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Hexagonal circle patterns with constant intersection
angles and discrete Painleve ´ and Riccati equations
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Hexagonal circle patterns with constant intersection angles mimicking holomorphic
mapszc and log(z) are studied. It is shown that the corresponding circle patterns are
immersed and described by special separatrix solutions of discrete Painleve´ and
Riccati equations. The general solution of the Riccati equation is expressed in terms
of the hypergeometric function. Global properties of these solutions, as well as of
the discretezc and log(z), are established. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586966#

I. INTRODUCTION. HEXAGONAL CIRCLE PATTERNS AND zc

The theory of circle patterns is a rich fascinating area having its origin in the classical th
of circle packings. Its fast development in recent years is caused by the mutual influenc
interplay of ideas and concepts from discrete geometry, complex analysis and the the
integrable systems.

The progress in this area was initiated by Thurston’s idea24,17 of approximating the Riemann
mapping by circle packings. Classical circle packings consisting of disjoint open disks were
generalized to circle patterns where the disks may overlap~see, for example, Ref. 14!. Different
underlying combinatorics were considered. Circle patterns with the combinatorics of the s
grid were introduced in Ref. 22; hexagonal circle patterns were studied in Refs. 7 and 9.

The striking analogy between circle patterns and the classical analytic function theo
underlined by such facts as the uniformization theorem concerning circle packing realizatio
cell complexes with prescribed combinatorics,4 a discrete maximum principle and Schwarz
lemma,20 rigidity properties17,14 and a discrete Dirichlet principle.22

The convergence of discrete conformal maps represented by circle packings was pro
Ref. 21. For prescribed regular combinatorics this result was refined.C`-convergence for hexago
nal packings is shown in Ref. 15. The uniform convergence for circle patterns with the com
torics of the square grid and orthogonal neighboring circles was established in Ref. 22.

The approximation issue naturally leads to the question about analogs to standard ho
phic functions. Computer experiments give evidence for their existence,12,16 however not very
much is known. For circle packings with hexagonal combinatorics the only explicitly desc
examples are Doyle spirals,11,5 which are discrete analogs of exponential maps, and conform
symmetric packings, which are analogs of a quotient of Airy functions.6 For patterns with over-
lapping circles more explicit examples are known: discrete versions of exp(z), erf(z),22 zc, log(z)
~Ref. 3! are constructed for patterns with underlying combinatorics of the square grid;zc, log(z)
are also described for hexagonal patterns.7,9

It turned out that an effective approach to the description of circle patterns is given b
theory of integrable systems~see Refs. 7–9!. For example, Schramm’s circle patterns are gover
by a difference equation which is the stationary Hirota equation~see Ref. 22!. This approach
proved to be especially useful for the construction of discretezc and log(z) in Refs. 3 and 7–9 with
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the aid of some isomonodromy problem. Another connection with the theory of discrete integ
equations was revealed in Refs. 1–3: embedded circle patterns are described by special s
of discrete Painleve´ II and discrete Riccati equations.

In this article we carry the results of Ref. 3 for square grid combinatorics over to hexa
circle patterns with constant intersection angles introduced in Ref. 7.

Hexagonal combinatorics are obtained on a sublattice ofZ3 as follows: consider the subset

H5$~k,l ,m!PZ3: uk1 l 1mu<1%

and join by edges those vertices ofH whose (k,l ,m)-labels differ by 1 only in one componen
The obtained quadrilateral latticeQL has two types of vertices: fork1 l 1m50 the corresponding
vertices have six adjacent edges, while the vertices withk1 l 1m561 have only three. Suppos
that the vertices with six neighbors correspond to centers of circles in the complex planeC and the
vertices with three neighbors correspond to intersection points of circles with the cente
neighboring vertices. Thus we obtain a circle pattern with hexagonal combinatorics.

Circle patterns where the intersection angles are constant for each of three types of~quadri-
lateral! faces~see Fig. 1! were introduced in Ref. 7. A special case of such circle patterns m
icking holomorphic mapzc and log(z) is given by the restriction to anH-sublattice of a specia
isomonodromic solution of someintegrable systemon the latticeZ3. Equations for the field
variablez:Z3→C of this system are

q~zk,l ,m ,zk,l 11,m ,zk21,l 11,m ,zk21,l ,m!5e22ia1,

q~zk,l ,m ,zk,l ,m21 ,zk,l 11,m21 ,zk,l 11,m!5e22ia2, ~1!

q~zk,l ,m ,zk11,l ,m ,zk11,l ,m21 ,zk,l ,m21!5e22ia3,

wherea i.0 satisfya11a21a35p and

q~z1 ,z2 ,z3 ,z4!5
~z12z2!~z32z4!

~z22z3!~z42z1!

is the cross-ratio of elementary quadrilaterals of the image ofZ3. Equations~1! mean that the
cross-ratios of images of faces of elementary cubes are constant for each type of face, w
restrictiona11a21a35p ensures their compatibility.

The isomonodromic problem for this system~see Sec. II for the details, where we present
necessary results from Ref. 7! specifies the nonautonomous constraint

czk,l ,m52k
~zk11,l ,m2zk,l ,m!~zk,l ,m2zk21,l ,m!

zk11,l ,m2zk21,l ,m
12l

~zk,l 11,m2zk,l ,m!~zk,l ,m2zk,l 21,m!

zk,l 11,m2zk,l 21,m

12m
~zk,l ,m112zk,l ,m!~zk,l ,m2zk,l ,m21!

zk,l ,m112zk,l ,m21
, ~2!

FIG. 1. Hexagonal circle patterns as a discrete conformal map.
7 Jul 2010 to 130.149.14.232. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



ch

ite
efine

t

the
ve

whole
rical
tions.
e of

ossible

ey are

3457J. Math. Phys., Vol. 44, No. 8, August 2003 Hexagonal circle patterns

Downloaded 0
which is compatible with~1! ~this constraint in the two-dimensional case withc51 first appeared
in Ref. 19!. In particular, a solution to~1! and ~2! in the subset

Q5$~k,l ,m!PZ3u k>0, l>0, m<0% ~3!

is uniquely determined by its values

z1,0,0, z0,1,0, z0,0,21 .

Indeed, the constraint~2! givesz0,0,050 and definesz along the coordinate axis (n,0,0), (0,n,0),
(0,0,2n). Then all otherzk,l ,m with (k,l ,m)PQ are calculated through the cross-ratios~1!.

Proposition 1:7 The solution z:Q→C of the system (1) and (2) with the initial data

z1,0,051, z0,1,05eif, z0,0,215eic ~4!

determines a circle pattern. For all(k,l ,m)PQ with even k1 l 1m the points zk61,l ,m , zk,l 61,m ,
zk,l ,m61 lie on a circle with the center zk,l ,m , i.e., all elementary quadrilaterals of the Q-image are
of kite form.

Moreover, Eqs.~1! ~see Lemma 1 in Sec. III! ensure that for the pointszk,l ,m with k1 l 1m
561, where three circles meet intersection angles area i or p2a i , i 51,2,3 ~see Fig. 1 where the
isotropic casea i5p/3 of regular andZ3/2-pattern are shown!.

According to Proposition 1, the discrete mapzk,l ,m , restricted onH, defines a circle pattern
with circle centerszk,l ,m for k1 l 1m50, each circle intersecting six neighboring circles. At ea
intersection point three circles meet.

However, for most initial dataf,cPR, the behavior of the obtained circle pattern is qu
irregular: inner parts of different elementary quadrilaterals intersect and circles overlap. D
QH5QùH.

Definition 1:7 The hexagonal circle pattern Zc, 0,c,2 with intersection anglesa1 ,a2 ,a3 ,
a i.0, a11a21a35p is the solution z:Q→C of (1) subject to (2) and with the initial data

z1,0,051, z0,1,05eic(a21a3), z0,0,215eica3 ~5!

restricted to QH .
Definition 2: A discrete map z:QH→C is called an immersion if inner parts of adjacen

elementary quadrilaterals are disjoint.
The main result of this article is the following theorem.
Theorem 1: The hexagonal Zc with constant positive intersection angles and0,c,2 is an

immersion.
The proof of this property follows from an analysis of the geometrical properties of

corresponding circle patterns and analytical properties of the corresponding discrete Painle´ and
Riccati equations.

The crucial step is to consider equations for the radii of the studied circle patterns in the
Q-sublattice with evenk1 l 1m. In Sec. III, these equations are derived and the geomet
property of immersedness is reformulated as the positivity of the solution to these equa
Using discrete Painleve´ and Riccati equations in Sec. IV we present the proof of the existenc
a positive solution and thus complete the proof of immersedness. In Sec. VI, we discuss p
generalizations and corollaries of the obtained results. In particular, circle patternsZ2 and Log
with both square grid and hexagonal combinatorics are considered. It is also proved that th
immersions.

II. DISCRETE Zc VIA A MONODROMY PROBLEM

Equations~1! have the Lax representation:7

Fk11,l ,m~m!5L (1)~e,m!Fk,l ,m~m!,
7 Jul 2010 to 130.149.14.232. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Fk,l 11,m~m!5L (2)~e,m!Fk,l ,m~m!, ~6!

Fk,l ,m11~m!5L (3)~e,m!Fk,l ,m~m!,

wherem is the spectral parameter andF(m):Z3→GL(2,C) is the wave function. The matricesL (n)

are defined on the edgese5(pout ,pin) of Z3 connecting two neighboring vertices and oriented
the direction of increasingk1 l 1m:

L (n)~e,m!5S 1 zin2zout

m
Dn

zin2zout
1 D , ~7!

with parametersDn fixed for each type of edges. The zero-curvature condition on the face
elementary cubes ofZ3 is equivalent to Eqs.~1! with Dn5eidn for properly chosendn . Indeed,
each elementary quadrilateral ofZ3 has two consecutive positively oriented pairs of edgese1 ,e2

ande3 ,e4 . Then the compatibility condition

L (n1)~e2!L (n2)~e1!5L (n2)~e4!L (n1)~e3!

is exactly one of the equations~1!. This Lax representation is a generalization of the one foun
Ref. 19 for the square lattice.

A solution z:Z3→C of Eqs. ~1! is called isomonodromicif there exists a wave function
F(m):Z3→GL(2,C) satisfying~6! and the following linear differential equation inm:

d

dm
Fk,l ,m~m!5Ak,l ,m~m!Fk,l ,m~m!, ~8!

whereAk,l ,m(m) are some 232 matrices meromorphic inm, with the order and position of thei
poles being independent ofk,l ,m. Isomonodromic solutions are important in many applicatio
in particular, for the first time the isomonodromy method was used to solve a discrete eq
appearing in quantum gravity.13

The simplest nontrivial isomonodromic solutions satisfy the constraint

bzk,l ,m
2 1czk,l ,m1d52~k2a1!

~zk11,l ,m2zk,l ,m!~zk,l ,m2zk21,l ,m!

zk11,l ,m2zk21,l ,m

12~ l 2a2!
~zk,l 11,m2zk,l ,m!~zk,l ,m2zk,l 21,m!

zk,l 11,m2zk,l 21,m

12~m2a3!
~zk,l ,m112zk,l ,m!~zk,l ,m2zk,l ,m21!

zk,l ,m112zk,l ,m21
. ~9!

Theorem 2:7 Let z:Z3→C be an isomonodromic solution to (1) with the matrix Ak,l ,m in (8)
of the form

Ak,l ,m~m!5
Ck,l ,m

m
1 (

n51

3 Bk,l ,m
(n)

m21/Dn
~10!

with m-independent matrices Ck,l ,m , Bk,l ,m
(n) and normalized bytr A0,0,0(m)50. Then these matri-

ces have the following form:

Ck,l ,m5
1

2 S 2bzk,l ,m2c/2 bzk,l ,m
2 1czk,l ,m1d

b bzk,l ,m1c/2
D ,
7 Jul 2010 to 130.149.14.232. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Bk,l ,m
(1) 5

k2a1

zk11,l ,m2zk21,l ,m
S zk11,l ,m2zk,l ,m ~zk11,l ,m2zk,l ,m!~zk,l ,m2zk21,l ,m!

1 zk,l ,m2zk21,l ,m
D 1

a1

2
I ,

Bk,l ,m
(2) 5

l 2a2

zk,l 11,m2zk,l 21,m
S zk,l 11,m2zk,l ,m ~zk,l 11,m2zk,l ,m!~zk,l ,m2zk,l 21,m!

1 zk,l ,m2zk,l 21,m
D 1

a2

2
I ,

Bk,l ,m
(3) 5

m2a3

zk,l ,m112zk,l ,m21
S zk,l ,m112zk,l ,m ~zk,l ,m112zk,l ,m!~zk,l ,m2zk,l ,m21!

1 zk,l ,m2zk,l ,m21
D 1

a3

2
I ,

and zk,l ,m satisfies (9).
Conversely, any solution z:Z3→C to the system (1) and (9) is isomonodromic with Ak,l ,m(m)

given by the formulas above.
The special caseb5a15a25a350 with shift z→z2d/c implies ~2!.

III. EUCLIDEAN DESCRIPTION OF HEXAGONAL CIRCLE PATTERNS

In this section we describe the circle patternzc in terms of the radii of the circles. Suc
characterization proved to be quite useful for the circle patterns with combinatorics of the s
grid.1,3 In what follows, we say that the triangle (z1 ,z2 ,z3) haspositive (negative) orientationif

z32z1

z22z1
5Uz32z1

z22z1
Ueif with 0<f<p ~2p,f,0!.

Lemma 1: Let q(z1 ,z2 ,z3 ,z4)5e22ia, 0,a,p.

(i) If uz12z2u5uz12z4u and the triangle(z1 ,z2 ,z4) has positive orientation, thenuz32z2u
5uz32z4u and the angle between@z1 ,z2# and @z2 ,z3# is (p2a).

(ii) If uz12z2u5uz12z4u and the triangle(z1 ,z2 ,z4) has negative orientation, thenuz32z2u
5uz32z4u and the angle between@z1 ,z2# and @z2 ,z3# is a.

(iii) If the angle between@z1 ,z2# and @z1 ,z4# is a and the triangle(z1 ,z2 ,z4) has positive
orientation, thenuz32z2u5uz12z2u and uz32z4u5uz42z1u.

(iv) If the angle between@z1 ,z2# and @z1 ,z4# is (p2a) and the triangle(z1 ,z2 ,z4) has nega-
tive orientation, thenuz32z2u5uz12z2u and uz32z4u5uz42z1u.

Lemma 1 and Proposition 1 imply that each elementary quadrilateral of the studied circle p
has one of the forms enumerated in the lemma.

Proposition 1 allows us to introduce the radius function

r ~K,L,M !5uzk,l ,m2zk61,l ,mu5uzk,l 61,m2zk,l ,mu5uzk,l ,m2zk,l ,m61u, ~11!

where (k,l ,m) belongs to the sublattice ofQ with evenk1 l 1m and (K,L,M ) label this sublat-
tice:

K5k2
k1 l 1m

2
, L5 l 2

k1 l 1m

2
, M5m2

k1 l 1m

2
. ~12!

The functionr is defined on the sublattice

Q̃5$~K,L,M !PZ3uL1M<0, M1K<0, K1L>0!%

corresponding toQ. Consider this function on

Q̃H5$~K,L,M !PZ3uK>0, L>0, M<0, K1L1M50,11%.
7 Jul 2010 to 130.149.14.232. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Theorem 3: Let the solution z:QH→C of the system (1) and (2) with initial data (4) be a

immersion. Then function r(K,L,M ):Q̃H→R1 , defined by (11), satisfies the following equation

~r 11r 2!~r 22r 2r 31r ~r 32r 2!cosa i !1~r 31r 2!~r 22r 2r 11r ~r 12r 2!cosa i !50 ~13!

on the patterns of type I and II as in Fig. 2, with i53 and i52, respectively;

~L1M11!
r 42r 1

r 41r 1
1~M1K11!

r 62r 3

r 61r 3
1~K1L11!

r 22r 5

r 21r 5
5c21 ~14!

on the patterns of type III, and

r ~r 1 sina31r 2 sina11r 3 sina2!5r 1r 2 sina21r 2r 3 sina31r 3r 1 sina1 ~15!

on the patterns of type IV. Conversely, r (K,L,M ):Q̃H→R1 satisfying Eqs. (13)–(15) is the radius
function of an immersed hexagonal circle pattern with constant intersection angles [i.e., c
sponding to some immersed solution z:QH→C of (1) and (2)], which is determined by r uniquel.

Proof: The mapzk,l ,m is an immersion if and only if all triangles (zk,l ,m ,zk11,l ,m ,zk,l ,m21),
(zk,l ,m ,zk,l ,m21 ,zk,l 11,m) and (zk,l ,m ,zk11,l ,m ,zk,l 11,m) of elementary quadrilaterals of the ma
zk,l ,m have the same orientation~for brevity we call it the orientation of the quadrilaterals!.

Necessity:To get Eq.~14!, consider the configuration of two starlike figures with centers
zk,l ,m with k1 l 1m51 (mod 2) and atzk11,l ,m , connected by five edges in thek-direction as
shown on the left part of Fig. 3. Letr i , i 51, . . . ,6, be theradii of the circles with the centers a
the vertices neighboringzk,l ,m as in Fig. 3. As follows from Lemma 1, the verticeszk,l ,m , zk11,l ,m

and zk21,l ,m are collinear. For immersedzc, the vertexzk,l ,m lies betweenzk11,l ,m and zk21,l ,m .
Similar facts are true also for thel - and m-directions. Moreover, the orientations of elementa
quadrilaterals with the vertexzk,l ,m coincides with one of the standard lattice. Lemma 1 defines
angles atzk,l ,m of these quadrilaterals. Equation~2! at (k,l ,m) giveszk,l ,m :

FIG. 2. Equation patterns.

FIG. 3. Circles.
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forms

ts of
Fig.

3461J. Math. Phys., Vol. 44, No. 8, August 2003 Hexagonal circle patterns

Downloaded 0
zk,l ,m5
2eis

c S k
r 1r 4

r 11r 4
1 l

r 3r 6

r 31r 6
ei (a21a3)1m

r 2r 5

r 21r 5
ei (a11a212a3)D ,

where eis5(zk11,l ,m2zk,l ,m)/r 1 . Lemma 1 allows one to computezk11,l ,m21 , zk11,l 11,m ,
zk11,l ,m11 andzk11,l 21,m using the form of quadrilaterals~they are shown in Fig. 3!. Now Eq.~2!
at (k11,l ,m) defineszk12,l ,m . Condition uzk12,l ,m2zk11,l ,mu5r 1 with the labels~12! yields Eq.
~14!.

For l 50 valueszk11,0,m , zk12,0,m , zk11,0,m21 and the equation for the cross-ratio witha3 give
the radiusR with the center atzk12,0,m21 . Note that forl 50 the term withr 6 andr 5 drops out of
Eq. ~14!. Using this equation and the permutationR→r 1 , r 1→r , r 2→r 2 , r 5→r 3 , one gets Eq.
~13! with i 53. The equation for pattern II is derived similarly.

To derive~15!, consider the figure on the right part of Fig. 3 wherek1 l 1m51 (mod 2) and
r 1 , r 2 , r 3 andr are the radii of the circles with the centers atzk11,l ,m , zk11,l 11,m21 , zk,l 11,m and
zk,l ,m21 , respectively. Elementary geometrical considerations and Lemma 1 applied to the
of the shown quadrilaterals give Eq.~15!.

Remark:Equation~15! is derived forr 5r (K,L,M ), r 15r (K,L,M21), r 25r (K21,L,M ),
r 35r (K,L21,M11). However, it holds true also forr 15r (K,L,M11), r 25r (K11,L,M ),
r 35r (K,L11,M11) since it gives the radius of the circle through the three intersection poin
the circles with radiir 1 , r 2 , r 3 intersecting at prescribed angles as shown in the right part of
3. Later, we refer to this equation also for this pattern.

Sufficiency:Now let r (K,L,M ):Q̃H→R1 be some positive solution to~13!–~15!. We can
rescale it so thatr (0,0,0)51. Starting withr (1,0,21) andr (0,1,21) one can computer every-
where in Q̃H : r in a ‘‘black’’ vertex ~see Fig. 4! is computed from~14!. @Note that onlyr at
‘‘circled’’ vertices is used: so to computer 1,1,21 one needs onlyr (1,0,21) andr (0,1,21).] The
function r in ‘‘white’’ vertices on the border]Q̃H5$(K,0,2K)uKPN%ø$(0,L,2L)uLPN% is
given by ~13!. Finally, r in ‘‘white’’ vertices in QH

int5QH\]Q̃H is computed from~15!. In Fig. 4
labels show the order of computingr .

Lemma 2: Any solution r(K,L,M ):Q̃H→R to (13)–(15) with 0<c<2, which is positive for

inner vertices of Q˜ H defines some zk,l ,m satisfying (1) in Q. Moreover, all the triangles
(zk,l ,m ,zk11,l ,m ,zk,l ,m21), (zk,l ,m ,zk,l ,m21 ,zk,l 11,m) and (zk,l ,m ,zk11,l ,m ,zk,l 11,m) have positive
orientation.

FIG. 4. Computingr in Q̃H .
7 Jul 2010 to 130.149.14.232. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Proof of the lemma:One can place the circles with radiir (K,L,M ) into the complex planeC
in the way prescribed by the hexagonal combinatorics and the intersection angles. Taki
circle centers and the intersection points of neighboring circles, one recoverszk,l ,m for k1 l 1m
50,61 up to a translation and rotation. Reversing the arguments used in the derivation of~13!–
~15!, one observes from the forms of the quadrilaterals that Eqs.~1! are satisfied. Now using~1!,
one recoversz in the wholeQ. Equation~15! ensures that the radiir remain positive, which
implies the positive orientations of the triangles (zk,l ,m ,zk11,l ,m ,zk,l ,m21),
(zk,l ,m ,zk,l ,m21 ,zk,l 11,m) and (zk,l ,m ,zk11,l ,m ,zk,l 11,m).

Consider a solutionz:Q→C of the system~1! and~2! with initial data~4!, wheref andc are
chosen so that the triangles (z0,0,0),z1,0,0,z0,0,21) and (z0,0,0),z0,0,21 ,z0,1,0) have positive orienta-
tions and satisfy conditionsr (1,0,21)5uz1,0,212z1,0,0u and r (0,1,21)5uz0,1,212z0,0,21u. The
map zk,l ,m defines circle pattern due to Proposition 1 and coincides with the map define
Lemma 2 due to the uniqueness of the solution uniqueness. Q.

Since the cross-ratio equations and the constraint are compatible, the equations for th
are also compatible. Starting withr (0,0,0), r (1,0,21) and r (0,1,21), one can compute
r (K,L,M ) everywhere inQ̃.

Lemma 3: Let a solution r(K,L,M ):Q̃→R of (13)–(15) be positive in the planes given b

equations K1M50 and L1M50. Then it is positive everywhere in Q˜ .
Proof: As follows from Eq.~15!, r is positive for positiver i , i 51,2,3. Asr at (K,K,2K),

(K11,K,2K21) and (K,K11,2K21) is positive,r at (K,K,K21) is also positive. Now
starting fromr at (K,K,2K21) and havingr .0 at (N,K11,2K21) and (N,K,2K), one
obtains positiver at (N,K,2K21) for 0<N,K by the same reason. Similarly,r at (K,N,2K
21) is positive. Thus from positiver at the planesK1M50 andL1M50, we get positiver at
the planesK1M521 andL1M521. Induction completes the proof.

Lemma 4: Let a solution r(K,L,M ):Q̃→R of (13)–(15) be positive in the lines parametrize

by n as(n,0,2n) and (0,n,2n). Then it is positive in the border planes of Q˜ specified by K
1M50 and L1M50.

Proof: We prove this lemma forK1M50. For the other border plane it is proved similar
Equation~14! for (K,L,2K21) gives

r 25r 5

~2L1c!r 11~2K1c!r 4

~2K122c!r 11~2L122c!r 4
, ~16!

thereforer 2 is positive providedr 1 , r 5 and r 4 are positive. ForK5L it reads as

r 25r 5

~2K1c!

~2K122c!
. ~17!

It allows us to compute recursivelyr at (K,K,2K) starting withr at ~0,0,0!. Obviously,r .0 for
(K,K,2K) if r .0 at ~0,0,0!. This property together with the conditionr .0 at (n,0,2n) implies
the conclusion of the lemma since Eq.~16! givesr everywhere in the border plane ofQ̃ specified
by K1M50.

Lemmas 3 and 4 imply that the circle patternzc is an immersion ifr .0 at (N,0,2N) and
(0,N,2N).

IV. PROOF OF THE MAIN THEOREM. DISCRETE PAINLEVÉ AND RICCATI EQUATIONS

In this section, we prove that allr (n,0,2n), ;nPN are positive only for the initial data
z1,0,051, z0,0,215eca3. For the liner (0,n,2n) the proof is the same. Our strategy is as follow
first, we prove the existence of an initial valuez0,0,21 such thatr (n,0,2n).0, ;nPN. Finally
we will show that this value is unique and isz0,0,215eca3.

Proposition 2: Suppose the equation
7 Jul 2010 to 130.149.14.232. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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~n11!~xn
221!S xn111xn /«

«1xnxn11
D2n~12xn

2/«2!S xn211«xn

«1xn21xn
D5cxn

«221

2«2 , ~18!

where «5eia3, has a unitary solution xn5eibn in the sector0,bn,a3 . Then r(n,0,2n), n
>0 is positive.

Proof: For z1,0,051 and unitaryz1,0,21 , the equation for the cross-ratio witha3 and~2! reduce
to ~18! with unitary xn

25(zn,0,2n212zn,0,n)/(zn11,0,2n2zn,0,n). Note that forn50 the term with
x21 drops out of~18!; therefore the solution forn.0 is determined byx0 only. The condition
0,bn,a3 means that all triangles (zn,0,2n ,zn11,0,n ,zn,0,2n21) have positive orientation. Henc
r (n,0,2n) are all positive. Q.E.D.

Remark:Equation~18! is a specialdiscrete Painleve´ equation. For a more general reductio
of cross-ratio equation see Ref. 18. The case«5 i , corresponding to the orthogonally intersecti
circles, was studied in detail in Ref. 3. Here we generalize these results to the case of ar
unitary «. Below we omit the index ofa so that«5eia.

Theorem 4: There exists a unitary solution xn5eibn to (18) in the sector0,bn,a.
Proof: Equation ~18! allows us to representxn11 as a function ofn,xn21 and xn : xn11

5F(n,xn21 ,xn). F(n,u,v) maps the torusT25S13S15$(u,v)PC: uuu5uvu51% into S1 and
has the following properties:

~i! For all nPN it is a continuous map onAI3ĀI whereAI5$eib:bP(0,a)% and ĀI is the
closure ofAI . Values ofF on the border ofAI3ĀI are defined by continuity:F(n,u,«)
521, F(n,u,1)52«.

~ii ! For (u,v)PAI3AI one hasF(n,u,v)PAIøAII øAIV , whereAII 5$eib:bP(a,p#% and
AIV5$eib:bP@a2p,0)%, i.e., x cannot jump in one step fromAI into AIII 5$eib:b
P(2p,a2p)%.

Let x05eib0. Thenxn5xn(b0). DefineSn5$b0 : xk(b0)PĀI;0<k<n%. ThenSn is a closed set
sinceF is continuous onAI3ĀI . As a closed subset of a segment it is a collection of disjo
segmentsSn

l .
Lemma 5: There exists sequence$Sn

l (n)% such that

(i) Sn
l (n) is mapped by xn(b0) onto ĀI and

(ii) Sn11
l (n11),Sn

l (n) .

The lemma is proved by induction. Forn50 it is trivial. Suppose it holds forn. As Sn
l (n) is

mapped byxn(b0) onto ĀI , continuity considerations andF(n,u,«)521, F(n,u,1)52« imply
xn11(b0) mapsSn

l (n) onto AIøAII øAIV and at least one of the segmentsSn11
l ,Sn

l (n) is mapped
into ĀI . This proves the lemma.

Since the segments of$Sn
l (n)% constructed in Lemma 5 are nonempty, there existsb̄0PSn for

all n>0. For thisb̄0 , the valuexn(b̄0) is not on the border ofĀ0 since thenxn11(b0) would jump
out of ĀI . Q.E.D.

Let r n andRn be the radii of the circles of the circle patterns defined byzk,l ,m with the centers
at z2n,0,0 andz2n11,0,21 , respectively. Constraint~2! gives

r n115
2n1c

2~n11!2c
r n ,

which is exactly formula~17!. From elementary geometric considerations~see Fig. 5! one gets

Rn115
r n112Rn cosa

Rn2r n11 cosa
r n11

~recall thata5a3). Define
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pn5
Rn

r n
, gn~c!5

2n1c

2~n11!2c

and denotet5cosa. Now, the equation for the radiiR, r takes the form

pn115
gn~c!2tpn

pn2tgn~c!
. ~19!

Remark:Equation~19! can be seen as a discrete version of aRiccati equation. This is moti-
vated by the following properties:

~i! The cross-ratio of each four-tuple of its solutions is constant aspn11 is a Möbius transform
of pn .

~ii ! The general solution is expressed in terms of solutions of some linear equation: the
dard ansatz

pn5
yn11

yn
1tgn~c! ~20!

transforms~19! into
yn121t~gn11~c!11!yn111~t221!gn~c!yn50. ~21!

As follows from Theorem 4, Proposition 2, and Lemma 4, Eq.~19! has a positive solution. One
may conjecture that there is only one initial valuep0 such thatpn.0, ;nPN from the consid-
eration of the asymptotics. Indeed,gn(c)→1 asn→`, and the general solution of Eq.~21! with
limit values of coefficients isyn5c1(21)n(11t)n1c2(12t)n. Thus pn5yn11 /yn 1tgn(c)
→21 for c1Þ0. Howeverc1 ,c2 define only the asymptotics of a solution. To relate it to t
initial value p0 is a more difficult problem. Fortunately, it is possible to find the general solu
to ~21!.

Proposition 3: The general solution to (21) is

yn5

GS n1
1

2D
GS n112

c

2D S c1l1
n112c/2FS 32c

2
,
c21

2
,
1

2
2n,z1D

1c2l2
n112c/2FS 32c

2
,
c21

2
,
1

2
2n,z2D D , ~22!

FIG. 5. Circles on the border.
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wherel152t21, l2512t, z15(t21)/2, z252(11t)/2 and F is the hypergeometric func
tion.

Proof: The solution was found by a slightly modifiedsymbolic method~see Ref. 10 for the
method description and Ref. 2 for the detail!. Here,F(a,b,c,z) denotes the standard hyperge
metric function which is a solution of the hypergeometric equation

z~12z!Fzz1@c2~a1b11!z#Fz2abF50 ~23!

holomorphic atz50. Due to linearity, the general solution of~21! is given by a superposition o
any two linearly independent solutions. Direct computation with the series representation
hypergeometric function

FS 12
g21

2
,
g21

2
,12S x1

g21

2 D ,zD
511z

~12 ~g21!/2!~g21!/2

~12~x1 ~g21!/2!!
1¯

1zk
@~12 ~g21!/2!~22 ~g21!/2!¯~k2 ~g21!/2!#@~~g21!/2!~11 ~g21!/2!¯~k21~g21!/2!#

~12~x ~g21!/2!!¯~k2~x1 ~g21!/2!!
1¯

~24!

shows that each summand in~22! satisfies Eq.~21!. To finish the proof of Proposition 3, one ha
to show that the particular solutions withc150, c2Þ0 andc1Þ0, c250 are linearly independent
This fact follows from the following lemma.

Lemma 6: As n→`, function (22) has the asymptotics

yn.~n112g/2!~g21!/2~c1l1
n112g/21c2l2

n112g/2!. ~25!

For n→` the series representation~24! implies F((32g)/2 , (g21)/2 ,1
22n,z1).1. Stirling’s

formula

G~x!.A2pe2xxx2 1/2 ~26!

yields the asymptotics of the factorG(n1 1
2)/G(n112 g/2). This completes the proof of th

lemma and of Proposition~3!.
Proposition 4: A solution of the discrete Riccati equation (19) withaÞp/2 is positive for all

n>0 if and only if

p05
sinca/2

sin~22c!a/2
. ~27!

Proof: For positivepn , it is necessary thatc150: this follows from asymptotics~25! substi-
tuted into~20!. Let us define

s~z!511z
~12 ~g21!/2!~~g21!/2!

1

2

1¯

1zk
~k2 ~g21!/2!¯~12 ~g21!/2!~~g21!/2!~k211 ~g21!/2!

k! S k2
1

2D¯ 1

2

¯ . ~28!

This is the hypergeometric functionF((32g)/2 , (g21)/2 ,1
22n,z) with n50. A straightforward

computation with series shows that
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p0511
2~g21!

22g
z1

4z~z21!

22g

s8~z!

s~z!
, ~29!

wherez5 (11t)/2. Note thatp0 as a function ofz satisfies an ordinary differential equation
first order sinces8(z)/s(z) satisfies the Riccati equation obtained by a reduction of~23!. A
computation shows that@sin(ga/2)#/@sin(22g)a/2# satisfies the same ordinary differential eqi
tion. Since both expression~29! and ~27! are equal to 1 forz50, they coincide everywhere.

Q.E.D.
Proof of Theorem 1:Proposition~4! implies that the initialx0 for which ~18! gives positiver

is unique and implies the initial values~5! for zc if a iÞp/2. For the casea5p/2, any solution for
~19! with p0.0 is positive. Nevertheless, as was proved in Ref. 3,x0 is in this case also unique
and is specified by~27!. Thus for allnPN we haver (n,0,2n).0, r (0,n,2n).0 for the circle
patternzc. Lemmas 4 and 3 complete the proof.

V. HEXAGONAL CIRCLE PATTERNS z2 AND Log

For c52, formula~17! gives infiniter (1,1,21). The way around this difficulty is renorma
izationz→(22c)z/c and a limit procedurec→220, which leads to the renormalization of initia
data~see Ref. 7!. As follows from ~27!, this renormalization implies

r ~0,0,0!50, r ~1,0,21!5
sina3

a3
,r ~0,1,21!5

sina2

a2
, r ~1,1,21!51. ~30!

Proposition 5: The solution to (13)–(15) with c52 and initial data (30) is positive.
Proof: This follows from Lemmas 3 and 4 since Theorem 4 is true also for the casec52.

Indeed, solutionxn is a continuous function ofc. Therefore it has a limit value asc→220 and it
lies in the sectorAI .

Lemma 2 implies that there exists a hexagonal circle pattern with radius functionr .
Definition 3: The hexagonal circle pattern Z2 has a radius function specified by Proposition.
Equations~13!–~15! have the symmetry

r→ 1

r
, c→22c, ~31!

which is theduality transformation~see Ref. 8!. The smooth analogf→ f * for holomorphic
functions f (w), f * (w) is

d f~w!

dw

d f* ~w!

dw
51.

Note that log*(w)5w2/2. The hexagonal circle pattern Log is defined7 as a circle pattern dual to
Z2. Discretez2 and Log are the first two images in Fig. 6.

Theorem 5: The hexagonal circle patterns Z2 and Log are immersions.

FIG. 6. Hexagonalz2, Log and square gridz3/2.
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Proof: For z2 this follows from Proposition 5. Hence the values of 1/r , where r is radius
function for z2, are positive except forr (0,0,0)5`. Lemma 2 completes the proof.

VI. CONCLUDING REMARKS

In this section we discuss corollaries of the obtained results and possible generalizatio

A. Square grid circle patterns zc and Log

Equations~1! extendzk,l ,m corresponding to the hexagonalz2 and Log fromQH into the
three-dimensional latticeQ. Ther -function of this extension satisfies Eq.~15!. Considerzk,l ,m for
the hexagonalzc and Log restricted to one of the coordinate planes, e.g.,l 50. Then Proposition
1 states thatzk,0,m defines some circle pattern with combinatorics of the square grid: each c
has four neighboring circles intersecting it at anglesa3 andp2a3 . It is natural to call itsquare
grid zc ~see the third image in Fig. 6!. Such circle patterns are natural generalization of those w
orthogonal neighboring and tangent half-neighboring circles introduced and studied in Ref

Theorem 6: Square grid zc, 0,c<2 and Log are immersions.
Proof easily follows from Lemma 2.
It is interesting to note that the square grid circle patternzc can be obtained from hexagon

one by limit procedurea3→10 and bya1→p2a2 . These limit circle patterns still can b
defined by~1! and ~2! by imposing the self-similarity conditionzk,l ,m5 f l ,k2m .

B. Square grid circle patterns Erf

For square grid combinatorics anda5p/2, Schramm22 constructed circle patterns mimickin
holomorphic function erf(z)5(2/p)*e2z2

dz by giving the radius function explicitly. Namely, le
n,m label the circle centers so that the pairs of circlesc(n,m), c(n11,m) andc(n,m), c(n,m
11) are orthogonal and the pairsc(n,m), c(n11,m11) andc(n,m11), c(n11,m) are tangent.
Then

r ~n,m!5enm ~32!

satisfies the equation for a radius function:

R2~r 11r 21r 31r 4!2~r 2r 3r 41r 1r 3r 41r 1r 2r 41r 1r 2r 3!50, ~33!

whereR5r (n,m), r 15r (n11,m), r 25r (n,m11), r 35r (n21,m), r 45r (n,m21). For square
grid circle patterns with intersection anglesa for c(n,m), c(n11,m) and p2a for c(n,m),
c(n,m11) the governing Eq.~33! becomes

R2~r 11r 21r 31r 4!2~r 2r 3r 41r 1r 3r 41r 1r 2r 41r 1r 2r 3!12R cosa~r 1r 32r 2r 4!50. ~34!

It is easy to see that~34! has the same solution~32! and it therefore defines a square grid circ
pattern, which is a discrete Erf. A hexagonal analog of Erf is not known.

C. Circle patterns with quasi-regular combinatorics

One can deregularize the prescribed combinatorics by a projection ofZn into a plane as
follows ~see Ref. 23!. ConsiderZ1

n ,Rn. For each coordinate vectorei5(ei
1 , . . . ,ei

n), whereei
j

5d i
j define a unit vectorj i in C5R2 so that for any pair of indicesi , j , vectorsj i ,j j form a basis

in R2. Let VPRn be some two-dimensional simply connected cell complex with vertices inZ1
n .

Choose somex0PV. Define the mapP:V→C by the following conditions:

~i! P(x0)5P0 .
~ii ! If x,y are vertices ofV andy5x1ei , thenP(y)5P(x)1j i .

It is easy to see thatP is correctly defined and unique.
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We callV a projectablecell complex if its imagev5P(V) is embedded, i.e., intersections
images of different cells ofV do not have inner parts. Using projectable cell complexes one
obtain combinatorics of Penrose tilings.

It is natural to define ‘‘discrete conformal map onv’’ as a discrete complex immersio
function z on vertices ofv preserving the cross-ratios of thev-cells. The argument ofz can be
labeled by the verticesx of V. Hence for any cell ofV, constructed onek ,ej , the functionz
satisfies the following equation for the cross-ratios:

q~zx ,zx1ek
,zx1ek1ej

,zx1ej
!5e22iak, j , ~35!

whereak, j is the angle betweenjk andjj , taken positively if (jk ,j j ) has positive orientation and
taken negatively otherwise. Now suppose thatz is a solution to~35! defined on the wholeZ1

n . We
can define a discretezc:v→C for projectableV as a solution to~35! and ~36! restricted toV.
Initial conditions for this solution are of the form~5! so that the restrictions ofz to each two-
dimensional coordinate lattice is an immersion defining a circle pattern with prescribed inte
tion angles. This definition naturally generalizes the definition of discrete hexagonal and s
grid zc considered above.

We finish this section with the natural conjecture formulated in Ref. 2.
Conjecture: The discrete zc:v→C is an immersion.
The first step in proving this claim is to show that Eq.~35! is compatible with the constrain

c fx5(
s51

n

2xs

~ f x1es
2 f x!~ f x2 f x2es

!

f x1es
2 f x2es

. ~36!

For n53 this fact is proven in Ref. 7.
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