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angles and discrete Painleve and Riccati equations

S. I. Agafonov® and A. I. Bobenko®
Fachbereich Mathematik, Technische UniversBarlin, Strasse des 17. Juni 136,
10623 Berlin, Germany

(Received 15 January 2003; accepted 9 April 2003

Hexagonal circle patterns with constant intersection angles mimicking holomorphic
mapsz® and logg) are studied. It is shown that the corresponding circle patterns are
immersed and described by special separatrix solutions of discrete Paamldve
Riccati equations. The general solution of the Riccati equation is expressed in terms
of the hypergeometric function. Global properties of these solutions, as well as of
the discretez® and logg), are established. @003 American Institute of Physics.
[DOI: 10.1063/1.1586966

[. INTRODUCTION. HEXAGONAL CIRCLE PATTERNS AND Zz¢

The theory of circle patterns is a rich fascinating area having its origin in the classical theory
of circle packings. Its fast development in recent years is caused by the mutual influence and
interplay of ideas and concepts from discrete geometry, complex analysis and the theory of
integrable systems.

The progress in this area was initiated by Thurston’s 3&zof approximating the Riemann
mapping by circle packings. Classical circle packings consisting of disjoint open disks were later
generalized to circle patterns where the disks may ovedap, for example, Ref. 14Different
underlying combinatorics were considered. Circle patterns with the combinatorics of the square
grid were introduced in Ref. 22; hexagonal circle patterns were studied in Refs. 7 and 9.

The striking analogy between circle patterns and the classical analytic function theory is
underlined by such facts as the uniformization theorem concerning circle packing realizations of
cell complexes with prescribed combinatorfcs, discrete maximum principle and Schwarz’s
lemma?® rigidity properties”**and a discrete Dirichlet principfe.

The convergence of discrete conformal maps represented by circle packings was proven in
Ref. 21. For prescribed regular combinatorics this result was refieéd¢onvergence for hexago-
nal packings is shown in Ref. 15. The uniform convergence for circle patterns with the combina-
torics of the square grid and orthogonal neighboring circles was established in Ref. 22.

The approximation issue naturally leads to the question about analogs to standard holomor-
phic functions. Computer experiments give evidence for their existértédiowever not very
much is known. For circle packings with hexagonal combinatorics the only explicitly described
examples are Doyle spirats® which are discrete analogs of exponential maps, and conformally
symmetric packings, which are analogs of a quotient of Airy functfoRer patterns with over-
lapping circles more explicit examples are known: discrete versions of)expf(z),% z°, log(2)

(Ref. 3 are constructed for patterns with underlying combinatorics of the squarezfrithg(2)
are also described for hexagonal patteris.

It turned out that an effective approach to the description of circle patterns is given by the
theory of integrable systentsee Refs. 7-9 For example, Schramm'’s circle patterns are governed
by a difference equation which is the stationary Hirota equatsme Ref. 2P This approach
proved to be especially useful for the construction of disaz&and logg) in Refs. 3 and 7—9 with

3E|ectronic mail: sagafonov@rusfund.ru
BElectronic mail: bobenko@math.tu-berlin.de

0022-2488/2003/44(8)/3455/15/$20.00 3455 © 2003 American Institute of Physics

Downloaded 07 Jul 2010 to 130.149.14.232. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



3456 J. Math. Phys., Vol. 44, No. 8, August 2003 S. I. Agafonov and A. I. Bobenko

FIG. 1. Hexagonal circle patterns as a discrete conformal map.

the aid of some isomonodromy problem. Another connection with the theory of discrete integrable
equations was revealed in Refs. 1-3: embedded circle patterns are described by special solutions
of discrete Painlevél and discrete Riccati equations.

In this article we carry the results of Ref. 3 for square grid combinatorics over to hexagonal
circle patterns with constant intersection angles introduced in Ref. 7.

Hexagonal combinatorics are obtained on a sublattic&afs follows: consider the subset

H={(k,I,m)eZ% |k+I+m|<1}

and join by edges those vertices ldfwhose k,I,m)-labels differ by 1 only in one component.
The obtained quadrilateral latti€@L has two types of vertices: fée+ | +m=0 the corresponding
vertices have six adjacent edges, while the vertices kvith+m= =1 have only three. Suppose
that the vertices with six neighbors correspond to centers of circles in the compleX pdaucethe
vertices with three neighbors correspond to intersection points of circles with the centers in
neighboring vertices. Thus we obtain a circle pattern with hexagonal combinatorics.

Circle patterns where the intersection angles are constant for each of three typesdri-
latera) faces(see Fig. 1 were introduced in Ref. 7. A special case of such circle patterns mim-
icking holomorphic maz® and logg) is given by the restriction to ahl-sublattice of a special
isomonodromic solution of sommtegrable systenon the latticeZ®. Equations for the field
variablez: 73— C of this system are

-2
A(Zi1,msZki+1mr Zk- 1) +1m  Zk—1),m) =€ 4L,

_ 2
A(Zim Zitm—1Zki+1m—1:Zk 1 +1,m) =€ 792, (1

-2
A(Zk i msZks 10,m Zkr 1),m—1:Zk I m-1) =€ 73,

where ;>0 satisfya;+ ar,+ az=7 and

(24,252 Z)_(ZI_ZZ)(ZB_ZA)
W21:22:23:24 _(22—23)(24_21)

is the cross-ratio of elementary quadrilaterals of the imag&®ofEquations(1) mean that the
cross-ratios of images of faces of elementary cubes are constant for each type of face, while the
restrictiona+ a,+ a3= 7 ensures their compatibility.

The isomonodromic problem for this systésee Sec. Il for the details, where we present the
necessary results from Ref) 3pecifies the nonautonomous constraint

4 —Z Z —Zy_
CZk,|,m=2k( k+1l,m k,I,m)( k,I,m k 1,I,m) +2

Zy+1l,m™ Zk—1),m Zyl+1m— Zkl-1m

| (Z i+ 1= Zit ) (2t m™ Zii—1m)

(Z1,mr1= Zit,m) (Zi ), m— Zil,m—1)
+2m J,m+ ,h,m ,Ih,m ,,m , (2)
Zy |, m+1~ Zk,I,m-1
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which is compatible witi(1) (this constraint in the two-dimensional case with 1 first appeared
in Ref. 19. In particular, a solution t¢l) and(2) in the subset

Q={(k,I,m) e k=0, 1=0, m=0} (3
is uniquely determined by its values

730,00 Zo21,00 Zo0-1-

Indeed, the constrairi2) givesz, o ,=0 and defineg along the coordinate axi$(0,0), (0n,0),
(0,0,—n). Then all otherzy ., with (k,I,m) € Q are calculated through the cross-ratias
Proposition 17 The solution zZQ— C of the system (1) and (2) with the initial data

2100=1, Zp10=€"%, zp9_1=€" (4)

determines a circle pattern. For ak,|,m) e Q with even k-1+m the points g.1; m, Zk =1m>
Zx ) m=1 lie on a circle with the center,z ,,, i.e., all elementary quadrilaterals of the-{fnage are

of kite form
Moreover, Egs(1) (see Lemma 1 in Sec. )llensure that for the pointg | , with k+1+m
= =*1, where three circles meet intersection anglesa@ 7— «; , i =1,2,3(see Fig. 1 where the

isotropic casey; = 7/3 of regular andZ®?pattern are shown

According to Proposition 1, the discrete map ,, restricted orH, defines a circle pattern
with circle centerg, | ,, for k+1+m=0, each circle intersecting six neighboring circles. At each
intersection point three circles meet.

However, for most initial datap, s R, the behavior of the obtained circle pattern is quite
irregular: inner parts of different elementary quadrilaterals intersect and circles overlap. Define
Qu=QNH.

Definition 17 The hexagonal circle pattern®Z0<c<2 with intersection angles:;,a,, a3,
a;>0, a1+ ay,+ az= 7 is the solution zZQ— C of (1) subject to (2) and with the initial data

Z100= 1, Z01,0= giclaz+ ag), Zoo 1= gicas ®)

restricted to Q.

Definition 2: A discrete map:Qy—C is called an immersion if inner parts of adjacent
elementary quadrilaterals are disjoint

The main result of this article is the following theorem.

Theorem 1: The hexagonal Zwith constant positive intersection angles aidc<2 is an
immersion

The proof of this property follows from an analysis of the geometrical properties of the
corresponding circle patterns and analytical properties of the corresponding discrete Paioleve
Riccati equations.

The crucial step is to consider equations for the radii of the studied circle patterns in the whole
Q-sublattice with everk+I+m. In Sec. Ill, these equations are derived and the geometrical
property of immersedness is reformulated as the positivity of the solution to these equations.
Using discrete Painlévand Riccati equations in Sec. IV we present the proof of the existence of
a positive solution and thus complete the proof of immersedness. In Sec. VI, we discuss possible
generalizations and corollaries of the obtained results. In particular, circle paftérasd Log
with both square grid and hexagonal combinatorics are considered. It is also proved that they are
immersions.

Il. DISCRETE Z° VIA A MONODROMY PROBLEM

Equations(1) have the Lax representatién:

D1y mm)=LO (e, )Py m(p),
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Dy s 1m(w) =L@ (e, )Py | ml ), (6)

Dy mi1()=LO(e, )Py m(p),

wherep is the spectral parameter afdd ) : Z3— GL(2,C) is the wave function. The matricés™
are defined on the edges- (p,u:,Pin) Of Z2 connecting two neighboring vertices and oriented in
the direction of increasing+1+m:

1 Zin— Zout
L(n)(e,,u)= Ay,
Zin— Zout

t @

with parameters\,, fixed for each type of edges. The zero-curvature condition on the faces of
elementary cubes & is equivalent to Eqs(1) with A,=e'’n for properly chosers,. Indeed,
each elementary quadrilateral Bt has two consecutive positively oriented pairs of edgg®,
andesz,e,. Then the compatibility condition

L) (e,) LD (g;) =L (g,)L("(ey)

is exactly one of the equatioii$). This Lax representation is a generalization of the one found in
Ref. 19 for the square lattice.

A solution z:73—C of Egs. (1) is called isomonodromicif there exists a wave function
®(u):Z23—GL(2,C) satisfying(6) and the following linear differential equation ja:

d
m‘bk,um(ﬂ):Ak,|,m(/!~)‘bk,|,m(ﬂ), (8

whereA, | n(u) are some X2 matrices meromorphic ip, with the order and position of their
poles being independent &fl,m. Isomonodromic solutions are important in many applications,
in particular, for the first time the isomonodromy method was used to solve a discrete equation
appearing in quantum gravity.

The simplest nontrivial isomonodromic solutions satisfy the constraint

(Zs 10,m= Zit ) (2t m™ Zk—14,m)

bzf | mt+CZcym+d=2(k—ay) 7
J,m —1l,m

(Zki+1m~ Zit,m) (Zk i m— Zii—1m)

+2(l—a
( 2) Zx 1 +1m~ Zk,I—1m

(Zkt,m+ 1= Zit,m) (Zktm ™ Zit,m—1)
+2(m—aj) mt LT Lm e

©)

Zl,m+17 Zk,I,m-1

Theorem 2 Let zZ3—C be an isomonodromic solution to (1) with the matrix A, in (8)
of the form

B(M

3
Cl.m kI.m
A =y it 10
()= =754 2 (10

with u-independent matrices\G B(k”‘,)’m and normalized byr Ao o( ) =0. Then these matri-
ces have the following form:

c _} _bzk,l,m_C/2 bzﬁ,l,m_’_czk,l,m"'d
klm™2 b b7 m+cCl2
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B _ k—ay (Zk+1,l,m_zk,l,m (Zk+1,l,m_Zk,l,m)(zk,l,m_Zk—l,l,m))+ a,
kIm— 5 _ PR
™ Z 1 m™ Zk-14m 1 Zi i m™ Zk—1),m 2
B2 _ [—a, (Zk,l+1,m_zk,l,m (Zk,l+1,m_Zk,l,m)(zk,l,m_zk,l1,m))+ a2|
kKim— 25— o b
™ Zirim™ Zki-1m 1 Zg 1m™ Zk, - 1m 2
8@ _ m—as (Zk,|,m+1_2k,|,m (Zktm+1~ Zit,m) (Zitm— Zit,m—1) +agl
kI,m™— — o b
™ Zime1T Zklm-1 1 Z ), m™ Z,l,m—1 2

and 7, , satisfies (9)

Conversely, any solution:2*— C to the system (1) and (9) is isomonodromic witfy A(x)
given by the formulas above

The special casb=a;=a,=az=0 with shift z—z—d/c implies (2).

lll. EUCLIDEAN DESCRIPTION OF HEXAGONAL CIRCLE PATTERNS

In this section we describe the circle pattegnin terms of the radii of the circles. Such
characterization proved to be quite useful for the circle patterns with combinatorics of the square
grid.>® In what follows, we say that the triangle( z,,z5) haspositive (negative) orientatiofi

23— 7
h_h_

23— 7
-7

e? with Os¢<m (—m7<¢<O0).

Lemma 1: Let (z;,,2,,23,25) =€ 2%, 0<a<.

(i) I |z,—2,|=|z1—2z4 and the triangle(z;,z,,z,) has positive orientation, thefz;— z,|
=|z3—2,| and the angle betwediz,,z,] and[z,,z3] is (7— a).

(i) If |z,—2z,|=|z,—24 and the triangle(z,,z,,z,) has negative orientation, thelz;—z,|
=|z3—2, and the angle betwedrz,,z,] and[z,,z;3] is a.

(iii)  If the angle betweerjz,,z,] and[z;,24] is a and the triangle(z,,2z,,24) has positive
orientation, thenz;—z,|=|z,— z,| and|zz—z4|=|z4—z4|.

(iv)  If the angle betweepz,,z,] and[z;,z,] is (w— «) and the triangle(z,,2,,2,) has nega-
tive orientation, therizz—z,| =z, —z,| and|z3—z4|=|z4—z,].

Lemma 1 and Proposition 1 imply that each elementary quadrilateral of the studied circle pattern
has one of the forms enumerated in the lemma.
Proposition 1 allows us to introduce the radius function

r(K,L M) =21 m— Zk=10.m =21+ 1m— Zkt.ml =12k .m— Zk me 1. (11

where K,l,m) belongs to the sublattice @ with evenk+1+m and K,L,M) label this sublat-
tice:

k+I1+m k+1+m k+1+m
K=k—T, L=I—T, M=m—T. (12

The functionr is defined on the sublattice

Q={(K,L,M)eZ}L+M=<0, M+K<0, K+L=0)}

corresponding t@. Consider this function on

Qu={(K,L,M)eZ3K=0, L=0, M=0, K+L+M=0,+1}.
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(O,L+1 (O,L,-L-1)

s (ko1 Iy

o I‘2
(1,L,-L)

r5 ) rs
Pattern Il Pattern 11

Pattern |

FIG. 2. Equation patterns.

Theorem 3: Let the solution 2Q,,— C of the system (1) and (2) with initial data (4) be an
immersion. Then function(K,L,M):Qy— R, , defined by (11), satisfies the following equations:

(r1+r)(r2—rorg+r(r3—ry)cosa;)+ (rg+ry)(r2—ryri+r(ry—ry)cosa;)=0 (13

on the patterns of type | and Il as in Fig, ®ith i=3 and i=2, respectively;

Fa—ry fe—rs F2=rs
(L+M+1) +(M+K+1) +(K+L+1) =c—1 (14
Fa+rq rg+rs ry+rg
on the patterns of type lIll, and
r(rySinag+rySina;+raSinas)=rqr,SiNas+rorzSinasg+rary Sinay (15

on the patterns of type IV. ConversalyK,L,M):Q,— R, satisfying Egs. (13)(15) is the radius
function of an immersed hexagonal circle pattern with constant intersection angles [i.e., corre-
sponding to some immersed solutiaQz— C of (1) and (2)], which is determined by r uniquely

Proof: The mapz, | , is an immersion if and only if all trianglesz{| m,Zk+1) m»Zk1.m-1).
(Zk1m Zkim=1Zk 1 +1m) @Nd @) mZk+11.m:Zc 1 +1m) Of elementary quadrilaterals of the map
z¢) m have the same orientatidfor brevity we call it the orientation of the quadrilatenals

NecessityTo get Eq.(14), consider the configuration of two starlike figures with centers at
Zx|.m With k+1+m=1 (mod 2) and atz.,; n, connected by five edges in tiedirection as
shown on the left part of Fig. 3. Let, i=1,...,6, be thaadii of the circles with the centers at
the vertices neighboring, | , as in Fig. 3. As follows from Lemma 1, the verticBs m, Zx+1) m
andz._q; , are collinear. For immersezf, the vertexz, | ., lies betweerg .1, andz_q .
Similar facts are true also for tHe and m-directions. Moreover, the orientations of elementary
quadrilaterals with the vertez, | ,, coincides with one of the standard lattice. Lemma 1 defines all
angles at, | , of these quadrilaterals. Equati¢B) at (k,I,m) giveszy :

FIG. 3. Circles.
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FIG. 4. Computing in Q.

zeis

Zk,l,m:_c

rqr rar . Ior )
1'4 +|&el(azﬁ-a:g)_l_miel(al+a2+2a3)),

ri1+ry r3+rg ,+rg

where eis:(zkHJ,m—zky,ym)/rl. Lemma 1 allows one to COMPUtB 1) m-1, Zk+1j+1m»
Zy+1),m+1 @ndzy, 11y USing the form of quadrilateralghey are shown in Fig.)3Now Eq.(2)
at (k+1),m) defineszy » . Condition|z, 2 m—Zk+1;,m| =11 With the labels(12) yields Eq.
(14).

Forl=0 valueszy; 1 om, Zk+2,0m- Zk+1,0m—1 and the equation for the cross-ratio with give
the radiusk with the center aty ., o,—1. Note that fod =0 the term withrg andrs drops out of
Eq. (14). Using this equation and the permutatiBr-r,, r{—r, r,—r,, rs—rs, one gets Eq.
(13) with i =3. The equation for pattern Il is derived similarly.

To derive(15), consider the figure on the right part of Fig. 3 whé&rel +m=1 (mod 2) and
ry, rp, rgandr are the radii of the circles with the centerszat 1) m, Zx+15+1m-1 Zk1+1m and
Zv).m-1, respectively. Elementary geometrical considerations and Lemma 1 applied to the forms
of the shown quadrilaterals give E@A.5).

Remark:Equation(15) is derived forr=r(K,L,M), r;=r(K,L,M—1), ro=r(K—-1,L,M),
rs=r(K,L—1M+1). However, it holds true also far;=r(K,L,M+1), ro=r(K+1L,M),
r;=r(K,L+1,M+1) since it gives the radius of the circle through the three intersection points of
the circles with radir 1, r,, rg intersecting at prescribed angles as shown in the right part of Fig.
3. Later, we refer to this equation also for this pattern.

Sufficiency:Now let r(K,L,M):Q,—R. be some positive solution tt13)—(15). We can
rescale it so that(0,0,0)=1. Starting withr(1,0,—1) andr(0,1,—1) one can compute every-
where in QH: r in a “black” vertex (see Fig. 4 is computed from(14). [Note that onlyr at
“circled” vertices is used: so to computg ; _; one needs only(1,0—1) andr(0,1,—1).] The
function r in “white” vertices on the borderdQ,={(K,0,—K)|K e N}JU{(OL,—L)|LeN} is
given by (13). Finally, r in “white” vertices in QL"“=QH\(9@H is computed from(15). In Fig. 4
labels show the order of computimg

Lemma 2: Any solution(iK,L,M):Qy—R to (13)~(15) with O<c=2, which is positive for
inner vertices of @ defines some «%.m Satisfying (1) in Q Moreover, all the triangles
(Z|_<,|,m,Z_k+1,|,m-2k,|,m—1)' (Zk)mZk ) m-1Z 1 +1m) @nd (Zc | m,Zk+1),m Zk1+1m) have positive
orientation
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Proof of the lemmaOne can place the circles with radijK,L,M) into the complex plané
in the way prescribed by the hexagonal combinatorics and the intersection angles. Taking the
circle centers and the intersection points of neighboring circles, one recqvggsfor k+1+m
=0,=1 up to a translation and rotation. Reversing the arguments used in the derivati8)-of
(15), one observes from the forms of the quadrilaterals that Bgsre satisfied. Now usingl),
one recoverg in the wholeQ. Equation(15) ensures that the radii remain positive, which
implies  the  positive  orientations of the triangles z (in,Zk+1)m Zkim-1)

(Zk1m Zkt,m—1:Zk1+1m) @A @1 m o Zkr1),m o Zk i +1m) -

Consider a solutiom: Q— C of the system(1) and(2) with initial data(4), where¢ and ¢ are
chosen so that the triangles,( o), 21,00, 20,0 1) and (Zo,0,0y:20,0-1:20,1,0 have positive orienta-
tions and satisfy conditions(1,0,—1)=|z; -1~ 2104 andr(0,1,-1)=|zp;_1—2Zpo-1|. The
map zy, , defines circle pattern due to Proposition 1 and coincides with the map defined by
Lemma 2 due to the uniqueness of the solution uniqueness. Q.E.D.

Since the cross-ratio equations and the constraint are compatible, the equations for the radii
are also compatible. Starting with(0,0,0), r(1,0,—1) and r(0,1,—1), one can compute
r(K,L,M) everywhere inQ.

Lemma 3: Let a solution(K,L,M):Q—R of (13)-(15) be positive in the planes given by
equations K-M =0 and L+M=0. Then it is positive everywhere in.Q

Proof: As follows from Eq.(15), r is positive for positiver;, i=1,2,3. Asr at (K,K,—K),
(K+1K,-K-1) and K,K+1,—K-1) is positive,r at (K,K,K—1) is also positive. Now
starting fromr at (K,K,—K-—1) and havingr>0 at (N,K+1,—K—-1) and (\N,K,—K), one
obtains positive at (N,K,—K—1) for 0O=<N<K by the same reason. Similarly,at (K,N,—K
—1) is positive. Thus from positive at the plane& +M =0 andL + M =0, we get positive at
the planeK+M=—1 andL+ M= —1. Induction completes the proof.

Lemma 4: Let a solution(K,L,M):Q—R of (13)-(15) be positive in the lines parametrized
by n as(n,0,—n) and (0,n,—n). Then it is positive in the border planes of §pecified by K
+M=0 and L+ M=0.

Proof: We prove this lemma foK +M =0. For the other border plane it is proved similarly.
Equation(14) for (K,L,—K—1) gives

B (2L+c)r{+(2K+c)ry 16
r2= s KT 2—c)ry+ (2L+2—0)r,’ (16
thereforer, is positive provided |, r5 andr, are positive. FOK=L it reads as
(o (2K+c) 17
275 (2K+2—-¢)"

It allows us to compute recursivetyat (K,K,—K) starting withr at (0,0,0. Obviously,r >0 for
(K,K,—=K) if r>0 at(0,0,0. This property together with the condition~0 at (n,0,—n) implies
the conclusion of the lemma since E@6) givesr everywhere in the border plane @f specified
by K+M=0.

Lemmas 3 and 4 imply that the circle pattethis an immersion ifr >0 at (N,0,—N) and
(ON,—N).

IV. PROOF OF THE MAIN THEOREM. DISCRETE PAINLEVE AND RICCATI EQUATIONS

In this section, we prove that atl(n,0,—n), ¥YneN are positive only for the initial data
23 00=1, 2991 =€°*3. For the liner(0,n, —n) the proof is the same. Our strategy is as follows:
first, we prove the existence of an initial valag,_, such thatr(n,0,—n)>0, VneN. Finally
we will show that this value is unique andig,_;=e®*s.

Proposition 2: Suppose the equation
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e2—-1

Xn+1tXn/le
Kot Xnl® =CX 57 (18)

€+ XnXn+1

Xn_1+ 8Xn

2_
(n+1)(x5—1) e XX,

)—n(l—xﬁ/sz)

wheree=¢'*3, has a unitary solution x=¢€'#n in the sector0<pg,<as. Then (n,0,—n), n
=0 is positive

Proof: Forz; 5 o=1 and unitaryz, _,, the equation for the cross-ratio withy and(2) reduce
to (18) with unitary Xﬁz(Zn,O,fnfl_Zn,O,n)/(ZnJrl,O,fn_Zn,O,n)- Note that forn=0 the term with
X_, drops out of(18); therefore the solution fon>0 is determined by, only. The condition
0<Bn<a3z means that all trianglesz{ o _n,Zn+10n:Zn0-n—1) have positive orientation. Hence
r(n,0,—n) are all positive. Q.E.D.

Remark:Equation(18) is a specialiscrete Painlevequation For a more general reduction
of cross-ratio equation see Ref. 18. The casd, corresponding to the orthogonally intersecting
circles, was studied in detail in Ref. 3. Here we generalize these results to the case of arbitrary
unitary . Below we omit the index ofr so thate=e¢'“.

Theorem 4: There exists a unitary solution,xe'#n to (18) in the sectof<g,<a.

Proof: Equation(18) allows us to represemnt,,, as a function ofn,x,_; and X,: X1
=d(n,Xp_1,Xy). ®(n,u,v) maps the torug?=S*xS'={(u,v) e C: |u|=|v|=1} into S* and
has the following properties:

(i) For allne N it is a continuous map oA, XA, whereA,={e'#:8e (0,a)} andA, is the
closure ofA,. Values of® on the border ofA, X A, are defined by continuity® (n,u,e)
=—1,®d(nu,l)=—c¢.

(i)  For (u,v) e A XA, one has®(n,u,v) e AJUAUA,y, whereA,={e'?:Be(a,7]} and
Ay={€e#:Be[a—m0)}, ie., x cannot jump in one step from, into A, ={e'’:B8
e(—ma—m)}.

Let xo=e€'Po. Thenx,=xX,(Bo). DefineS,={Bq: x«(Bo) eAV0<ks n}. ThenS, is a closed set

since® is continuous oM\, XA, . As a closed subset of a segment it is a collection of disjoint
segmentsS, .
Lemma 5: There exists sequed&™} such that

(i S is mapped by X 3,) onto A and
(i) Sprivesy™.

The lemma is proved by induction. Far=0 it is trivial. Suppose it holds fon. As SV is
mapped by, (B,) ontoA,, continuity considerations anfi(n,u,e)=—1, ®(n,u,1)= —¢ imply
Xn+1(Bo) MmapsS ™ onto A|UA,UA,, and at least one of the segmefs. ;C S is mapped
into A, . This proves the lemma.

Since the segments ¢8,("} constructed in Lemma 5 are nonempty, there exits S, for
all n=0. For thisB,, the valuex,(By) is not on the border o4 since therx,, 1(8,) would jump

out of A, . Q.E.D.
Letr, andR, be the radii of the circles of the circle patterns defineapy,,, with the centers
at Zon 00 @andzon 41 0-1, respectively. Constrain®) gives

2n+c
1 ot —c ™

which is exactly formulg17). From elementary geometric consideratidsee Fig. 5 one gets

_The1—Rycosa

Ry 1= r
n+1 Rn—rn+1COSa n+1

(recall thata= a3). Define
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Z2n42,0,0

Fn+1

FIG. 5. Circles on the border.

Ry, B 2n+c
pn_ﬁv gn(C)—m

and denote = cosa. Now, the equation for the radR, r takes the form

_gn(c)_tpn

Cpn—tgn(c)’ (19

n+1

Remark:Equation(19) can be seen as a discrete version &iecati equation. This is moti-
vated by the following properties:

(i) The cross-ratio of each four-tuple of its solutions is constamt,as is a Mdoius transform
of py,.

(i)  The general solution is expressed in terms of solutions of some linear equation: the stan-
dard ansatz

pr=r 4 1gy(0) (20
Yn
transforms(19) into
yn+2+t(gn+1(c)+1)Yn+1+(t2_ 1gn(c)yn=0. (22)

As follows from Theorem 4, Proposition 2, and Lemma 4, B®) has a positive solution. One
may conjecture that there is only one initial valpg such thatp,,>0, ¥ne N from the consid-
eration of the asymptotics. Indeeg),(c) —1 asn—«, and the general solution of E®1) with
limit values of coefficients isy,=c{(—1)"(1+t)"+c,(1—t)". Thus py,=Yn.1/Yn +tgs(c)
— —1 for ¢;#0. Howeverc,,c, define only the asymptotics of a solution. To relate it to the
initial value py is a more difficult problem. Fortunately, it is possible to find the general solution
to (21).

Proposition 3: The general solution to (21) is

1
— ' n+§ )\n+1fc/2F 3—cc-11
yn F +1 c c 1 Tvaz n121
w173
N 3-cc—-11
+eng CIZF(T,T,E—n,b)), (22)
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whereh;=—t—1, \,=1-t, z,=(t—1)/2,z,=—(1+1t)/2 and F is the hypergeometric func-
tion.

Proof: The solution was found by a slightly modifieymbolic methodsee Ref. 10 for the
method description and Ref. 2 for the detaiere,F(a,b,c,z) denotes the standard hypergeo-
metric function which is a solution of the hypergeometric equation

z(1-2)F,+[c—(a+b+1)z]F,—abF=0 (23

holomorphic az=0. Due to linearity, the general solution (#1) is given by a superposition of
any two linearly independent solutions. Direct computation with the series representation of the
hypergeometric function

y—1 y—1 y—1)
F 1_7’7'1_(” T)Z)
(1= (y=1)/2)(y=1)/12

(1=(x+ (y—1)12))

+Zk[(l— (y=D2)(2= (y=D/2)- (k= (y=DN((y=D/2)(1+ (y=1)/2)- (k= L(y=1)/2)] e
(1= (y=D)/2)) (k= (x+ (y=1)/2))

=1+z

(24)

shows that each summand(22) satisfies Eq(21). To finish the proof of Proposition 3, one has
to show that the particular solutions with= 0, c,# 0 andc,;#0, c,=0 are linearly independent.
This fact follows from the following lemma.

Lemma 6: As r»o0, function (22) has the asymptotics

Yo=(n+1—y/2) V(e \]FI Y2 o\ 5T (25)

For n—x the series representatid@4) implies F((3—y)/2, (y—1)/2,3—n,z;)=1. Stirling’s
formula

[(X)=\2me *x*~ 12 (26)

yields the asymptotics of the factdt(n+ 3)/I'(n+1— y/2). This completes the proof of the
lemma and of Propositio(B).

Proposition 4: A solution of the discrete Riccati equation (19) with 77/2 is positive for all
n=0 if and only if

B sinca/2 )
Po=Gin2—c)ai2 " (27)

Proof: For positivep,, it is necessary that;=0: this follows from asymptotic§25) substi-
tuted into(20). Let us define

(1= (y-DR((y-12)

s(z)=1+z 1
2
+Zk(k— (y=1)/2)--(1= (y— 1)/21)((71 D2)(k=1+ (y=D2) (28)
k!(k— E)E

This is the hypergeometric functid®((3— )/2, (y—1)/2 ,5—n,z) with n=0. A straightforward
computation with series shows that
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FIG. 6. Hexagonak?, Log and square grid®?.

2(y=1) 4z(z—1)s'(2)
2y Ty s

po=1+ (29

wherez= (1+1)/2. Note thatp, as a function ofz satisfies an ordinary differential equation of
first order sinces’(z)/s(z) satisfies the Riccati equation obtained by a reduction(28j. A
computation shows thdisin(ya/2)]/[ sin(2—y)a/2] satisfies the same ordinary differential eqgia-
tion. Since both expressia29) and(27) are equal to 1 foz=0, they coincide everywhere.
Q.E.D.
Proof of Theorem 1Proposition(4) implies that the initiakk, for which (18) gives positiver
is unique and implies the initial valugs) for z° if «;# 7/2. For the case= /2, any solution for
(19) with py>0 is positive. Nevertheless, as was proved in Reky3s in this case also unique
and is specified by27). Thus for allne N we haver(n,0,—n)>0, r(0,n,—n)>0 for the circle
patternz®. Lemmas 4 and 3 complete the proof.

V. HEXAGONAL CIRCLE PATTERNS z2 AND Log

For c=2, formula(17) gives infiniter (1,1,—1). The way around this difficulty is renormal-
izationz— (2—c)z/c and a limit procedure— 2 — 0, which leads to the renormalization of initial
data(see Ref. 7. As follows from (27), this renormalization implies

Sinag Sina,
lr(oill_ 1):
a3 ar

r(0,0,0=0,r(1,0-1)= ,1(1,1-1)=1. (30
Proposition 5: The solution to (13)15) with c=2 and initial data (30) is positive
Proof: This follows from Lemmas 3 and 4 since Theorem 4 is true also for the case
Indeed, solutiorx,, is a continuous function af. Therefore it has a limit value as—2—0 and it
lies in the sectoA, .
Lemma 2 implies that there exists a hexagonal circle pattern with radius furrction
Definition 3: The hexagonal circle patterrf Aas a radius function specified by Propositian 5
Equations(13)—(15) have the symmetry

1
r—>F, c—2—c, (31

which is theduality transformation(see Ref. 8 The smooth analod— f* for holomorphic
functionsf(w),f*(w) is

df(w) df*(w) 1
dw dw
Note that log(w)=w?2. The hexagonal circle pattern Log is defihed a circle pattern dual to

Z2. Discretez? and Log are the first two images in Fig. 6.
Theorem 5: The hexagonal circle patterns’Znd Log are immersions
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Proof: For z2 this follows from Proposition 5. Hence the values of ,IWherer is radius
function forz?, are positive except far(0,0,0)=«. Lemma 2 completes the proof.

VI. CONCLUDING REMARKS
In this section we discuss corollaries of the obtained results and possible generalizations
A. Square grid circle patterns  z° and Log

Equations(1) extendz,, ,, corresponding to the hexagonzd and Log fromQy into the
three-dimensional lattic®. Ther-function of this extension satisfies Hd.5). Considerz, ., for
the hexagonat® and Log restricted to one of the coordinate planes, sg0. Then Proposition
1 states thar, o, defines some circle pattern with combinatorics of the square grid: each circle
has four neighboring circles intersecting it at angigsand =— a5. It is natural to call itsquare
grid z° (see the third image in Fig.)6Such circle patterns are natural generalization of those with
orthogonal neighboring and tangent half-neighboring circles introduced and studied in Ref. 22.

Theorem 6: Square grid £, 0<c=<2 and Log are immersions

Proof easily follows from Lemma 2.

It is interesting to note that the square grid circle pat®roan be obtained from hexagonal
one by limit procedurex3— +0 and by a;— 7m—a,. These limit circle patterns still can be
defined by(1) and(2) by imposing the self-similarity conditiory | ,=f| .

B. Square grid circle patterns Erf

For square grid combinatorics and= 7/2, Schramrff constructed circle patterns mimicking

holomorphic function erfz():(2/7r)fe‘22dz by giving the radius function explicitly. Namely, let
n,m label the circle centers so that the pairs of ciraés,m), c(n+1,m) andc(n,m), c(n,m
+1) are orthogonal and the patén,m), c(n+1,m+1) andc(n,m+1), c(n+1,m) are tangent.
Then

r(n,my=e"m (32
satisfies the equation for a radius function:
R2(ry+r,4rg+r,)—(rofgf g+ rralf 4+ rorg+r.rorg)=0, (33

whereR=r(n,m), r;=r(n+1m), ro,=r(n,m+1), r3=r(n—1m), r,=r(n,m—1). For square
grid circle patterns with intersection anglesfor c(n,m), c(n+1,m) and =— « for c(n,m),
c(n,m+1) the governing Eq(33) becomes

Rz(r1+ FotTg+rg)—(Folgl gt rralgHrarof 4+ 1rorg) +2RCoSa(rr3—rory) =0. (34)

It is easy to see thdB4) has the same solutiaf82) and it therefore defines a square grid circle
pattern, which is a discrete Erf. A hexagonal analog of Erf is not known.

C. Circle patterns with quasi-regular combinatorics

One can deregularize the prescribed combinatorics by a projectiéfi @fto a plane as
follows (see Ref. 2B ConsiderZ} CR". For each coordinate vecter=(e', ... e"), whereel
= 6! define a unit vectog; in C=R? so that for any pair of indiceisj, vectorsé, ,&; form a basis
in R2. Let Q e R" be some two-dimensional simply connected cell complex with vertic&§ in
Choose somea, e (). Define the magP: () —C by the following conditions:

(i) P(Xo) =Po.
(i)  If x,y are vertices of) andy=x+g, thenP(y)=P(x)+§;.

It is easy to see tha® is correctly defined and unique.
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We callQ) aprojectablecell complex if its imagav=P({}) is embedded, i.e., intersections of
images of different cells of) do not have inner parts. Using projectable cell complexes one can
obtain combinatorics of Penrose tilings.

It is natural to define “discrete conformal map @s' as a discrete complex immersion
function z on vertices ofw preserving the cross-ratios of tlecells. The argument of can be
labeled by the verticex of ). Hence for any cell ok}, constructed org, g, the functionz
satisfies the following equation for the cross-ratios:

q(Zszx+q(ny+q(+ej azx+ej):eiziak'jr (35)

whereq, j is the angle betweeg and§;, taken positively if €, £;) has positive orientation and
taken negatively otherwise. Now suppose thi a solution ta(35) defined on the whol&", . We
can define a discrete”: w—C for projectableQ) as a solution tq35) and (36) restricted tof).
Initial conditions for this solution are of the foritd) so that the restrictions of to each two-
dimensional coordinate lattice is an immersion defining a circle pattern with prescribed intersec-
tion angles. This definition naturally generalizes the definition of discrete hexagonal and square
grid z¢ considered above.

We finish this section with the natural conjecture formulated in Ref. 2.

Conjecture: The discrete®zw— C is an immersion

The first step in proving this claim is to show that Eg5) is compatible with the constraint

(fx+e5_ fx)(fx_ fxfes)

foreS_fxfeS

n
cfy= 2, 2Xq (36)
s=1

For n=3 this fact is proven in Ref. 7.
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