
;

which coincide with (107) at nþ ej þ ek for l 3 k. By interchanging the roles of k and j, we
see that (107) at nþ ej þ ek holds also for l 3 j, and thus for all l ¼ 1; . . . ; d. r

B. Appendix. Proof of Proposition 40

Lemma 44. Let the matrix Að0; lÞ be as in (79). Fix some k ¼ 1; . . . ; d. Then singu-

larities of the matrices Aðnek; lÞ are poles at l ¼ 0, l ¼ a�2
k . The pole l ¼ 0 is simple. The

pole l ¼ a�2
k is simple for all n > 0, if recurrent relation (92) holds for wn ¼ wðnekÞ. In this

case there holds (86) with

Að0ÞðnekÞ ¼
�g=2 �

0 g=2

� �
;ð111Þ

BðkÞðnekÞ ¼
n

wnþ1 þ wn�1

wnþ1 akwnþ1wn�1

1=ak wn�1

� �
:ð112Þ
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The upper right entry of the matrix Að0ÞðnekÞ, denoted in (111) by the asterisk, is given by

A
ð0Þ
12 ðnekÞ ¼ �B

ðkÞ
12 ðnekÞ:ð113Þ

Proof. Assume that eq. (86) holds. Put matrices (78) into recurrent definition (53). It
is easy to see that no higher order pole appears at l ¼ a�2

k by the transition n 7! n þ 1, if
and only if

1 �akwnþ1

�1=ðakwnÞ wnþ1=wn

� �
BðkÞðnekÞ

1 akwn

1=ðakwnþ1Þ wn=wnþ1

� �
¼ 0:

This is equivalent to

ð1 �akwnþ1ÞBðkÞðnekÞ
1

1=ðakwnþ1Þ

� �
¼ 0;ð114Þ

or, written in length, to

B
ðkÞ
22 ðnekÞ � B

ðkÞ
11 ðnekÞ þ akwnþ1B

ðkÞ
21 ðnekÞ �

1

akwnþ1
B
ðkÞ
12 ðnekÞ ¼ 0:ð115Þ

This is a recursive definition of the sequence fwng (an isomonodromic constraint). Notice
that this is a quadratic equation for wnþ1, unlike (99), which was a linear equation for fnþ1.

Under condition (114), or (115), eq. (86) holds also by n 7! n þ 1, possibly with an
additional l-independent term on the right-hand side, which vanishes if and only if (113)
holds. We will show in a moment that this is indeed the case. One readily finds recurrent
relations for the matrices Að0ÞðnekÞ and BðkÞðnekÞ. For the matrix Að0ÞðnekÞ they read:

Að0Þ�ðn þ 1Þek

�
¼ 1 �akwnþ1

0 wnþ1=wn

� �
Að0ÞðnekÞ

1 akwn

0 wn=wnþ1

� �
:ð116Þ

This proves formula (111), with a recurrent relation for the upper right entry:

A
ð0Þ
12

�
ðn þ 1Þek

�
¼ �gakwn þ

wn

wnþ1
A

ð0Þ
12 ðnekÞ:ð117Þ

For the matrix BðkÞðnekÞ the recurrent relations read, in components:

B
ðkÞ
11

�
ðn þ 1Þek

�
¼ gþ B

ðkÞ
22 ðnekÞ �

1

akwnþ1

�
A

ð0Þ
12 ðnekÞ þ B

ðkÞ
12 ðnekÞ

�
;ð118Þ

B
ðkÞ
22

�
ðn þ 1Þek

�
¼ 1 � gþ B

ðkÞ
11 ðnekÞ þ

1

akwnþ1

�
A

ð0Þ
12 ðnekÞ þ B

ðkÞ
12 ðnekÞ

�
;ð119Þ

B
ðkÞ
12

�
ðn þ 1Þek

�
¼ gakwn �

wn

wnþ1
A

ð0Þ
12 ðnekÞ;ð120Þ

B
ðkÞ
21

�
ðn þ 1Þek

�
¼ 1 � g

akwn

þ 1

a2
kwnwnþ1

�
A

ð0Þ
12 ðnekÞ þ 2B

ðkÞ
12 ðnekÞ

�
ð121Þ

� 1

akwn

�
B
ðkÞ
22 ðnekÞ � B

ðkÞ
11 ðnekÞ

�
:
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Comparing now (120) with (117), we see that (113) holds for all n, as claimed above. Upon
using this fact and constraint (115), we can rewrite formulas (118)–(121) as follows:

B
ðkÞ
11

�
ðn þ 1Þek

�
¼ gþ B

ðkÞ
22 ðnekÞ;ð122Þ

B
ðkÞ
22

�
ðn þ 1Þek

�
¼ 1 � gþ B

ðkÞ
11 ðnekÞ;ð123Þ

B
ðkÞ
12

�
ðn þ 1Þek

�
¼ gakwn þ

wn

wnþ1
B
ðkÞ
12 ðnekÞ;ð124Þ

B
ðkÞ
21

�
ðn þ 1Þek

�
¼ 1 � g

akwn

þ wnþ1

wn

B
ðkÞ
21 ðnekÞ:ð125Þ

These relations together with constraint (115) define the sequence fwng and the matrices
BðkÞðnekÞ completely. First of all, there follows from (122), (123):

B
ðkÞ
11 ðnekÞ þ B

ðkÞ
22 ðnekÞ ¼ n; B

ðkÞ
11 ðnekÞ � B

ðkÞ
22 ðnekÞ ¼ g� 1

2

� ��
1 � ð�1Þn

�
:ð126Þ

Further, there follows from (122)–(125):

B
ðkÞ
11

�
ðn þ 1Þek

�
� 1

akwn

B
ðkÞ
12

�
ðn þ 1Þek

�
¼ B

ðkÞ
22 ðnekÞ �

1

akwnþ1
B
ðkÞ
12 ðnekÞ;ð127Þ

B
ðkÞ
22

�
ðn þ 1Þek

�
� akwnB

ðkÞ
21

�
ðn þ 1Þek

�
¼ B

ðkÞ
11 ðnekÞ � akwnþ1B

ðkÞ
21 ðnekÞ:ð128Þ

Subtracting these two equations and taking (115) into account, we find, upon down-
shifting n:

B
ðkÞ
11 ðnekÞ � B

ðkÞ
22 ðnekÞ þ akwn�1B

ðkÞ
21 ðnekÞ �

1

akwn�1
B
ðkÞ
12 ðnekÞ ¼ 0:ð129Þ

This yields that one of the solutions of eq. (115), considered as a quadratic equation for
wnþ1, is wnþ1 ¼ �wn�1. We will be interested in the second one. To find it, add eqs. (115)
and (129) and derive, under the condition wnþ1 þ wn�1 3 0:

B
ðkÞ
12 ðnekÞ ¼ a2

kwnþ1wn�1B
ðkÞ
21 ðnekÞ:ð130Þ

Due to (115), the right-hand sides of (127), (128) are equal to one another. Using there
(130), we finally come to

B
ðkÞ
11 ðnekÞ ¼ akwnþ1B

ðkÞ
21 ðnekÞ; B

ðkÞ
22 ðnekÞ ¼ akwn�1B

ðkÞ
21 ðnekÞ:ð131Þ

This together with (126) yields

B
ðkÞ
21 ðnekÞ ¼

n

akðwnþ1 þ wn�1Þ
;ð132Þ

and now both the expression (112) and explicit form (80) of the constraint (115) follow
readily. r
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Proof of Proposition 40, continued. As demonstrated in the main text, if eq. (81)
holds at nþ ej, nþ ek, then it holds also at nþ ej þ ek, provided eq. (84) is valid. To prove
eq. (84), put expression (78) into eq. (55), and find recurrent relations for the matrices
Að0ÞðnÞ and Bðl ÞðnÞ. Upon use of the abbreviation Lj;kðlÞ ¼ Lkðnþ ej; lÞ, we have:

Að0Þðnþ ej þ ekÞ ¼ Lj;kð0ÞAð0Þðnþ ejÞLjþk;�kð0Þ;ð133Þ

Bðl Þðnþ ej þ ekÞ ¼ Lj;kða�2
l ÞBðl Þðnþ ejÞ

1 � a2
ka

�2
l

Ljþk;�kða�2
l Þ; l 3 k;ð134Þ

BðkÞðnþ ej þ ekÞ ¼ �Lj;kða�2
k Þ

�
Að0Þðnþ ejÞ þ

P
l3k

Bðl Þðnþ ejÞ
1� a2

ka
�2
l

�
Ljþk;�kða�2

k Þð135Þ

þ lower triangular matrix:

Here we used the fact that L�1
j;kðlÞ ¼ Ljþk;�kðlÞ=ð1 � la�2

k Þ. Taking into account that the
upper triangular part of the matrix Lj;kðlÞ does not depend on l (and coincides with
Lj;kð0Þ), we see that eqs. (133)–(135) imply the desired property (84), which proves formula
(81) at nþ ej þ ek.

After eq. (81) has been proved, it is instructive to rewrite eq. (53) as

Aðnþ ek; lÞLkðn; lÞ � Lkðn; lÞAðn; lÞ ¼ dLkðn; lÞ
dl

;

and consider the limit l ! y of this formula. Due to (78) and (81), this limit reads:

�
Að0Þðnþ ekÞ þ

Pd

l¼1

Bðl Þðnþ ekÞ
�

0 0

1 0

� �
ð136Þ

� 0 0

1 0

� ��
Að0ÞðnÞ þ

Pd

l¼1

Bðl ÞðnÞ
�

¼ 0 0

1 0

� �
:

Clearly, this equation contains more information than (87). More precisely, the diagonal
terms of (136) are equivalent to (87), while the lower left entry gives an additional identity.

Further, eq. (133) yields immediately that the matrix Að0Þðnþ ej þ ekÞ retains the
upper triangular form (82). Turning to the matrices Bðl ÞðnÞ, observe first of all that formula
(83) is equivalent to

Bðl ÞðnÞ@ alwðnþ elÞ
1

� ��
1 alwðn� elÞ

�
; tr Bðl ÞðnÞ ¼ nl ;ð137Þ

where the sign@means ‘‘equal up to a scalar factor’’. Suppose that this holds at the points
nþ ej and nþ ek for all l ¼ 1; . . . ; d. Then it follows from (134) that for all l 3 k the matrix
Bðl Þðnþ ej þ ekÞ is also of rank 1, and its trace is equal to

tr Bðl Þðnþ ejÞ ¼ nl þ djl ¼ nl þ djl þ dkl :
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It remains to prove that

Lj;kða�2
l Þ alwðnþ ej þ elÞ

1

� �
@

alwðnþ ej þ ek þ elÞ
1

� �
;ð138Þ

�
1 alwðnþ ej � elÞ

�
Ljþk;�kða�2

l Þ@
�
1 alwðnþ ej þ ek � elÞ

�
:ð139Þ

These equations, written in length, read:

wðnþ ejÞ
akwðnþ ej þ ekÞ � alwðnþ ej þ elÞ
akwðnþ ej þ elÞ � alwðnþ ej þ ekÞ

¼ wðnþ ej þ ek þ elÞ;ð140Þ

wðnþ ejÞ
akwðnþ ej þ ekÞ þ alwðnþ ej � elÞ
akwðnþ ej � elÞ þ alwðnþ ej þ ekÞ

¼ wðnþ ej þ ek � elÞ;ð141Þ

and are nothing but the Hirota equations on the corresponding elementary squares. Thus,
recurrent relation (134) implies that formula (137) holds at nþ ej þ ek for l 3 k. By inter-
changing the roles of j and k, formula (137) holds for l 3 j, and thus for all l ¼ 1; . . . ; d. It
remains to prove the isomonodromic constraint (85). But it is not di‰cult to see that it is a
direct consequence of the lower left entry of eq. (136), if one takes into account expressions
(82) and (83). r
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