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Abstract. A lattice-discretization of the Goursat problem for a class
of nonlinear hyperbolic systems is proposed. Local C∞-convergence of
the discrete solutions is proven, and the approximation error for the
smooth limit is estimated. The results hold in arbitrary dimensions,
and for an arbitrary number of dependent variables. The abstract ap-
proximation theory is matched by a guiding example, which is the sine-
Gordon-equation. As the main application, a geometric Goursat prob-
lem for surfaces of constant negative Gaussian curvature (K-surfaces) is
formulated, and approximation by discrete K-surfaces is proven. The
result extends to the simultaneous approximation of Bäcklund transfor-
mations. This puts on a firm basis on the generally accepted belief that
the theory of integrable surfaces and their transformations may be ob-
tained as the continuum limit of a unifying multi–dimensional discrete
theory.

1. Introduction

The development of the classical differential geometry led to the introduc-
tion and investigation of various classes of surfaces which are of interest
both for the internal differential–geometric reasons and for application in
other sciences. Well-known examples are minimal surfaces, constant curva-
ture surfaces, isothermic surfaces, . . . The rich theory of such surface classes
is, to a large extent, a classical heritage. The theory of discrete differential
geometry, on the other hand, is more recent and is nowadays a flourishing
area which parallels to a large extent its classical (continuous) counterpart.
Many important classes of surfaces have been discretized up to now, see a
review in [BP2]. Their properties are well understood. Today, classes of dis-
crete surfaces are widely employed for visualization needs and for numerical
approximation.
The available rigorous convergence results, however, apply mostly to prob-
lems described by elliptic partial differential equations, like the Plateau prob-
lem in the theory of minimal surfaces (see, e.g., [PP, Hin, DH1, DH2]). In
this article, surfaces of constant negative Gaussian curvature (K-surfaces)
are studied, which are analytically described by the sine-Gordon-equation,
which is a hyperbolic PDE. Analogously, discrete K-surfaces are described
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by a hyperbolic difference equation. A discrete approximation theory for
equations of this type is developed, which applies to much more general sit-
uations than the sine-Gordon-equation. As the main geometric payoff, a rig-
orous proof of the convergence of discrete K-surfaces to smooth K-surfaces
is provided. Fig. 1 illustrates the approximation of a continuous Amsler
K-surface by a discrete one. Recall that the defining property of discrete
K-surfaces F : (εZ)2 → R3 is that the five points F (x, y) and F (x± ε, y± ε)
are coplanar. More picture of discrete K-surfaces as well as a visualization
of the convergence of the Amsler family in form of a movie can be found on
the home page of A. Bobenko
http://www-sfb288.math.tu-berlin.de/∼bobenko

Figure 1. A countinous and a discrete Amsler surfaces

The characteristic property of various special classes of surfaces studied by
the classical differential geometry turns out to be their integrability. One of
the manifestations of integrability is the existence of a rich transformations
theory, unified under the name “Bäcklund–Darboux” transformations. Clas-
sically, the theory of surfaces and that of their transformations were dealt
with separately to a large extent. Recently, it became clear that both theo-
ries can be unified in the framework of the discrete differential geometry (cf.
[Sau, BP2]). In this framework, multidimensional lattices with certain ge-
ometrical properties become the basic mathematical structures. Passing to
the continuum limit in some of the coordinate directions (mesh size ε → 0),
the respective smooth surface is obtained. The directions, where the mesh
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Figure 2. Surfaces and their transformations as a limit of
multidimensional lattices

size remains constant correspond to the transformations of smooth surfaces
(see Fig. 2).
The developed framework allows to give a precise formulation for this con-
jecture and also provides a scheme for the proof in specific situations. Es-
sentially, if the lattice is described by consistent hyperbolic difference equa-
tions, the abovementioned limiting procedure can be carried out and yields
smooth surfaces and their transformations. In the case of interest here, the
result is that a smooth K-surface and a Bäcklund transformation are si-
multaneously approximated by discrete K-surfaces and respective discrete
transformations. Other examples where the theory has been put into pratice
can be found in [BMS], where convergence of discrete orthogonal coordinate
systems and conjugate nets is proven.
The structure of the paper is the following. In Sect. 2 we formulate the con-
tinuous and discrete setup of the two–dimensional hyperbolic systems and
the corresponding Goursat problems. The C1–convergence result is proven
which holds for all difference schemes with a local approximation property.
The Cr–approximation under the appropriate conditions is established in
Sect. 3. The theory is extended to the case of three independent variables
in Sect. 4. At this point the notion of three–dimensional compatibility
starts to play the key role; it turns out to be intimately related to the inte-
grability. Therefore, the convergence result holds only for difference schemes
with these properties. The theory is illustrated in Sect. 5, where we apply
the convergence results to an integrable discretization of the sine–Gordon
equation, and thus prove the convergence of discrete K–surfaces and their
Bäcklund transformations to the continuous counterparts. Finally, in Sect.
6 the theory is extended to the case of an arbitrary number of independent
variables.
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2. Two-dimensional theory

In this section we prove an approximation theorem for a certain class of
hyperbolic differential and difference equations in two dimensions. More
general d–dimensional systems are considered in sections 4 and 6. The
following notations for domains are used: let r = (r1, . . . , rd) consist of
positive numbers ri > 0, then

(1) B(r) = [0, r1]× . . .× [0, rd] ⊂ Rd.

As domains for discrete equations, we use parts of rectangular lattices inside
B(r), with possibly different grid sizes along different coordinate axes ε =
(ε1, . . . , εd):

(2) Bε(r) = [0, r1]ε1 × . . .× [0, rd]εd ⊂
d∏

i=1

(εiZ).

where [0, r]ε = [0, r] ∩ (εZ). The dependent variables of the differential and
difference equations under consideration belong to a vector space X with
norm | · |.
In the two–dimensional situation the notations are simplified as follows:
B(r) = [0, r] × [0, r] ⊂ R2 and Bε(r) = [0, r]ε × [0, r]ε ⊂ (εZ)2 denote
continuous and discrete domains, respectively. Each Bε(r) contains O(ε−2)
grid points. It is convenient to assume that ε attain only values of the form
2−k with a positive integer k. Then ε1 < ε2 implies that ε2 is an integer
multiple of ε1, and hence Bε2(r) ⊂ Bε1(r). The limiting domains

(3) B0(r) =
⋃

ε=2−k

Bε(r),

lie dense in B(r). Each point x ∈ B0(r) belongs to Bε(r) with ε = 2−k

for all k large enough. Hence, one can speak about pointwise convergence
of functions {aε : Bε(r) → X}ε=2−k as ε → 0: the limiting function a0 is
naturally defined on B0(r). If a0 is Lipschitz on B0(r), it extendeds to a
Lipschitz function a : B(r) → X.
Introduce the difference quotient operators δε

x and δε
y, acting on functions

aε : Bε(r) → X,

δε
xaε = 1

ε (a
ε(x + ε, y)− aε(x, y))

δε
ya

ε = 1
ε (a

ε(x, y + ε)− aε(x, y)).

Definition 2.1. A continuous 2D hyperbolic system is a system of partial
differential equations for functions a, b : B(r) → X of the form

(4) ∂xa = f(a, b), ∂yb = g(a, b),

with smooth functions f, g : X × X → X. A Goursat problem consists of
prescribing the initial values

(5) a(x, 0) = a0(x), b(0, y) = b0(y)
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for x ∈ [0, r] and y ∈ [0, r], respectively. The functions a0, b0 : [0, r] → X are
supposed to belong to some Ck.

Definition 2.2. A (one-parameter family of) discrete 2D hyperbolic systems
consists of two partial difference equations for aε, bε : Bε(r) → X of the form

(6) δε
xa = f ε(a, b), δε

yb = gε(a, b),

with smooth functions f ε, gε : X × X → X. A Goursat problem for this
system consists of prescribing the initial values

(7) aε(x, 0) = aε
0(x), bε(0, y) = bε

0(y)

for x ∈ [0, r]ε and y ∈ [0, r]ε, respectively.

Remark 1. The notations suggest that the variables (aε, bε) are attached to
the points of the two-dimensional lattice Bε(r). But they are naturally asso-
ciated to the edges of this lattice: aε(x, y) to the horizontal edge connecting
the vertices (x, y) and (x+ ε, y), and bε(x, y) to the vertical edge connecting
the vertices (x, y) and (x, y + ε). See Fig. 3. The equations (6) give the
fields on the right and on the top edges of an elementary square, provided
the fields sitting on the left and on the bottom ones are known.

(x, y) (x + ε, y)

(x + ε, y + ε)(x, y + ε)

a(x, y)

a(x, y + ε)

b(x, y) b(x + ε, y)

Figure 3. An elementary quadrilateral

The following result is almost obvious:

Proposition 2.1. The Goursat problem for a discrete 2D hyperbolic system
(6) has a unique solution (aε, bε) on Bε(r).

Proof. The discrete solution is calculated by induction from the data on the
coordinate axes. ¤

Example 1. The constructions are now illustrated for the Sine-Gordon
equation,

(8) ∂x∂yφ = sin φ.

A Goursat problem for (8) is posed as follows

φ(x, 0) = φ1(x), φ(0, y) = φ2(y).(9)
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The canonical way to bring (8) into the form (4) is to introduce two new
dependent variables

(10) a = ∂xφ, b = φ,

which have to satisfy the following equations and initial conditions

∂ya = sin b, ∂xb = a,(11)
a(x, 0) = ∂xφ1(x), b(0, y) = φ2(y).(12)

A naive discretization is obtained by replacing partial derivatives by their
difference quotients,

(13) δε
xδε

yφ = sin φ.

Introduce two new dependent variables

(14) aε = δε
xφ, bε = φ,

then they have to satisfy a discrete 2D hyperbolic system,

δε
ya

ε = sin bε, δε
xbε = aε(15)

There are various choices for the discrete initial data. The canonical one is
to take simply

aε(x, 0) = ∂xφ1(x), bε(0, y) = φ2(y)(16)

at grid points (x, 0), (0, y) ∈ Bε(r). The main Theorem 2.2 below implies
that the solutions of (15) and (16) converge as ε → 0 to the solutions of (11)
and (12), and hence to the solution of (8) and (9) on a suitable domain B(r̄)
with 0 < r̄ ≤ r.
However, the discretization (13) is non-geometric: recall that the sine-
Gordon-equation describes smooth K-surfaces, whereas (13) does not posses
an immediate geometric interpretation. There exists an alternative dis-
cretization of (8), which is due to Hirota [Hir] and has become famous,

sin
1
4
(
φε(x + ε, y + ε)− φε(x + ε, y)− φε(x, y + ε) + φε(x, y)

)

=
ε2

4
sin

1
4
(
φε(x + ε, y + ε) + φε(x + ε, y) + φε(x, y + ε) + φε(x, y)

)
.(17)

Its solutions do correspond to discrete K-surfaces, see [BP1] for the inter-
pretation of the angle φ. Introducing aε as in (14) and

bε(x, y) = φε(x, y) +
ε

2
δε
yφ

ε(x, y) = 1
2(φε(x, y + ε) + φε(x, y)),(18)

then (17) becomes equivalent to

bε(x + ε, y)− bε(x, y) =
ε

2
(aε(x, y + ε) + aε(x, y)),

eiεa
ε(x, y + ε)/2 − eiεa

ε(x, y)/2 =
ε2

4

(
eib

ε(x + ε, y) − e−ibε(x, y)
)
.
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Solving for aε(x, y + ε) and bε(x + ε, y), one ends up with

(19) δε
ya

ε =
2

iε2
log

1− (ε2/4) exp(−ibε − iεaε/2)
1− (ε2/4) exp(ibε + iεaε/2)

, δε
xbε = aε +

ε

2
δε
ya

ε.

Both discrete 2D hyperbolic systems (15), (19) approximate the continuous
one (11) in the sense of the next definition.

Definition 2.3. A discrete 2D hyperbolic system (6) O(ε)–approximates the
continuous one (4), if the functions f ε, gε satisfy

(20) f ε(a, b) = f(a, b) + O(ε), gε(a, b) = g(a, b) + O(ε),

uniformly on compact subsets of X × X. Moreover, O(ε)–approximation in
Ck means that (20) also holds for all k–th partial derivatives.

Remark 2. In the context of difference equations, approximation properties
as (20) are often referred to as consistency of the discrete approximation.
This notion is not to be confused with consistency in our sense, which means
multi–dimensional compatibility of the equations.

The main result of this section is

Theorem 2.2. Let a family of discrete 2D hyperbolic systems (6) O(ε)–
approximate the continuous 2D hyperbolic system (4) in C1. Let also the
discrete initial data (7) approximate the continuous ones (5) as

(21) aε
0(x) = a0(x) + O(ε), bε

0(y) = b0(y) + O(ε)

uniformly for x ∈ [0, r]ε and y ∈ [0, r]ε, respectively. Then the sequence
of solutions (aε, bε) converges pointwise uniformly to a pair of Lipschitz–
continuous functions (a, b),

(22) aε(x, y) = a(x, y) + O(ε), bε(x, y) = b(x, y) + O(ε)

for (x, y) ∈ B(r̄), with a suitable r̄ ∈ (0, r]. The functions a, b solve the
continuous Goursat problem for (4) on B(r̄).

In general one cannot expect r̄ = r because the solutions of the limit-
ing equations may develop blow-ups that are absent in the discretization.
Consequently, the essential prerequisite for the proof of Theorem 2.2 are
ε-independent á priori bounds on aε and bε.

Lemma 2.3 (Uniform bound). Let the norms of initial data aε
0, bε

0 be
bounded by ε-independent constants. Then there exists r̄ ∈ (0, r] such that
the norms of the solutions (aε, bε) are bounded on the respective Bε(r̄) inde-
pendently of ε.

Remark 3. If f and g posses a global Lipschitz constant, then r̄ = r in
Lemma 2.3 and also in Theorem 2.2.

Proof of Lemma 2.3. Let M0 > 0 such that |aε
0|, |bε

0| ≤ M0, and choose
M1 > M0 arbitrary. Define

r̄ = (M1 −M0)/ sup
ε

sup
|a|,|b|<M1

{|f ε(a, b)|+ |gε(a, b)|}.
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It is easily shown that |aε|, |bε| < M1 on Bε(r̄): rewrite the difference equa-
tions (6) as

aε(x, y) = aε(x, y − ε) + εf ε(aε(x, y − ε), bε(x, y − ε)),(23)
bε(x, y) = bε(x− ε, y) + εgε(aε(x− ε, y), bε(x− ε, y)),(24)

and then conclude by induction that

|aε(x, y)| ≤ M0 + (M1 −M0)
y

r̄
< M1,

|bε(x, y)| ≤ M0 + (M1 −M0)
x

r̄
< M1,

for (x, y) ∈ Bε(r̄). ¤
With the bounds on the absolute value at hand, estimates on the difference
quotients can be derived, using

Lemma 2.4 (Discrete Gronwall estimate). Assume a nonnegative function
∆ : N0 → R satisfies the implicit estimate

∆(n + 1) ≤ (1 + εK)∆(n) + κ(25)

with nonnegative constants K and κ for all n = 0, 1, 2, . . . , N , then this
explicit estimate follows:

∆(n) ≤ (∆(0) + nκ) exp(Knε).(26)

Proof. Iterate (25) to confirm (26) by induction on n > 0, observing that
exp(εK) ≤ (1 + εK) for K ≥ 0. ¤
Lemma 2.5 (Lipschitz bound). Assume the continuous Goursat data a0,
b0 are C1 functions, and the discrete Goursat data aε

0, b
ε
0 satisfy

(27) |aε
0(x)− a0(x)| ≤ Mε, |bε

0(y)− b0(y)| ≤ Mε

with an ε-independent constant M . Then the difference quotients

δxaε, δya
ε, δxbε, δyb

ε

are bounded independently of ε on the respective Bε(r̄), where r̄ ∈ (0, r]
chosen according to Lemma 2.3.

Proof. In virtue of the equations (6) and Lemma 2.3 it is clear that the
difference quotients δε

ya
ε and δε

xbε are uniformly bounded.
Let M1 be an absolute bound on the solutions (aε, bε) of the discrete Goursat
problems, and

(28) M2 = sup
ε

sup
|a|,|b|≤M1

{
|f ε(a, b)|, |gε(a, b)|, |∂af

ε(a, b)|, . . . , |∂bg
ε(a, b)|

}
,

which is finite since f ε → f and gε → g locally uniformly in C1.
Without loss of generality, M > M1 and M > M2. By the mean value
theorem,
(29)
|δε

xaε
0(x)| ≤ |δε

xa0(x)|+ ε−1|aε
0(x + ε)− a0(x + ε)|+ ε−1|a0(x)− aε

0(x)| ≤ 3M.
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Proceeding from y to y + ε,

|δε
xaε(x, y + ε)| ≤ |δε

xaε(x, y)|+ ε|δε
xf ε(aε(x, y), bε(x, y))|

≤ |δε
xaε(x, y)|+ εM(|δε

xaε(x, y)|+ |δε
xbε(x, y)|)

≤ (1 + εM)|δε
xaε(x, y)|+ εM2.

Now Lemma 2.4 yields the desired estimate:

|δε
xaε(x, y)| ≤ 4M exp(Mr̄).

The same reasoning applies to δε
yb

ε. ¤

Proof of Theorem 2.2. Consider the family {(ãε, b̃ε)}ε=2−k of functions ãε, b̃ε :
B(r̄) → X obtained from aε and bε by linear interpolation. By Lemma 2.5,
there is a Lipschitz constant L > 0, so that

|ãε(x′, y′)− ãε(x, y)|+ |b̃ε(x′, y′)− b̃ε(x, y)| ≤ L(|x′ − x|+ |y′ − y|).
In combination with Lemma 2.3, it follows that the family is equicontinuous,
i.e., it satisfies the hypothesis of the Arzelá-Ascoli theorem. Consequently,
there exist continuous functions a, b : B(r̄) → X such that ãε′ → a and
b̃ε′ → b uniformly for an infinite subsequence ε′ = 2−k′ . Moreover, a and b
are Lipschitz continuous, and L is a Lipschitz constant.
To show that (a, b) solve the differential equations (4), observe that relation
(23) and Lipschitz-continuity of ãε imply

ãε′(x, y) = ãε′
0 (x) + ε

[y/ε′]−1∑

k=0

f ε′ [ãε′ , b̃ε′ ](x, kε′) + O(ε′)(30)

for (x, y) ∈ B(r̄). As the convergence of ãε′ and b̃ε′ is uniform, and f ε → f
in C1, one may pass to the limit ε′ → 0 on both sides of (30),

(31) a(x, y) = a0(x) +
∫ y

0
f [a, b](x, η)dη.

It follows that a is everywhere differentiable with respect to y, and ∂ya =
f(a, b). The function b is treated in the same manner.
Eventually, the convergence (22) can be proven. For arbitrary ε = 2−k define
the approximation error

∆ε(n) = max{|aε(x, y)− a(x, y)|+ |bε(x, y)− b(x, y)|,(32)
(x, y) ∈ Bε(r̄), x + y = nε}.

Combining formula (23) with the integral representation (31) yields

∆ε(n + 1) ≤ ∆ε(n) + ε max
x+y=nε

(|δε
x(aε − a)|(x, y) + |δε

y(b
ε − b)|(x, y)

)

+|aε
0 − a0|(nε + ε) + |bε

0 − b0|(nε + ε)
≤ ∆ε(n) + ε max

x+y=nε

(|f ε[aε, bε]− f [a, b]|(x, y)

+|gε[aε, bε]− g[a, b]|(x, y)
)

+ O(ε)
≤ (1 + O(ε))∆ε(n) + O(ε).
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By the Gronwall estimate in Lemma 2.4, ∆ε(n) = O(ε) for nε ≤ r̄. This
implies the estimate (22). ¤
Corollary 2.6. The two dimensional hyperbolic Goursat problem (4), (5)
possesses a unique classical solution.

Proof. Existence of a classical solution is already part of the conclusions of
Theorem 2.2. Uniqueness follows from the proof above: the estimates for
∆ε introduced in (32) are independent of the specific solution (a, b) to (4),
(5). In fact, only the integral representation (31) has been used. Hence,
every solution to the continuous Goursat problem appears as uniform limit
of the discrete solutions (aε, bε) as ε → 0. On the other hand, the discrete
solutions are unique, and so is their limit. ¤
This chapter is concluded with a Theorem about a stronger kind of conver-
gence. The following definition introduces a strengthend version of O(ε)–
approximation considered in Definition 2.3.

Definition 2.4. A 2D hyperbolic system (6) O(ε2)–approximates the con-
tinous one (4) if

f ε = f + ε
2 (Daf · f + Dbf · g) + O(ε2)

gε = g +
ε

2
(Dag · f + Dbg · g) + O(ε2)

uniformly on compact subsets of X× X.

Theorem 2.7. Let a family of discrete 2D hyperbolic systems (6) O(ε)–
approximate the continuous hyperbolic system (4) in C1. Assume further,
that the discrete family is also O(ε2)–approximative. Let the discrete initial
data (7) converge to the continuous initial data (5) as

aε
0(x) = a0(x + ε

2) + O(ε2), bε
0(y) = b0(y + ε

2) + O(ε2).(33)

Then the conclusions of Theorem 2.2 hold and in addition, the discrete so-
lutions (aε, bε) converge to the continuous ones (a, b) as

aε(x, y) = a(x + ε
2 , y) + O(ε2), bε(x, y) = b(x, y + ε

2) + O(ε2)(34)

uniformly on B(r̄).

Remark 4. The estimate (34) underlines the statement that it is more nat-
ural to think of aε(x, y) and bε(x, y) as associated to (the midpoints of) the
edges from (x, y) to (x + ε, y) and from (x, y) to (x, y + ε), respectively.

Proof. Since the initial data a0, b0 are Lipschitz-continuous, it is clear that
the hypothesis (33) above implies (21), and therefore all of the conclusions
of Theorem 2.2 as well.
To obtain (34), one modifies the proof of estimate (22). In obvious analogy
to ∆ε defined in (32), let

∆ε(n) = sup{|aε(x, y)− a(x + ε
2 , y)|+ |bε(x, y)− b(x, y + ε

2)|,
(x, y) ∈ Bε(r̄), x + y = nε}.
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As before, one obtains

∆ε(n + 1) ≤ ∆ε(n) + ε max
x+y=nε

(|δx(aε − a)|(x, y) + |δy(bε − b)|(x, y)
)

+|aε
0((n + 1)ε)− a0((n + 3

2)ε)|+ |bε
0((n + 1)ε)− b0((n + 3

2)ε)|.
The difference quotient δεa(x + ε

2 , y) is now analyzed up to O(ε3). For
shortness, let ā = a(x + ε

2 , y) and b̄ = b(x, y + ε
2).

a(x + ε
2 , y + ε)− a(x + ε

2 , y) =
∫ ε

0
f [a, b](x + ε

2 , y + η) dη

= εf [a, b](x + ε
2 , y + ε

2) + O(ε3)

= ε
(
f(ā, b̄) + Daf(ā, b̄) · (a(x + ε

2 , y + ε
2)− ā) +

Dbf(ā, b̄) · (b(x + ε
2 , y + ε

2)− b̄) + O(ε2)
)

+ O(ε3)

= ε
(
f(ā, b̄) + ε

2Daf(ā, b̄) · f(ā, b̄) + ε
2Dbf(ā, b̄) · g(ā, b̄)

)
+ O(ε3).

As the discrete equations are O(ε2)-approximative,

|δxaε(x, y)− δxa(x + ε
2 , y)| ≤ Cε∆ε(n) + O(ε3),

where the constant C depends only on the functions f , g and their first
derivatives. The same reasoning applies to b. In summary,

∆ε(n) ≤ (1 + O(ε))∆ε(n) + O(ε3),

and therefore ∆ε(n) = O(ε2) by Lemma 2.4. ¤

Remark 5. Convergence of order O(ε2+δ) with δ > 0 cannot be achieved
simply by imposing stronger conditions on the convergence f ε → f , gε → g.

3. Additional Smoothness

This section is devoted to the proof of

Theorem 3.1. In addition to the hypothesis of Theorem 2.2, assume that
the nonlinearities f ε, gε are O(ε)-approximative in CS+1, S > 1. Assume
further that the continuous initial data a0, b0 are actually CS,1-functions1

and that the discrete data approximates them as

(δε
x)`aε

0(x) = ∂`
xa0(x) + O(ε), (δε

y)
`bε

0(y) = ∂`
yb0(y) + O(ε)(35)

for all ` ≤ S. Then the continuous solutions a, b belong to CS,1(Bε(r̄)), with
the same r̄ > 0 as in Theorem 2.2. Moreover, the limits are uniform in CS,

(δε
x)m(δε

y)
naε = ∂m

x ∂n
y a + O(ε), (δε

x)m(δε
y)

nbε = ∂m
x ∂n

y b + O(ε),(36)

for all m, n with m + n ≤ S.

Assumption (35) above is quite natural. In fact, if a0 belongs to CS,1, and
aε

0 is its restriction to the ε-lattice, then (35) is fulfilled.

1their S-th derivative is Lipschitz-continuous
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Remark 6. If the hypothesis of Theorem 3.1 is met for all positive integers S,
then one may then loosely speak of C∞-approximation of (a, b) by (aε, bε).

First, á priori estimates for higher-order difference quotients of aε, bε are
derived. As discrete analogue of the Cs-norm, define for u : Bε(r) → X

(37) ‖u‖s = max
k+`≤s

sup
Bε(r−sε)

|(δε
x)k(δε

y)
`u|.

Recall that aε and bε are bounded on Bε(r̄), |aε|, |bε| ≤ M1 independent of
ε > 0. Introduce for a smooth function h : X× X → X

‖h‖s = max
m≤s

sup
|a|,|b|<M1

|Dmh(a, b)|,

which is the Cs-norm of f on the ball of radius M1. The following is essential
to estimate the norm of compositions with smooth functions.

Lemma 3.2. Let h : X×X → X be a smooth function, and a, b : Bε(r) → X

be bounded by M1. Let further (m,n) be a pair of nonnegative integers.
Then, there is a constant Cmn such that

|(δε
x)m(δε

y)
nh[a, b](x, y)| ≤

‖h‖m+n+1

(
|(δε

x)m(δε
y)

na(x, y)|+ |(δε
x)m(δε

y)
nb(x, y)|+ Qmn

)
,(38)

where Qmn is a continuous, non-decreasing function of ‖a‖m+n−1 and ‖b‖m+n−1.

The proof of this Lemma is technical. It is a consequence of a much more
general formula that replaces the chain rule for difference quotients. A
detailed proof can be found in [Mat].

Lemma 3.3. Under the conditions of Theorem 3.1,

(39) sup
ε
‖aε‖S+1 < ∞, sup

ε
‖bε‖S+1 < ∞.

Proof. The proof goes by induction over the total degree s = m + n = K ≤
S +1 of the difference quotient. So assume that supε ‖aε‖s−1, supε ‖bε‖s−1 <
∞ is already proved.
Then, for n > 0,

|(δε
x)m(δε

y)
naε(x, y)| = |(δε

x)m(δε
y)

n−1f ε[aε, bε](x, y)| ≤ Qmn < ∞
by Lemma 3.2, and similarly for (δε

x)m(δε
y)

nbε with m > 0. Otherwise,
observe that for once,

|(δε
x)maε(x, 0)| ≤ M < ∞

by (35) for all m = 1, . . . , S + 1, and further

(δε
x)maε(x, y) = (δε

x)maε(x, y − ε) + ε(δε
x)mf ε[aε, bε](x, y − ε),

so by Lemma 3.2,

|(δε
x)maε(x, y)| ≤ (1 + ε‖f ε‖m+1)|(δε

x)maε(x, y − ε)|
+ε‖f ε‖m+1

(|(δε
x)mbε(x, y)|+ Qmn

)
.
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Knowing that the norm of (δε
y)

m is bounded independently of ε, the Gronwall
Lemma 2.4 yields an ε-independent bound on (δε

x)maε. The same reasoning
applies to (δε

y)
nbε. ¤

Proof of the smoothness of a and b. Recall that the continuous function a
was obtained as the uniform limit of a suitable subsequence aε′ as ε′ → 0.
Under the hypothesis of Theorem 3.1, this subsequence can be chosen so
that also (δε

x)m(δε
y)

naε → a(mn) converge uniformly on Bε(r̄) for m + n ≤ S,
where a(mn) are Lipschitz functions. This follows directly from the Arzelá-
Ascoli theorem: by estimate (39), each family {(δε

x)m(δε
y)

naε} posseses an
ε-independent Lipschitz constant, as long as m + n ≤ S. It is then easily
seen that a(mn) = ∂xa(m−1 n) = ∂ya

(m n−1). In conclusion, a is S times
differentiable with ∂m

x ∂n
y a = a(mn), which are Lipschitz functions. The same

argument is true with b in place of a. ¤
To show also the convergence in (36), another technical lemma is needed.

Lemma 3.4. Let hε, h : X×X → X be smooth functions, and uε, u : Bε(r) →
X be bounded by M1. Given a pair (m,n) of nonnegative integers, let s =
m + n. Then, there is a constant Cs such that∣∣(δε

x)m(δε
y)

n(hε(uε)− h(u))(x, y)
∣∣ ≤ CsQs‖hε − h‖s

+‖h‖s+1

(∣∣(δε
x)m(δε

y)
n(uε − u)(x, y)

∣∣ + Cs‖uε − u‖s−1Qs

)
,(40)

holds for all (x, y) ∈ Bε(r), and Qs is a continuous, non-decreasing function
of ‖uε‖s and ‖u‖s.

As for Lemma 3.2, the proof follows from the chain rule for difference oper-
ators on lattices.

Proof of estimate (36). Again, it is natural to make an induction on the
total degree s = m + n ≤ S. Convergence in C0, i.e. the case s = 0,
is already settled by Theorem 2.2. Assume that (36) holds for s − 1. Let
m+n = s below. To estimate Aε

mn(x, y) := (δε
x)m(δε

y)
naε(x, y)−∂m

x ∂n
y a(x, y),

three cases have to be considered.
(1) y = 0 and n = 0. Then Aε

m0(x, 0) = O(ε) by the hypothesis (35).
(2) n ≥ 1. As a, b are CS,1-smooth and f is C∞,

∂m
x ∂n−1

y f [a, b](x, y) = (δε
x)m(δε

y)
n−1f [a, b](x, y) + O(ε)

Uniformly on B(r̄). One obtains

Aε
mn(x, y) = (δε

x)m(δε
y)

n−1(f ε[aε, bε]− f [a, b])(x, y) + O(ε).(41)

Recall that f ε O(ε)-approximates f in CS+1, and that by induction
hypothesis, ‖aε − a‖s−1, ‖bε − b‖s−1 = O(ε). Apply Lemma 3.4 to
(41) to find Aε

mn(x, y) = O(ε).
(3) y > 0 but n = 0. Again, smoothness of f(a) is used to derive

Aε
m0(x, y) = Aε

m0(x, y − ε)
+ε(δε

x)m(f ε[aε, bε]− f [a, b])(x, y − ε) + O(ε2)
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Now estimate the second term in the sum by Lemma 3.4. After
trivial manipulations,

|Aε
m0(x, y)| ≤ (1 + ε‖f‖s−1)|Aε

m0(x, y − ε)|
+ε‖f‖s−1|(δε

x)m(bε − b)|(x, y − ε) + O(ε2).

But (δε
x)m(bε− b) can be estimated along the same lines as (δε

y)
naε−

∂n
y a = O(ε) in item (2). Hence,

|Aε
m0(x, y)| ≤ (1 + ε‖f‖s−1)|Aε

m0(x, y − ε)|+ O(ε2),

and an application of the Gronwall Lemma 2.4 gives Aε
m0(x, y) =

O(ε) for all (x, y) ∈ Bε(r̄).

This proves the estimates for aε, and the same reasoning applies to bε. ¤

4. Three–dimensional theory:
approximating Bäcklund transformations

The Sine-Gordon equation (8) posseses Bäcklund transformations. From
a given solution φ, new solutions can be constructed by solving ordinary
differential equations only. The famous formula for a family of elementary
Bäcklund transformations φ → φ̃ for (8) reads:

(42) ∂xφ̃ + ∂xφ = 2α sin
φ̃− φ

2
, ∂yφ̃− ∂yφ =

2
α

sin
φ̃ + φ

2
.

A direct calculation shows that this system is compatible, ∂y(∂xφ̃) = ∂x(∂yφ̃),
provided φ is a solution of the Sine-Gordon equation, and then φ̃ is also a so-
lution. An equivalent way to express this state of affairs is to introduce, along
with the variables a, b from (10), also the auxilary function θ = (φ̃− φ)/2,
which satisfies the following system of ordinary differential equations:

(43) ∂xθ = −a + α sin θ, ∂yθ =
1
α

sin(b + θ).

Compatibility ∂y(∂xθ) = ∂x(∂yθ) holds provided (a, b) solves the system
(11), and the initial value

(44) θ(0, 0) = θ0

determines a unique solution. Then the formulas

(45) ã = a + 2∂xθ = −a + 2α sin θ, b̃ = b + 2θ

deliver a new solution (ã, b̃) of the 2D hyperbolic system (11) equivalent
to the Sine-Gordon equation. Clearly, Bäcklund transformations can be
iterated in a straightforward manner.
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Definition 4.1. A continuous 2D hyperbolic system with a Bäcklund tran-
formation is a compatible system of partial differential and difference equa-
tions

∂ya = f(a, b), ∂xb = g(a, b),(46)
∂xθ = u(a, θ), ∂yθ = v(b, θ),(47)
δza = ξ(a, θ), δzb = η(b, θ)(48)

for functions a, b, θ : B(r,R) → X, where

(49) B(r,R) = {(x, y, z) | (x, y) ∈ B(r), z = 0, 1, . . . , R}.

Here f, g, u, v, ξ, η : X × X → X are asuumed to be smooth functions. A
Goursat problem is posed by the requirement

(50) a(x, 0, 0) = a0(x), b(0, y, 0) = b0(y), θ(0, 0, z) = θ0(z)

for x ∈ [0, r], y ∈ [0, r], and z ∈ {0, 1, . . . , R}, respectively, with given
smooth functions a0(x), b0(y) and a sequence θ0(0), . . . , θ0(R− 1).

The compatibility conditions mentioned in this definition, are to assure the
existence of solutions of the above Goursat problem. They follow from

∂y(∂xθ) = ∂x(∂yθ), ∂y(δza) = δz(∂ya), ∂x(δzb) = δz(∂xb).

In length, these conditions for (46)-(48) to be Bäcklund transformations of
the 2D hyperbolic system read:

Dau(a, θ) · f(a, b) + Dθu(a, θ) · v(b, θ) =
= Dbv(b, θ) · g(a, b) + Dθv(b, θ) · u(a, θ),

Daξ(a, θ) · f(a, b) + Dθξ(a, θ) · v(b, θ) =

= f
(
a + ξ(a, θ), b + η(b, θ)

)
− f(a, b),(51)

Dbη(b, θ) · g(a, b) + Dθη(b, θ) · u(a, θ) =

= g
(
a + ξ(a, θ), b + η(b, θ)

)
− g(a, b).

The existence of Bäcklund transformations may be regarded as one of the
possible definitions of the integrability of a given 2D continuous hyperbolic
system. For a given 2D continuous hyperbolic system with Bäcklund trans-
formations, not every discretization possesses the analogous property. For
instance, the naive discretization (13) of the Sine-Gordon equation does not
admit Bäcklund transformations, while the integrable discretization (17)
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does. The difference analogs of the formulas (42) read:

sin
1
4
(
φ̃(x + ε, y)− φ̃(x, y) + φ(x + ε, y)− φ(x, y)

)
=

=
εα

2
sin

1
4
(
φ̃(x + ε, y) + φ̃(x, y)− φ(x + ε, y)− φ(x, y)

)
.(52)

sin
1
4
(
φ̃(x, y + ε)− φ̃(x, y)− φ(x, y + ε) + φ(x, y)

)
=

=
ε

2α
sin

1
4
(
φ̃(x, y + ε) + φ̃(x, y) + φ(x, y + ε) + φ(x, y)

)
.(53)

Obviously, in the limit ε → 0 these equations approximate (42). A very
remarkable feature is that these equations closely resemble the original dif-
ference equation (17), if one considers the tilde as the shift in the third
z–direction. Upon introducing the quantity θ = (φ̃ − φ)/2, one rewrites
(52), (53) in the form of the system of first order equations approximating
(43), (45):

δε
xθ = −a +

1
iε

log
1− (εα/2) exp(−iθ + iεa/2)
1− (εα/2) exp(iθ − iεa/2)

,(54)

δε
yθ =

1
iε

log
1− (ε/2α) exp(−ib− iθ)
1− (ε/2α) exp(ib + iθ)

,(55)

and

(56) ã = a + 2δε
xθ, b̃ = b + 2θ + εδε

yθ.

This suggests the following definition.

Definition 4.2. A discrete 3D hyperbolic system is a collection of compat-
ible partial difference equations of the form

δε
ya = f ε(a, b), δε

xb = gε(a, b),(57)

δε
xθ = uε(a, θ), δε

yθ = vε(b, θ),(58)

δza = ξε(a, θ), δzb = ηε(b, θ),(59)

for functions a, b, θ : Bε(r,R) → X, where

(60) Bε(r,R) = {(x, y, z) | (x, y) ∈ Bε(r), z = 0, 1, . . . , R}.
Here the functions f ε, gε, uε, vε, ξε, ηε : X × X → X are smooth enough. A
Goursat problem consists of prescribing the initial data

a(x, 0, 0) = aε
0(x), b(0, y, 0) = bε

0(y), θ(0, 0, z) = θε
0(z)(61)

for x ∈ [0, r]ε, y ∈ [0, r]ε, and z ∈ {0, 1, . . . , R}, respectively.

Compatibility conditions are necessary for solutions of (57)-(59) to exist.
These conditions express the following identities that have to be fulfilled for
the solutions:

δε
y(δ

ε
xθ) = δε

x(δε
yθ), δε

y(δza) = δz(δε
ya), δε

x(δzb) = δz(δε
xb).
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In length, these formulas read:

uε
(
a + εf ε(a, b), θ + εvε(b, θ)

)
− uε(a, θ) =

= vε
(
b + εgε(a, b), θ + εuε(a, θ)

)
− vε(b, θ),

ξε
(
a + εf ε(a, b), θ + εvε(b, θ)

)
− ξε(a, θ) =

= εf ε
(
a + ξε(a, θ), b + ηε(b, θ)

)
− εf ε(a, b),(62)

ηε
(
b + εgε(a, b), θ + εuε(a, θ)

)
− ηε(b, θ) =

= εgε
(
a + ξε(a, θ), b + ηε(b, θ)

)
− εgε(a, b).

This has to be satisfied identically in a, b, θ ∈ X.
As demonstrated in [BS], the compatibility of a discrete 3D hyperbolic sys-
tem is closely related to its integrability in the sense of the soliton theory.
Moreover, such a key attribute of integrability as a discrete zero curvature
representation with a spectral parameter can be derived from the fact of
compatibility.

Proposition 4.1. The Goursat problem for a discrete 3D hyperbolic system
(57)–(59) satisfying the compatibility conditions (62) has a unique solution
(aε, bε, θε) on Bε(r,R).

Proof. Like in the proof of Proposition 2.1, it is enough to demonstrate that
the solution can be propagated along an elementary “cube” of the three–
dimensional lattice, then the solution is constructed by induction from the
Goursat data. Again, it is convenient to assume that the variables a(x, y, z),
b(x, y, z), θ(x, y, z) are attached not to the points (x, y, z) ∈ Bε(r,R), but to
the edges [(x, y, z), (x+ ε, y, z)], [(x, y, z), (x, y + ε, z)], [(x, y, z), (x, y, z +1)],
respectively. Denote (in this proof only) shifts of the edge variables in the
directions of x, y, z axes by the subscripts 1, 2, 3, respectively. (See Fig. 4.)
Then the values (a2, b1) are determined by equations (57) the values (θ1, θ2)
by (58), and the values (a3, b3) by (59). a23 is calculated either from a3,
b3 by (57), or from a2, θ2 by (59); compatibility guarantees that the same
results are obtained. The same is true for b13 and θ12). ¤

Theorem 4.2. Let the family of discrete 3D hyperbolic systems (57)-(59)
satisfying the compatibility conditions (62) approximate the continuous 2D
hyperbolic system with a Bäcklund transformation (46)-(48). Assume O(ε)-
approximation in C1 of the nonlinearities and uniform approximation of the
initial data as usual,

aε
0(x) = a0(x) + O(ε), bε

0(y) = b0(y) + O(ε), θε
0(z) = θ0(z) + O(ε)

for x ∈ [0, r]ε, y ∈ [0, r]ε, z ∈ {0, 1, . . . , R}.
Then, for some r̄ ∈ (0, r], the sequence of solutions (aε, bε, θε) has a uniform
limit of Lipschitz–continuous functions (a, b, θ) on B(r̄, R) in the sense that
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(x, y, z) (x + ε, y, z)

(x, y, z + 1)

(x + ε, y + ε, z)

(x, y + ε, z + 1) (x + ε, y + ε, z + 1)

a

a2

a3

a23

θ

θ2

θ1

θ12

b
b1

b3

b13

Figure 4. Three-dimensional consistency

the relations

aε(x, y, z) = a(x, y, z) + O(ε),
bε(x, y, z) = b(x, y, z) + O(ε),
θε(x, y, z) = θ(x, y, z) + O(ε)

hold uniformly on Bε(r̄, R). Furthermore, (a, b, θ) solve the Goursat problem
for the continuous 2D system with a sequence of Bäcklund transformations.

The proof parallels the proof of Theorem 2.2, and starts with á priori esti-
mates for aε, bε, θε, and their first order difference quotients.

Lemma 4.3 (Uniform estimate). Assume the norms of the initial data aε
0,

bε
0, θε

0 is ε-independently bounded. Then there exists r̄ ∈ (0, r] such that the
solutions (aε, bε, θε) are bounded on Bε(r̄, R) independently of ε.

Proof of Lemma 4.3. Let |aε
0|, |bε

0|, |θε
0| ≤ M0 with M0 > 0. Define

(63) F(M) = sup
ε

sup
|a|,|b|,|θ|<M

{|f ε(a, b)|, . . . , |ηε(b, θ)|}.

Choose M1 > M0 arbitrary, and define inductively Mj+1 = Mj + F(Mj) for
j = 1, . . . , R. Finally, let

(64) r̄ = min
j=1,...,R+1

Mj −M0

2F(Mj)
,

so that for all j = 1, 2, . . . , R + 1 one has

(65) M0 + 2r̄F(Mj) ≤ Mj .

The following estimate is shown by induction on z = 0, 1, . . . , R:

(66) |aε(x, y, z)|, |bε(x, y, z)|, |θε(x, y, z)| ≤ Mz+1.
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Let z = 0. As in the proof of Lemma 2.3,

(67) |aε(x, y, 0)| ≤ M0 + yF(M1), |bε(x, y, 0)| ≤ M0 + xF(M1),

follows from equations (57), and from equations (58), one concludes

(68) |θε(x, y, 0)| ≤ M0 + (x + y)F(M1),

for all (x, y) ∈ Bε(r̄). Assuming (66) for a given z ≥ 0, equations (59) and
equations (58) immediately imply

|aε(x, y, z + 1)|, |bε(x, y, z + 1)| ≤ Mz+1 + F(Mz+1) ≤ Mz+2,

|θε(x, y, z + 1)| ≤ M0 + (x + y)F(Mz+2) ≤ Mz+2,

respectively. This proves (66) for z + 1, and thus the Lemma. 2.3. ¤

Lemma 4.4 (Lipschitz bound). Assume the initial data of the continuous
Goursat problem are C1 functions, and are approximated by the initial data
of the discrete Goursat problem,

(69) aε
0 = a0 + O(ε), bε

0 = b0 + O(ε).

Let r̄ ∈ (0, r] be chosen according to Lemma 4.3. Then the difference quo-
tients δε

xaε, δε
ya

ε, δε
xbε, δε

yb
ε, δε

xθε, and δε
yθ

ε are ε-independently bounded on
Bε(r̄, R).

Proof of Lemma 4.4. The reasoning from the previous proof is continued.
From the equations in (57)-(59) it is immediately seen that

|δε
ya

ε|, |δε
xbε|, |δε

xθε|, |δε
yθ

ε| ≤ F(Mz+1).

Therefore, only δε
xaε and δε

yb
ε need to be estimated. By Lemma 2.5,

|δε
xaε(x, y, 0)| ≤ A0 < ∞.

Proceeding inductively from z − 1 to z,

|δε
xaε(x, y, z)| ≤ |δε

xaε(x, y, z − 1)|+ |δε
xξε[aε, θε](x, y, z − 1)|

≤ |δε
xaε(x, y, z − 1)|+ C(|δε

xaε(x, y, z − 1)|+ |δε
xθε(x, y, z − 1)|)

≤ (1 + C)|δε
xaε(x, y, z − 1)|+ CF(Mz) =: Az < ∞,

where C > 0 is an ε-independent Lipschitz constant for the nonlinearities in
equations (57)-(59). ¤

Proof of Theorem 4.2. Now proceed as in the proof of Theorem 2.2. A
Lipschitz-continuous function (a, b, θ) : B(r̄) → X3 is obtained as uniform
limit of a suitable subsequence (aε′ , bε′ , θε′), using linear interpolation and
the Arzelá-Ascoli theorem. To obtain the O(ε)-estimate, simply choose ∆ε

instead as in (32) as follows:

∆ε(n) = max{|aε − a|(x, y, z) + |bε − b|(x, y, z) + |θε − θ|(x, y, z),
(x, y, z) ∈ Bε(r̄), x + y + εz ≤ εn}

Applying the Gronwall Lemma 2.4 yields ∆ε(x, y, z) = O(ε). ¤
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5. Approximation theorems for K-Surfaces

In the present section we apply the theory developed so far to prove that the
known construction of discrete surfaces of constant negative Gauss curvature
K = −1 (K–surfaces, for short) may be actually used not only to modelling
the geometric properties of their continuous counterparts, but also to a quan-
titative approximation. First we briefly recall the correspondent geometric
notions.
Smooth K-surfaces. Let F be a K-surface parametrized by its asymtotic
lines:

(70) F : B(r) → R3.

This means that the vectors ∂xF , ∂yF , ∂2
xF , ∂2

yF are orthogonal to the
normal vector N : B(r) → S2. Reparametrizing the asymptotic lines, if
necessary, we assume that |∂xF | = 1 and |∂yF | = 1. The angle φ = φ(x, y)
between the vectors ∂xF , and ∂yF satisfies the sine–Gordon equation (8).
Moreover, a K-surface is determined by a solution to (8) essentially uniquely.
The correspondent construction is as follows. Consider the matrices U, V
defined by the formulas

U(a; λ) =
i

2

(
a −λ
−λ −a

)
,(71)

V (b; λ) =
i

2

(
0 λ−1 exp(ib)

λ−1 exp(−ib) 0

)
,(72)

taking values in the twisted loop algebra

g[λ] = {ξ : R∗ → su(2) : ξ(−λ) = σ3ξ(λ)σ3}, σ3 =
(

1 0
0 −1

)
.

Suppose now that a and b are some real–valued functions on B(r). Then
the zero curvature condition

(73) ∂yU − ∂xV + [U, V ] = 0

is satisfied identically in λ, if and only if (a, b) satisfy the system (11), or,
in other words, if a = ∂xφ and b = φ, where φ is a solution of (8). Given a
solution φ, that is, a pair of matrices (71), (72) satisfying (73), the following
system of linear differential equations is uniquely solvable:

(74) ∂xΦ = UΦ, ∂yΦ = V Φ, Φ(0, 0, λ) = 1.

Here Φ : B(r) → G[λ] takes values in the twisted loop group

G[λ] = {Ξ : R∗ → SU(2) : Ξ(−λ) = σ3Ξ(λ)σ3}.
The solution Φ(x, y; λ) yields the immersion F (x, y) by the Sym formula:

(75) F (x, y) =
(
2λΦ(x, y; λ)−1∂λΦ(x, y;λ)

) ∣∣∣
λ=1

,

using the canonical identification of su(2) with R3. Moreover, the right–
hand side of (75) at the values of λ different from λ = 1 delivers a whole
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family of immersions Fλ : B(r) → R3, all of which turn out to be asymptotic
lines parametrized K–surfaces. These surfaces Fλ constitute the so–called
associated family of F .
Discrete K-surfaces. . Let F ε be a discrete surface parametrized by asymp-
totic lines, i.e. an immersion

(76) F ε : Bε(r) → R3

such that for each (x, y) ∈ Bε(r) the five points F ε(x, y), F ε(x ± ε, y), and
F ε(x, y ± ε) lie in a single plane P(x, y). It is required that all edges of the
discrete surface F ε have the same length ε`, that is |δε

xF ε| = |δε
yF

ε| = `, and
it turns out to be convenient to assume that ` = (1 + ε2/4)−1. The same
relation we presented between K-surfaces and solutions to the (classical)
sine–Gordon equation (8) can be found between discrete K-surfaces and
solutions to the sine–Gordon equation in Hirota’s discretization (17): define
matrices Uε, Vε by the formulas

Uε(a; λ) = (1 + ε2λ2/4)−1/2

(
exp(iεa/2) −iελ/2
−iελ/2 exp(−iεa/2)

)
,(77)

Vε(b; λ) = (1 + ε2λ−2/4)−1/2

(
1 (iελ−1/2) exp(ib)

(iελ−1/2) exp(−ib) 1

)
(78)

Let aε, bε be real–valued functions on Bε(r), and consider the discrete zero
curvature condition

(79) Uε(x, y + ε; λ) · Vε(x, y; λ) = Vε(x + ε, y;λ) · Uε(x, y; λ),

where Uε and Vε depend on (x, y) ∈ Bε(r) through the dependence of aε and
bε on (x, y). A direct calculation shows that (79) is equivalent to the system
(19), or, in other words, to the Hirota equation (17) for the function φε

defined by (18). The function φε has a clear geometric meaning, see [BP1].
The formula (79) is the compatibility condition of the following system of
linear difference equations:

Ψε(x + ε, y; λ) = Uε(x, y; λ)Ψε(x, y; λ),
Ψε(x, y + ε; λ) = Vε(x, y; λ)Ψε(x, y; λ),(80)

Ψε(0, 0;λ) = 1.

So, any solution of (17) uniquely defines a matrix Ψε : Bε(r) → G[λ] satisfy-
ing (80). This can be used to finally construct the immersion by an analog
of the Sym formula:

(81) F ε(x, y) =
(
2λΨε(x, y; λ)−1∂λΨε(x, y; λ)

) ∣∣∣
λ=1

.

Again, the right–hand side of (81) at the values of λ different from λ = 1
delivers an associated family F ε

λ of discrete asymptotic lines parametrized
K–surfaces.
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ε → 0

Bäcklund transformations for continuous and discrete K–surfaces. Below,
only the algebraic approach is presented. For the geometrical interpretation
of smooth and discrete Bäcklund transformations, see, e.g. [BP1]. Introduce
the matrix

(82) W(θ; λ) =
(

α exp(iθ) −iλ
−iλ α exp(−iθ)

)
.

It is easy to see that the matrix differential equations

(83) ∂xW = ŨW−WU, ∂yW = Ṽ W−WV

are equivalent to the formulas (43), (45). On the other hand, these matrix
differential equations constitute a sufficient condition for the solvability of
the system consisting of (74) and

(84) Φ̃ = WΦ.

So, frames Φ can be in a consistent way extended into the third direction
z (shift in which is encoded by the tilde), which results also in the trans-
formation of the K–surfaces F → F̃ , and moreover of the whole associated
family, via (75).
Similarly, the matrix equations

W(x + ε, y; λ)Uε(x, y; λ) = Ũε(x, y; λ)W(x, y; λ),(85)

W(x, y + ε; λ)Vε(x, y; λ) = Ṽε(x, y; λ)W(x, y; λ)(86)

are equivalent to the formulas (54), (55), (56), and, on the other hand, assure
the solvability of the system consisting of (80) and

(87) Ψ̃ε = WΨε.

Therefore, also the frames Ψε of the discrete surfaces can be extended in the
third direction z. This leads to the transformation of discrete K–surfaces
and their associated families, according to (81).

Theorem 5.1. Let two smooth functions φ1, φ2 : [0, r] → R with φ1(0) =
φ2(0) be given. Then, for a suitable positive r̄ ≤ r:
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- There exists a smooth asymptotic line parametrized K–surface F :
B(r̄) → R3, unique up to Euclidean motions, such that the angle
φ : B(r̄) → R between the asymptotic lines satisfies

φ(x, 0) = φ1(x), φ(0, y) = φ2(y), 0 ≤ x, y ≤ r.

- For each ε > 0 there exists a unique asymptotic line parametrized
discrete K–surface F ε : Bε(r̄) → R3 such that its characteristic angle
φε : Bε(r̄) → R satisfies

φε(x + ε, 0)− φε(x, 0) = ε∂xφ1(x), φε(0, y + ε) + φε(0, y) = 2φ2(y).(88)

- The discrete surfaces converge uniformly to the smooth one,

sup
Bε(r)

|F ε − F | ≤ Cε,(89)

where C does not depend on ε. Moreover, the convergence is in C∞:
for each pair (m,n) of nonnegative integers,

sup
Bε(r−(m+n)ε)

|(δε
x)m(δε

y)
nF ε − ∂m

x ∂n
y F | ≤ Cmnε.(90)

- The estimates (89), (90) hold for the associated families Fλ, F ε
λ in

place of F , F ε, uniformly in λ ∈ [Λ−1, Λ] for a suitable Λ > 1.
- Given a parameter θ for a Bäcklund transformation, then the discrete

Bäcklund transformations F̃ ε of the F ε (with respect to θ) converge
to a smooth K-surface F̃ . The latter is the unique Bäcklund transfor-
mation of F (with respect to θ). The estimates (89), (90) hold with
F̃ , F̃ ε in place of F , F ε. The result carries over to the associated
families.

An important application of Theorem 5.1 is the derivation of the classical
Bianchi permutability Theorem from the discrete permutability Theorem for
K-surfaces. The result is formulated in the next section.

Theorem 5.2. Under the same hypothesis as in Theorem 5.1, let F ε be the
unique discrete K-surface constructed from data

φε(x + ε, 0)− φε(x, 0) = φ1(x + ε)− φ1(x),
φε(0, y + ε)− φε(0, y) = φ2(y + ε) + φ2(y).

Then the uniform convergence (89) is improved as follows:

sup
Bε(r̄)

|F ε(x, y)− F (x, y)| ≤ Cε2.

Proof of Theorems 5.1 and 5.2. Theorems 2.2 and 3.1 yield the existence
and the uniqueness of solutions (aε, bε) to the difference equations, the
existence and uniqueness of the solutions (a, b) to the differential equa-
tions on B(r̄), and the O(ε)-approximation of the latter by the former in
C∞. Moreover, under the hypothesis of Theorem 5.2, one has additionally
O(ε2)-approximation in C0. This follows from Theorem 2.7... Square-
approximation left to prove.
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It remains to prove that similar approximation holds also for the immersions
F ε, F . Te strategy is to prove approximation of the frame Φ by Ψε, uniformly
in λ, and then use the Sym formula. Recall that the frames are the solutions
to the Cauchy problems for the systems of linear differential and difference
equations (74) and (80), respectively. Since the zero curvature conditions
(79), (73) are satisfied, the existence of Ψε, Φ is guaranteed by standard
ODE theory. Furthermore, at any point (x, y), Ψε(λ) and Φ(λ) are analytic
functions of λ ∈ D, where D is some closed disc in the complex plane that
contains 1 in its interior, but does not contain 0. The matrices Uε, Vε, and
U , V are bounded uniformly with respect to λ ∈ D and (x, y) ∈ B(r̄).
A natural norm | · | on the space of λ-dependent 2× 2-matrices A = A(λ) is
given by

|A| = sup
λ∈D

max
v∈R2, |v|=1

|A(λ) · v|.

The norms ‖ · ‖s are introduced according to (37). Define

U ε = (Uε − 1)/ε, V ε = (Vε − 1)/ε.

Theorems 2.2 and 3.1 imply

‖U ε − U‖s = O(ε), ‖V ε − V ‖s = O(ε)(91)

for all s = 0, 1, 2, . . . Under the hypothesis of Theorem 5.2, one has addi-
tionally

U ε(x, y; λ) = U(x + ε
2 , y; λ) + ε

2U2(x + ε
2 , y;λ) + O(ε2),(92)

V ε(x, y; λ) = V (x, y + ε
2 ; λ) + ε

2V 2(x, y + ε
2 ;λ) + O(ε2)(93)

by Theorem 2.7. From the definition of Φ and Ψε,

Φ(x + ε, y) = Φ(x, y) + εU(x, y)Φ(x, y) + O(ε2)(94)
Ψε(x + ε, y) = Ψε(x, y) + U ε(x, y)Ψε(x, y).(95)

follows, So by the elementary properties of matrix multiplication,

|Φ−Ψε|(x + ε, y) = (1 + ε‖U − U ε‖0)|Φ−Ψε|(x, y) + O(ε2).(96)

A similar formula holds with V and V ε. The Gronwall estimate yields

‖Φ−Ψε‖0 = O(ε).(97)

Under the hypothesis of Theorem 5.2 . . .
Choose Λ > 1 so that IΛ := [Λ−1, Λ] lies in the interior of D, and has
distance µ > 0 from ∂D. Since Φ(λ) und Ψε(λ) are analytic functions of
λ ∈ D, the Cauchy formula implies

sup
λ∈IΛ

‖∂λΨε(x, y; λ)− ∂λΦ(x, y; λ)‖

≤ µ−1 sup
λ∈D

‖Ψε(x, y; λ)− Φ(x, y; λ)‖ = O(εp).(98)

Hence, by the Sym formulas (75) and (81),

F ε
λ − Fλ = 2λ(Ψε(λ))−1∂λΨε(λ)− 2λ(Φ(λ))−1∂λΦ(λ) = O(ε).
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for all λ ∈ IΛ uniformly on the Bε(r̄). It remains to prove the approximation
of the higher order partial derivatives of F . it is easy to see that for corre-
sponding solutions (aε, bε) and (a, b) one has discrete Ck-approximation for
all k > 0 and all λ ∈ D:

‖Uε − U‖k → 0 and ‖Vε − V ‖k → 0

as ε → 0. We find for m + n = k + 1 with m > 0:

|(δε
x)m(δε

y)
n(Ψε − Φ)| = |(δε

x)m−1(δε
y)

n(UεΨε − UΦ)|+ O(ε)

≤ C‖U‖k · ‖Ψε − Φ‖k + C‖Uε − U‖k · ‖Ψε‖k + O(ε).

Here we used that for discrete Ck-norms of matrix products

(99) ‖A ·B‖k ≤ Ck‖A‖k · ‖B‖k

holds (cf. the remark after the proof of Lemma 3.2 in the Appendix). If m =
0, we can do the same calculations with the roles of x and y interchanged
and V , Vε in place of U , Uε. From this estimate, we conclude by induction
in k that

‖Ψε − Φ‖k → 0,

and therefore
lim
ε→0

sup
Bε(r)

|(δε
x)m(δε

y)
nΨε − ∂m

x ∂n
y Φ| = 0.

Again by the Cauchy estimate, we get also the similar result for the re-
spective λ-derivatives for all values λ ∈ [Λ−1,Λ]. From the Sym formulas,
we get (90). Finally, the statement about the approximation of Bäcklund
transformed surfaces follows in a completely similar way with the refence to
Theorem 4.2. ¤

6. Multi–dimensional systems

The developed approximation theory generalizes to higher dimensions with-
out difficulties. Before the most general situation is described, a three–
dimensional example is given and will serve as a guiding principle.

Example 2. Consider the equation

∂x∂y∂zu = F (u, ∂xu, ∂yu, ∂zu, ∂x∂yu, ∂x∂zu, ∂y∂zu).(100)

and the Goursat problem obtained by prescribing the values of

u(x, y, 0), u(x, 0, z), u(0, y, z) for 0 ≤ x, y, z ≤ r.

Equation (100) can be rewritten as a hyperbolic system,



∂xu = a, ∂yu = b, ∂zu = c,
∂ya = h, ∂zb = f, ∂xc = g,
∂za = g, ∂xb = h, ∂yc = f,
∂xf = ∂yg = ∂zh = F (u, a, b, c, f, g, h).

Replacing all partial derivatives ∂x etc. by the corresponding difference
quotients δε

x etc. yields an approximating discrete hyperbolic system. In
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this difference system it is natural to assume that the variables aε, bε, cε

live on the edges of the cubic lattice starting from the point (x, y, z) in the
direction of the x–, y– and z–axis, respectively. The variables f , g, h are
associated to two–cells (elementary squares) adjacent to the point (x, y, z)
and orthogonal to the x–, y– and z–axes, respectively.

Recall the notations (1) and (2) for continuous and discrete d-dimensional
domains. Denote by ei the i-th canonical basis vector of Rd.
A general discrete hyperbolic Goursat problem is defined by the following
elements:

(1) Functions ~a : Bε(r) → X are considered. The components ~a =
(a1, . . . , aN ) ∈ X1 × . . .XN play the role of dependent variables.

(2) A set Ek ⊂ {1, . . . , d} is given for each 1 ≤ k ≤ N , and Sk is its
complement,

Ek∪̂Sk = {1, . . . , d}.
The elements of Ek and Sk are called the evolutionary and stationary
directions of the component ak, respectively.

(3) For each pair (k, i) such that i ∈ Ek, a difference equation

δεi
xi

ak = f(k,i)(~a), i ∈ Ek,(101)

is given, where the nonlinearities f(k,i) : X → Xk are smooth func-
tions.

(4) One requires that ak(x) = ak0(x) on the subsets

Gε
k = span{ej , j ∈ Sk} ∩Bε(r).

The prescribed functions ak0 are the Goursat data.
On should think of the field ak(x) as attached to the following cell of di-
mension #Sk

ck(x) =
{
x′, x′i = xi for i ∈ Ek, xj ≤ x′j ≤ xj + εj for j ∈ Sk

}
.

The hyperbolic system admits solutions for arbitrary Goursat data only if
the compatibility condition

δ
εj
xjδ

εi
xi

ak = δεi
xi

δ
εj
xjak(102)

is satisfied for any choice of i, j ∈ Ek, i 6= j. By (101), this formal require-
ment is equivalent to

δ
εj
xjfk,i(~a(x)) = δεi

xi
fk,j(~a(x)).(103)

Compatibility is a property of the equations, and has to hold independently
of the specific solution ~a. Consequently, both sides of (103) have to be
functions of the value ~a(x) ∈ X only. This implies that the function f(k,i) at
most depends on those components a`, for which δ

εj
xja` is again expressible

in terms of the equations (101), i.e., for which j ∈ E`. As (103) needs to be
satisfied for all j ∈ Ek, one obtains
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Lemma 6.1. Compatibility (102) of the hyperbolic equations implies that
each f(k,i) depends only on those components a` for which Ek \ {i} ⊂ E`. If
this is the case, then compatibility is equivalent to

εif(k,i)(~a) + εjf(k,j)

(
~a + εi

~fi(~a)
)

= εjf(k,j)(~a) + εif(k,i)

(
~a + εj

~fj(~a)
)
,

where symbolically (~fi(~a))` = f(`,i)(~a) for i ∈ E`.

It is clear that

Proposition 6.2. A Goursat problem for a compatible discrete hyperbolic
system admits a unique solution on Bε(r).

Typically, discrete hyperbolic systems appear as dicretizations of a continu-
ous hyperbolic system, probably with Bäcklund transformations. Consider
the situation where the uniform continuum limit εi ≡ ε → 0 is performed in
the first n ≤ d directions, i = 1, . . . , n, and the remaining n′ = d− n direc-
tions are kept discrete, εi ≡ 1 for i = n + 1, . . . , d. For simplicity, assume
that the components of r are ri = r for i ≤ n and ri = 1 for i > n.
The functions f(k,i) = f ε

(k,i) are now ε-dependent. At least formally, the
discrete equations (101) turn into a system of differential and difference
equations,

(104)
∂xiak = f0

(k,i)(~a), i ∈ Ek, 1 ≤ i ≤ n,

δ1
xi

ak = f0
(k,i)(~a), i ∈ Ek, n < i ≤ d.

The limiting Goursat problem is posed on

B0(r) = [0, r]n × {0, 1}n′ ⊂ Rd × Zd′ .

Theorem 6.3. Let an ε–family of Goursat problems for compatible discrete
hyperbolic systems (101) be given. Denote their solutions by ~a ε. Suppose
that the nonlinearities f ε converge as

f ε
(k,i)(~a) = f0

(k,i)(~a) + O(ε)

uniformly on any compact subset of X, and that the discrete Goursat data
aε

0 approximate Lipschitz-continuous functions a0

aε
k0(x) = a0

k0(x) + O(ε)

uniformly on G0
k.

Then there exist a positive r̄ ≤ r and a Lipschitz–continuous function ~a 0 :
B0(r̄) → X, such that

~a ε = ~a 0 + O(ε).(105)

Moreover, ~a 0 constitutes the unique classical solution of the continuous
Goursat problem for the system (104) with the Goursat data a0.
Assume, in addition, that the convergence of the f ε is locally uniform in
Cs+1, with an error O(ε),

Ds+1f ε
k,i = Ds+1fk,i + O(ε),
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and that the continuous Goursat data is Cs-smooth and is respectively ap-
proximated by the discrete data,

δε
xi1
· · · δε

xis
aε

k0 = ∂xi1
· · · ∂xis

ak0 + O(ε)

on Bε(r), where i1, . . . , is ∈ Sk and i1, . . . , is ≤ n, then the convergence
(105) is in Cs,

δε
xi1
· · · δε

xis
~a ε = ∂xi1

· · · ∂xis
~a + O(ε)

holds uniformly on Bε(r̄), for arbitrary i1, . . . , is ≤ n.

Proof. The proof of this theorem is the multi-dimensional extension of the
proofs given in two and three dimensions. Technical care is needed, but
no essentially new ideas enter. A detailed version of proof can be found in
[Mat]. ¤

A typical application of Theorem 6.3 is the derivation of smooth permutabil-
ity theorems from discrete ones.

Corollary 6.4 (Bianchi Permutability). Given a smooth K–surface F and
two smooth Bäcklund transformations F1, F2, there exists a unique smooth
K–surface F12 which is a Bäcklund transformation of F1 and of F2.

Proof. A two-parameter family of discrete K-surfaces is a four-dimensional
discrete hyperbolic system in the sense above. The first two directions
correspond to individual K-surfaces, the remaining two to parameters of
Bäcklund transformations. The systems compatibility follows from the dis-
crete permutability Theorem, which is identical to Corollary 6.4 upon re-
placing “smooth” by “discrete” everywhere. A proof of the latter can be
found in [].
The classical Bianchi Permutability Theorem above follows by taking the
continuum limit in the first two directions. ¤
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