Discrete and Computational Geometry
MSRI Publications
Volume 52, 2005

A Conformal Energy for Simplicial Surfaces

ALEXANDER I. BOBENKO

ABSTRACT. A new functional for simplicial surfaces is suggested. It is in-
variant with respect to Mobius transformations and is a discrete analogue
of the Willmore functional. Minima of this functional are investigated. As
an application a bending energy for discrete thin-shells is derived.

1. Introduction

In the variational description of surfaces, several functionals are of primary
importance:

e The area A = [ dA, where dA is the area element, is preserved by isometries.

e The total Gaussian curvature § = [ K dA, where K is the Gaussian curvature,
is a topological invariant.

e The total mean curvature M = [ H dA, where H is the mean curvature,
depends on the external geometry of the surface.

e The Willmore energy W = f H? dA is invariant with respect to Mobius trans-
formations.

Geometric discretizations of the first three functionals for simplicial surfaces are
well known. For the area functional the discretization is obvious. For the local
Gaussian curvature the discrete analog at a vertex v is defined as the angle defect

G) =27 — Zai,

where the a; are the angles of all triangles (see Figure 2) at vertex v. The total
Gaussian curvature is the sum over all vertices G = ) G(v). The local mean
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curvature at an edge e is defined as

where [ is the length of the edge and 6 is the angle between the normals to
the adjacent faces at e (see Figure 6). The total mean curvature is the sum
over all edges M =) M(e). These discrete functionals possess the geometric
symmetries of the smooth functionals mentioned above.

Until recently a geometric discretization of the Willmore functional was miss-
ing. In this paper we introduce a Mobius invariant energy for simplicial surfaces
and show that it should be treated as a discrete Willmore energy.

2. Conformal Energy

Let S be a simplicial surface in 3-dimensional Euclidean space with set of
vertices V, edges E and (triangular) faces F'. We define a conformal energy for
simplicial surfaces using the circumcircles of their faces. Each (internal) edge
e € F is incident to two triangles. A consistent orientation of the triangles
naturally induces an orientation of the corresponding circumcircles. Let ((e)
be the external intersection angle of the circumcircles of the triangles sharing e,
which is the angle between the tangent vectors of the oriented circumcircles.

DEFINITION 1. The local conformal (discrete Willmore) energy at a vertex v is
the sum

W(v) = Zﬁ(e) -2

esv

over all edges incident on v. The conformal (discrete Willmore) energy of a
simplicial surface S without boundary is the sum

W(S) = 5 S W) =3 6le) ~ x|V,

veV ecE

over all vertices; here |V is the number of vertices of S.

g

R
{

Figure 1. Definition of the conformal (discrete Willmore) energy.
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Figure 1 presents two neighboring circles with their external intersection angle (3;
as well as a view “from the top” at a vertex v showing all n circumcircles passing
through v with the corresponding intersection angles (i, ..., 3,. For simplicity
we will consider only simplicial surfaces without boundary.

The energy W(S) is obviously invariant with respect to Mobius transforma-
tions. This invariance is an important property of the classical Willmore energy
defined for smooth surfaces (see below).

Also, W(S) is well defined even for nonoriented simplicial surfaces, because
changing the orientation of both circles preserves the angle 5(e).

The star S(v) of the vertex v is the subcomplex of S comprised by the triangles
incident with v. The vertices of S(v) are v and all its neighbors. We call S(v)
convez if for any its face f € F(S(v)) the star S(v) lies to one side of the plane
of F, and strictly convez if the intersection of S(v) with the plane of f is f itself.

PROPOSITION 2. The conformal energy is nonnegative:
W(v) > 0.

It vanishes if and only if the star S(v) is conver and all its vertices lie on a
common sphere.

The proof is based on an elementary lemma:

LEMMA 3. Let P be a (not necessarily planar) n-gon with external angles [3;.
Choose a point P and connect it to all vertices of P. Let a; be the angles of the
triangles at the tip P of the pyramid thus obtained (see Figure 2). Then

n n
Z ﬁz > Z Qs
=1 =1

and equality holds if and only if P is planar and convex and the vertex P lies
inside P.

The pyramid obtained is convex in this case; note that we distinguish between
convex and strictly convex polygons (and pyramids). Some of the external angles
0B; of a convex polygon may vanish. The corresponding side-triangles of the
pyramid lie in one plane.

Figure 2. Toward the proof of Lemma 3.
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PROOF. Denote by v; and d; the angles of the side-triangles at the vertices of P
(see Figure 2). The claim of Lemma 3 follows from adding over alli =1,...,n
the two obvious relations

Biy1 > 7 — (Vg1 + ), T— (v +6;) = .

All inequalities become equalities only in the case when P is planar, convex and
contains P. O

As a corollary we obtain a polygonal version of Fenchel’s theorem [1929].

COROLLARY 4.
n
Zﬁi > 2m.
i=1

PrROOF. For a given P choose the point P varying on a straight line encircled
by P. There always exist points P such that the star at P is not strictly convex,
and thus Y «; > 27. O

PROOF OF PROPOSITION 2. The claim of Proposition 2 is invariant with respect
to Mobius transformations. Applying a Mobius transformation M that maps the
vertex v to infinity, we make all circles passing through v into straight lines and
arrive at the geometry shown in Figure 2, with P = M(c0). Now the result
follows immediately from Corollary 4. (]

THEOREM 5. Let S be a simplicial surface without boundary. Then
W(S) = 0,
and equality holds if and only if S is a convex polyhedron inscribed in a sphere.

PROOF. Only the second statement needs to be proved. By, Proposition 2, the
equality W(S) = 0 implies that all vertices and edges of S are convex (but not
necessarily strictly convex). Deleting the edges that separate triangles lying in
one plane one obtains a polyhedral surface Sp with circular faces and all strictly
convex vertices and edges. Proposition 2 implies that for every vertex v there
exists a sphere S, with all vertices of the star S(v) lying on it. For any edge
(v1,v2) of Sp two neighboring spheres S, and S, share two different circles of
their common faces. This implies S, = S,, and finally the coincidence of all the
spheres S,. (]

The discrete conformal energy W defined above is a discrete analogue of the
Willmore energy [1993] for smooth surfaces, which is given by

W(S):i/s(h—szdA:/stdA—/stA.

Here dA is the area element, ki, ko the principal curvatures, H = %(kl + ko)
the mean curvature, K = kiko the Gaussian curvature of the surface. Here we
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prefer a definition for W with a Mobius-invariant integrand. It differs from the
one in the introduction by a topological invariant.
We mention two important properties of the Willmore energy:

e W(S) > 0, and W(S) = 0 if and only if 8 is the round sphere.
e W(S) (together with the integrand (k1 —ko)? dA) is Mobius-invariant [Blaschke
1929; Willmore 1993].

Whereas the first statement follows almost immediately from the definition, the
second is a nontrivial property. We have shown that the same properties hold
for the discrete energy W; in the discrete case Mobius invariance is built into
the definition, and the nonnegativity of the energy is nontrivial.

In the same way one can define conformal (Willmore) energy for simplicial
surfaces in Euclidean spaces of higher dimensions and space forms.

The discrete conformal energy is well defined for polyhedral surfaces with
circular faces (not necessarily simplicial).

3. Computation of the Energy

Consider two triangles with a common edge. Let a,b,¢,d € R® be their
other edges, oriented as in Figure 3. Identifying vectors in R® with imaginary
quaternions Im H one obtaines for the quaternionic product

ab = —(a,b) + a x b, (3-1)

where (a,b) and a x b are the scalar and vector products in R,

Figure 3. Formula for the angle between circumcircles.

PROPOSITION 6. The external angle 8 € [0, 7] between the circumcircles of the
triangles in Figure 3 is given by one of the equivalent formulas:

~Regq _ Reabed _ (a,¢)(b,d) — (a,b){c,d) — (b, c)(d,a)
[ |abed| lal 6] ]e] |d] ’

cos(f) =

where ¢ = ab~led™! is the cross-ratio of the quadrilateral.

PROOF. Since Re ¢, |¢| and 8 are Mobius-invariant it is enough to prove the first
formula for the planar case a,b,c,d € C, mapping all four vertices to a plane
by a Mdbius transformation. In this case ¢ becomes the classical complex cross-
ratio. Considering the arguments a, b, ¢, d € C one easily arrives at 3 = T —arggq.
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The second representation follows from the identity b= = —b/|b| for imaginary
quaternions. Finally, applying (3-1) we obtain

Re abed = (a,b){c,d) — (axb,cxd) = (a,b){c,d) + (b, c){(d,a) — {a,c)(b,d). O

4. Minimizing Discrete Conformal Energy

Similarly to the smooth Willmore functional W, minimizing the discrete con-
formal energy W makes the surface as round as possible.

Let S denote the combinatorial data of S. The simplicial surface S is called
a geometric realization of the abstract simplicial surface S.

DEFINITION 7. Critical points of W (S) are called simplicial Willmore surfaces.

The conformal (Willmore) energy of an abstract simplicial surface is the infimum
over all geometric realizations

W(S) = inf W(S).
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Figure 4. Discrete Willmore spheres of inscribable (W = 0) and noninscribable
(W > 0) type, and discrete Boy surface.

Kevin Bauer implemented the proposed conformal functional with the Brakke’s
evolver [1992] and ran some numerical minimization experiments, whose results
are exemplified in Figure 4. Corresponding entries in each row show initial con-

figurations and the corresponding Willmore surfaces that minimize the conformal
energy.
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Figure 5. A discrete Willmore sphere of noninscribable type with 11 vertices and
W =2r.

Define the discrete Willmore flow as the gradient flow of the energy W. Under
this flow the energy of the first simplicial sphere decreases to zero and the surface
evolves into a convex polyhedron with all vertices lying on a sphere. The abstract
simplicial surface of the central example is different and we obtain a simplicial
Willmore sphere with positive conformal energy.

The rightmost example in the figure is a simplicial projective plane. The
initial configuration is made from squares divided into triangles; see [Petit 1995].
We see that the minimum is close to the smooth Boy surface known (by [Karcher
and Pinkall 1997]) to minimize the Willmore energy for projective planes.

The minimization of the conformal energy for simplicial spheres is related
to a classical result of Steinitz [1928], who showed that there exist abstract
simplicial 3-polytopes without geometric realizations all of whose vertices belong
to a sphere. We call these combinatorial types noninscribable.

The noninscribable examples of Steinitz are constructed as follows [Griinbaum
2003]. Let S be an abstract simplicial sphere with vertices colored black and
white. Denote the sets of white and black vertices by V,, and V, respectively, so
V = V,UV,. Assume that |V,,| > |V;| and that there are no edges connecting two
white vertices. It is easy to see that S with these properties cannot be inscribed
in a sphere. Indeed, assume that we have constructed such an inscribed convex
polyhedron. Then the equality of the intersection angles at both ends of an edge
(see left Figure 1) implies that

22 |Vil = 37 Ble) = 27 Vi
eclk
This contradiction of the assumed inequality implies the claim.

To construct abstract polyhedra with |V,,| > |V3|, take a polyhedron P whose
number of vertices does not exceed the number of faces, |F| > |[V|. Color all
the vertices black, add white vertices at the faces and connect them to all black
vertices of a face. This yields a polyhedron with black (original) edges and
V| = |F| > |Vb| = |[V|. The example with minimal possible number of vertices
|[V| = 11 is shown in Figure 5. The starting polyhedron P here consists of two
tetrahedra identified along a common face: F=6,V=5
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Hodgson, Rivin and Smith [Hodgson et al. 1992] have found a characterization
of inscribable combinatorial types, based on a transfer to the Klein model of
hyperbolic 3-space. It is not clear whether there exist noninscribable examples
of non-Steinitz type.

Numerical experiments lead us to:

CONJECTURE 8. The conformal energy of simplicial Willmore spheres is quan-
tized:

W =2nN, for N e€N.

This statement belongs to differential geometry of discrete surfaces. It would be
interesting to find a (combinatorial) meaning of the integer N. Compare also
with the famous classification of smooth Willmore spheres by Bryant [1984], who
showed that the energy of Willmore spheres is quantized by W = 47N, N € N.
The discrete Willmore energy is defined for ambient spaces (R™ or S™) of any
dimension. This leads to combinatorial Willmore energies
— ] n
W,L(S) = érelgW(S), S cs,
where the infimum is taken over all realizations in the n-dimensional sphere.
Obviously these numbers build a nonincreasing sequence W, (S) > W, 11(S)
that becomes constant for sufficiently large n.

Complete understanding of noninscribable simplicial spheres is an interesting
mathematical problem. However the phenomenon of existence of such spheres
might be seen as a problem in using of the conformal functional for applications
in computer graphics, such as the fairing of surfaces. Fortunately the problem
disappears after just one refinement step: all simplicial spheres become inscrib-
able. Let S be an abstract simplicial sphere. Define its refinement S'i as follows:
split every edge of S into two by putting additional vertices and connect these
new vertices sharing a face of S by additional edges.

ProPOSITION 9. The refined simplicial sphere Sg is inscribable, and thus
W(Sgr)=0.

ProOF. Koebe’s theorem (see [Ziegler 1995; Bobenko and Springborn 2004],
for example) states that every abstract simplicial sphere S can be realized as a
convex polyhedron S all of whose edges touch a common sphere S2. Starting
with this realization S it is easy to construct a geometric realization Sg of the
refinement S inscribed in S2. Indeed, choose the touching points of the edges
of S with S? as additional vertices of S and project the original vertices of
S (which lie outside of the sphere S?) to S?. One obtains a convex simplicial
polyhedron Sg inscribed in S2. O

Another interesting variational problem involving the conformal energy is the
optimization of triangulations of a given simplicial surface. Here one fixes the
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vertices and chooses an equivalent triangulation (abstract simplicial surface S)
minimizing the conformal functional. The minimum

W(V) = msin W(S)

yields an “optimal” triangulation for a given vertex data. In the case of S? this
optimal triangulation is well known.

ProproOSITION 10. Let S be a simplicial surface with all vertices V' on a two-
dimensional sphere S?. Then W(S) = 0 if and only if it is the Delaunay trian-
gulation on the sphere, i.e., S is the boundary of the convex hull of V.

In differential geometric applications such as the numerical minimization of the
Willmore energy of smooth surfaces (see [Hsu et al. 1992]) it is not natural to
preserve the triangulation by minimizing the energy, and one should also change
the combinatorial type decreasing the energy.

The discrete conformal energy W is not just a discrete analogue of the Will-
more energy. One can show that it approximates the smooth Willmore energy,
although the smooth limit is very sensitive to the refinement method and must
be chosen in a special way. A computation (to be published elsewhere) shows
that if one chooses the vertices of a curvature line net of a smooth surface 8 for
the vertices of S and triangularizes it, W(S) converges to W(S) by natural re-
finement. On the other hand, the infinitesimal equilateral triangular lattice gives
in the limit and energy half again higher. Possibly the minimization of the dis-
crete Willmore energy with vertices on the smooth surface could be used for the
computation of the curvature line net. We will be investigating this interesting
and complicated phenomenon.

5. Bending of Simplicial Surfaces

An accurate model for the bending of discrete surfaces is important for mod-
eling in virtual reality.

Let 8¢ be a thin shell and § its deformation. The bending energy of smooth
thin shells is given by the integral [Grinspun et al. 2003]

E = /(H—HO)QdA,

where Hy and H are the mean curvatures of the original and deformed surface
respectively. For Hy = 0 it reduces to the Willmore energy.

To derive the bending energy for simplicial surfaces let us consider the limit
of fine triangulation, i.e. of small angles between the normals of neighboring
triangles. Consider an isometric deformation of two adjacent triangles. Let
0 be the complement of the dihedral angle of the edge e, or, equivalently, the
angle between the normals of these triangles (see Figure 6) and 3(#) the external
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intersection angle between the circumcircles of the triangles (see Figure 1) as a
function of 6.

ProroOSITION 11. Assume that the circumcenters of the circumcircles of two
adjacent triangles do not coincide. In the limit of small angles 8 — 0, the angle
0B between the circles behaves as

5(6) = 5(0) + 107+ o(6°),

where 1 is the length of the edge and L # 0 is the distance between the centers of
the circles.

This proposition and our definition of conformal energy for simplicial surfaces
motivate to suggest

l
E=Y z92
eckE

for the bending energy of discrete thin-shells.

Figure 6. Toward the definition of the bending energy for simplicial surfaces.

In [Bridson et al. 2003; Grinspun et al. 2003] similar representations for the
bending energy of simplicial surfaces were found empirically. They were demon-
strated to give convincing simulations and good comparison with real processes.
In [Grinspun et al. 2003] the distance between the barycenters is used for L in
the energy expression but possible numerical advantages in using circumcenters
are indicated.

Using the Willmore energy and Willmore flow is a hot topic in computer
graphics. Applications include fairing of surfaces and surface restoration. We
hope that our conformal energy will be useful for these applications and plan to
work on them.
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