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Abstract: A classification of discrete integrable systems on quad–graphs, i.e. on surface
cell decompositions with quadrilateral faces, is given. The notion of integrability laid in
the basis of the classification is the three–dimensional consistency. This property yields,
among other features, the existence of the discrete zero curvature representation with
a spectral parameter. For all integrable systems of the obtained exhaustive list, the so
called three–leg forms are found. This establishes Lagrangian and symplectic structures
for these systems, and the connection to discrete systems of the Toda type on arbitrary
graphs. Generalizations of these ideas to the three–dimensional integrable systems and
to the quantum context are also discussed.

1. Introduction

The idea of consistency (or compatibility) is in the core of integrable systems theory.
One is faced with it already at the very definition of the complete integrability of a
Hamiltonian flow in the Liouville–Arnold sense, which means exactly that the flow may
be included into a complete family of commuting (compatible) Hamiltonian flows [1].
Similarly, it is a characteristic feature of soliton (integrable) partial differential equations
that they appear not separately but are always organized in hierarchies of commuting
(compatible) systems. It is impossible to list all applications or reincarnations of this
idea. We mention only a couple of them relevant for our present account. A condition
of existence of a number of commuting systems may be taken as the basis of the sym-
metry approach which is used to single out integrable systems in some general classes
and to classify them [24]. With the help of the Miwa transformation one can encode
a hierarchy of integrable equations, like the KP one, into a single discrete (difference)
equation [25]. Another way of relating continuous and discrete systems, connected with
the idea of compatibility, is based on the notion of Bäcklund transformations and the
Bianchi permutability theorem for them [4]. This notion, born in the classical differential
geometry, found its place in the modern theory of discrete integrable systems [30]. A
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sort of synthesis of the analytic and the geometric approach was achieved in [5] and is
being actively developed since then, see a review in [6]. These studies have revealed the
fundamental importance of discrete integrable systems; it is nowadays a commonly ac-
cepted idea that they may be regarded as the cornerstone of the whole theory of integrable
systems. For instance, one believes that both the differential geometry of “integrable”
classes of surfaces and their transformation theory may be systematically derived from
the multidimensional lattices of consistent Bäcklund transformations [6].

So, the consistency of discrete equations steps to the front stage of the integrability
theater. We say that

a d–dimensional discrete equation possesses the consistency property, if it may
be imposed in a consistent way on all d–dimensional sublattices of a (d + 1)–di-
mensional lattice

(a more precise definition will be formulated below). As it is seen from the above re-
marks, the idea that this notion is closely related to integrability, is not new. In the case
d = 1 it was used as a possible definition of integrability of maps in [34]. A clear formu-
lation in the case d = 2 was given recently in [28].A decisive step was made in [8]: it was
shown there that the integrability in the usual sense of the soliton theory (as existence of
the zero curvature representation) follows for two–dimensional systems from the three–
dimensional consistency. So, the latter property may be considered as a definition of
integrability, or its criterion which may be checked in a completely algorithmic manner
starting with no more information than the equation itself. Moreover, in case when this
criterion gives a positive result, it delivers also the transition matrices participating in
the discrete zero curvature representation. (Independently, this was found in [26].)

In the present paper we give a further application of the consistency property: we
show that it provides an effective tool for finding and classifying all integrable sys-
tems in certain classes of equations. We study here integrable one–field equations on
quad–graphs, i.e. on cellular decompositions of surfaces with all faces (2–cells) being
quadrilateral [8]. In Sect. 2 we formulate our main result (Theorem 1), consisting of a
complete classification of integrable systems on quad–graphs. Of course, we provide
also a detailed discussion of the assumptions of Theorem 1. Sections 3, 4 are devoted to
the proof of the main theorem. In Sect. 5 we discuss the so called three–leg forms [8]
of all integrable equations from Theorem 1. This device, artificial from the first glance,
proves to be extremely useful in several respects. First, it allows to establish a link with
the discrete Toda type equations introduced in full generality in [3]. Second, it provides
a mean to the most natural derivation of invariant symplectic structures for evolution
problems generated by equations on quad–graphs. This is discussed in Sect. 6. Further,
Sect. 7 contains a brief discussion of the relation of the equations listed in Theorem
1 with Bäcklund transformations for integrable partial differential equations. Finally,
in Sect. 8 we discuss some perspectives for further work, in particular the consistency
approach for three–dimensional systems, and discrete quantum systems.

2. Formulation of the Problem; Results

Basic building blocks of systems on quad–graphs are equations on quadrilaterals of the
type

Q(x, u, v, y;α, β) = 0, (1)
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Fig. 1. An elementary quadrilateral; fields are assigned to vertices

where the fields x, u, v, y ∈ C are assigned to the four vertices of the quadrilateral, and
the parameters α, β ∈ C are assigned to its edges, as shown on Fig. 1.

A typical example is the so called “cross-ratio equation”

(x − u)(y − v)

(u− y)(v − x)
= α

β
, (2)

where on the left-hand side one recognizes the cross-ratio of the four complex points
x, u, y, v. We shall use the cross-ratio equation to illustrate various notions and claims
in this introduction.

Roughly speaking, the goal of the present paper is to classify equations (1) building
integrable systems on quad-graphs. We now list more precisely the assumptions under
which we solve this problem.

First of all, we assume that Eq. (1) can be uniquely solved for any one of its argu-
ments x, u, v, y ∈ Ĉ. Therefore, the solutions have to be fractional-linear in each of
their arguments. This naturally leads to the following condition.

1) Linearity. The function Q(x, u, v, y;α, β) is linear in each argument (affine
linear):

Q(x, u, v, y;α, β) = a1xuvy + · · · + a16, (3)

where coefficients ai depend on α, β.
Notice that for the cross-ratio equation (2) one can take the function on the left–hand

side of (1) as Q(x, u, v, y;α, β) = β(x − u)(y − v)− α(u− y)(v − x).
Second, we are interested in equations on quad-graphs of arbitrary combinatorics,

hence it will be natural to assume that all variables involved in Eqs. (1) are on equal
footing. Therefore, our next assumption reads as follows.

2) Symmetry. Equation (1) is invariant under the groupD4 of the square symmetries,
that is function Q satisfies the symmetry properties

Q(x, u, v, y;α, β) = εQ(x, v, u, y;β, α) = σQ(u, x, y, v;α, β) (4)

with ε, σ = ±1.
Of course, due to the symmetries (4) not all coefficients ai in (3) are independent, cf.

formulae (25), (26) below.
We are interested in integrable equations of the type (1), i.e. those admitting a dis-

crete zero curvature representation. We refer the reader to [3, 7, 8], where this notion
was defined for systems on arbitrary graphs. As pointed out above, in the third of these
papers it was shown that the integrability can be detected in an algorithmic manner
starting with no more information than the equation itself: the criterion of integrability
of an equation is its three-dimensional consistency. This property means that Eq. (1)
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Fig. 2. D4 symmetry

may be consistently embedded in a three-dimensional lattice, so that similar equations
hold for all six faces of any elementary cube, as on Fig. 3 (it is supposed that the values
of the parameters αj assigned to the opposite edges of any face are equal to one another,
so that, for instance, all edges (x2, x12), (x3, x31), and (x23, x123) carry the label α1):

To describe more precisely what is meant under the three-dimensional consistency,
consider the Cauchy problem with the initial data x, x1, x2, x3. The equations

Q(x, xi, xj , xij ;αi, αj ) = 0 (5)

allow one to determine uniquely the values x12, x23, x31. After that one has three differ-
ent equations for x123, coming from the faces (x1, x12, x31, x123), (x2, x23, x12, x123),
and (x3, x31, x23, x123). Consistency means that all three values thus obtained for x123
coincide.

For instance, consider the cross-ratio equation (2). It is not difficult to check that it
possesses the property of the three-dimensional consistency, and

x123 = (α1 − α2)x1x2 + (α3 − α1)x3x1 + (α2 − α3)x2x3

(α3 − α2)x1 + (α1 − α3)x2 + (α2 − α1)x3
. (6)

Looking ahead, we mention a very amazing and unexpected feature of the expression
(6): the value x123 actually depends on x1, x2, x3 only, and does not depend on x. In
other words, four black points on Fig. 3 (the vertices of a tetrahedron) are related by a
well-defined equation. One can rewrite Eq. (6) as

(x1 − x3)(x2 − x123)

(x3 − x2)(x123 − x1)
= α1 − α3

α2 − α3
, (7)

x x1

x2

x3

x12

x23

x31

x123

α1

α3

α2

Fig. 3. Three-dimensional consistency



Classification of Integrable Equations on Quad-Graphs 517

which also has an appearance of the cross-ratio equation for the four points (x1, x3,

x2, x123) with the parameters α1 − α3 assigned to the edges (x1, x3), (x2, x123) and
α2 − α3 assigned to the edges (x2, x3), (x1, x123).

This property, being very strange from first glance, holds actually not only in this but
in all known nontrivial examples. We take it as an additional assumption in our solution
of the classification problem.

3) Tetrahedron property. The function x123 = z(x, x1, x2, x3;α1, α2, α3), existing
due to the three-dimensional consistency, actually does not depend on the variable x,
that is, zx = 0.

Under the tetrahedron condition we can paint the vertices of the cube into black and
white ones, as on Fig. 3, and the vertices of each of two tetrahedrons satisfy an equation
of the form

Q̂(x1, x2, x3, x123;α1, α2, α3) = 0; (8)

it is easy to see that under the assumption 2) (linearity) the function Q̂may be also taken
linear in each argument. (Clearly, formulas (6), (7) may be also written in such a form.)

Actually, the tetrahedron condition is closely related to another property of Eq. (1),
namely to the existence of a three-leg form of this equation [8]:

ψ(x, u;α)− ψ(x, v;β) = φ(x, y;α, β). (9)

The three terms in this equation correspond to three “legs”: two short ones, (x, u) and
(x, v), and a long one, (x, y). The short legs are the edges of the original quad-graph,
while the long one is not. (We say that the three-leg form (9) is centered at the vertex x; of
course, due to the symmetries of the functionQ there have to exist also similar formulas
centered at the other three vertices involved.) For instance, the cross-ratio equation (2)
is equivalent to the following one:

α

u− x
− β

v − x
= α − β

y − x
. (10)

The three-leg form gives an explanation for the equation for the “black” tetrahedron
from Fig. 3. Consider three faces adjacent to the vertex x123 on this figure, namely the
quadrilaterals (x1, x12, x31, x123), (x2, x23, x12, x123), and (x3, x31, x23, x123). A sum-
mation of three-leg forms (centered at x123) of equations corresponding to these three
faces leads to the equation

φ(x123, x1;α2, α3)+ φ(x123, x2;α3, α1)+ φ(x123, x3;α1, α2) = 0.

This equation, in any event, relates the fields in the “black” vertices of the cube only, i.e.
has the form of (8). For example, for the cross-ratio equation this formula reads:

α2 − α3

x1 − x123
+ α3 − α1

x2 − x123
+ α1 − α2

x3 − x123
= 0,

and a simple calculation convinces that this is equivalent to (6).
So, the tetrahedron property is a necessary condition for the existence of a three-leg

form. On the other hand, a verification of the tetrahedron property is much more straight-
forward than finding the three-leg form, since the latter contains two á priori unknown
functions ψ , φ.

It remains to mention that, as demonstrated in [8], the existence of the three-leg form
allows one to immediately establish a relation to discrete systems of the Toda type [3].
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Fig. 4. Faces adjacent to the vertex x
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Fig. 5. The star of the vertex x in the black sub-
graph

Indeed, if x is a common vertex of n adjacent quadrilateral faces (x, xk, xk,k+1, xk+1),
k = 1, 2, . . . , n, with the parameters αk assigned to the edges (x, xk) (cf. Fig. 4), then
the fields in the point x and in the “black” vertices of the adjacent faces satisfy the
following equation:

n∑
k=1

φ(x, xk,k+1, αk, αk+1) = 0. (11)

This is a discrete Toda type equation (equation on stars) on the graph whose vertices
are the “black” vertices of the original quad-graph, and whose edges are the diagonals
of the faces of the original quad-graph connecting the “black” vertices. The parameters
α are naturally assigned to the corners of the faces of the “black” subgraph. See Fig. 5.
(Of course, a similar Toda type equation holds also for the “white” subgraph.)

For instance, in the case of the cross-ratio equation, the discrete Toda type system
(11) reads as

n∑
k=1

αk − αk+1

xk,k+1 − x
= 0. (12)

In the next section we will show that the tetrahedron condition naturally separates
one of two subcases of the general problem of classification of integrable equations on
quad-graphs. The second subcase will not be considered in this paper; the corresponding
subclass of equations is certainly not empty, but we are aware only of trivial (linearizable)
examples.

By solving the classification problem we identify equations related by certain natural
transformations. First, acting simultaneously on all variables x by one and the same
Möbius transformation does not violate our three assumptions. Second, the same holds
for the simultaneous point change of all parameters α �→ ϕ(α). Our results on the clas-
sification of integrable equations on quad-graphs are given by the following statement.
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Theorem 1. Up to common Möbius transformations of the variables x and point trans-
formations of the parameters α, the three-dimensionally consistent quad-graph equa-
tions (5) with the properties 1), 2), 3) (linearity, symmetry, tetrahedron property) are
exhausted by the following three lists Q, H, A (u = x1, v = x2, y = x12, α = α1,
β = α2).

List Q:

(Q1) α(x − v)(u− y)− β(x − u)(v − y)+ δ2αβ(α − β) = 0,

(Q2) α(x − v)(u− y)− β(x − u)(v − y)+ αβ(α − β)(x + u+ v + y)

−αβ(α − β)(α2 − αβ + β2) = 0,

(Q3) (β2 − α2)(xy + uv)+ β(α2 − 1)(xu+ vy)− α(β2 − 1)(xv + uy)

−δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4αβ) = 0,

(Q4) a0xuvy + a1(xuv + uvy + vyx + yxu)+ a2(xy + uv)+ ā2(xu+ vy)

+ã2(xv + uy)+ a3(x + u+ v + y)+ a4 = 0,

where the coefficients ai are expressed through (α, a) and (β, b) with a2 = r(α),
b2 = r(β), r(x) = 4x3 − g2x − g3, by the following formulae:

a0 = a + b, a1 = −βa − αb, a2 = β2a + α2b,

ā2 = ab(a + b)

2(α − β)
+ β2a − (2α2 − g2

4
)b,

ã2 = ab(a + b)

2(β − α)
+ α2b − (2β2 − g2

4
)a,

a3 = g3

2
a0 − g2

4
a1, a4 = g2

2

16
a0 − g3a1.

List H :

(H1) (x − y)(u− v)+ β − α = 0,
(H2) (x − y)(u− v)+ (β − α)(x + u+ v + y)+ β2 − α2 = 0,
(H3) α(xu+ vy)− β(xv + uy)+ δ(α2 − β2) = 0.

List A:

(A1) α(x + v)(u+ y)− β(x + u)(v + y)− δ2αβ(α − β) = 0,
(A2) (β2 − α2)(xuvy + 1)+ β(α2 − 1)(xv + uy)− α(β2 − 1)(xu+ vy) = 0.

Remark. 1) The list A can be dropped down by allowing an extended group of Möbi-
us transformations, which act on the variables x, y differently than on u, v (white and
black sublattices on Figs. 1,3). In this manner Eq. (A1) is related to (Q1) (by the change
u → −u, v → −v), and Eq. (A2) is related to (Q3) with δ = 0 (by the change u → 1/u,
v → 1/v). So, really independent equations are given by the lists Q and H.

2) In both lists Q, H the last equations are the most general ones. This means that
Eqs. (Q1)–(Q3) and (H1), (H2) may be obtained from (Q4) and (H3), respectively, by
certain degenerations and/or limit procedures. So, one could be tempted to shorten down
these lists to one item each. However, on the one hand, these limit procedures are out-
side of our group of admissible (Möbius) transformations, and on the other hand, in
many situations the “degenerate” equations (Q1)–(Q3) and (H1), (H2) are of interest for
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themselves. This resembles the situation with the list of six Painlevé equations and the
coalescences connecting them, cf. [15].

3) Parameter δ in Eqs. (Q1), (Q3), (H3) can be scaled away, so that one can assume
without loss of generality that δ = 0 or δ = 1.

4) It is natural to set in Eq. (Q4) (α, a) = (℘ (A), ℘′(A)) and, similarly, (β, b) =
(℘ (B), ℘′(B)). So, this equation is actually parametrized by two points of the elliptic
curve µ2 = r(λ). The appearance of an elliptic curve in our classification problem is by
no means obvious from the beginning, its origin will become clear later, in the course
of the proof. For the cases of r with multiple roots, when the elliptic curve degenerates
into a rational one, Eq. (Q4) degenerates to one of the previous equations of the list Q;
for example, if g2 = g3 = 0 then the inversion x → 1/x turns (Q4) into (Q2).

Bibliographical remarks. It is difficult to track down the origin of the equations listed
in Theorem 1. Probably, the oldest ones are (H1) and (H3)δ=0, which can be found in
the work of Hirota [14] (of course not on general quad–graphs but only on the standard
square lattice with the labels α constant in each of the two lattice directions; similar
remarks apply also to other references in this paragraph). Equations (Q1) and (Q3)δ=0
go back to [30], see also a review in [27]. Equation (Q4) was found in [2]. A Lax
representation for (Q4) was found in [26] with the help of the method based on the
three–dimensional consistency, identical with the method introduced in [8]. Equations
(Q2) and (Q3)δ=1 are particular cases of (Q4), but seem to have not appeared explicitly
in the literature. The same holds for (H2) and (H3)δ=1.

3. Classification: Analysis

In principle, the three-dimensional consistency turns, under the assumptions 1), 2), into
some system of functional equations for the coefficients ai of the functions Q (see (3)).
However, this system is difficult to analyze and we will take a different route.

For the first step, we consider the problem of the three-dimensional consistency in
the following general setting: find triples of functions f1, f2, f3 of three arguments such
that if

x23 = f1(x, x2, x3), x31 = f2(x, x3, x1), x12 = f3(x, x1, x2) (13)

then

x123 := f1(x1, x12, x31) ≡ f2(x2, x23, x12) ≡ f3(x3, x31, x23) (14)

identically in x, x1, x2, x3. In other words, we ignore for a moment the conditions 1)
and 2) and look to what consequences the tetrahedron condition leads. The proof of the
following statement demonstrates that this condition separates just one of two possible
subcases in the general problem.

Proposition 2. For the functions f1, f2, f3 compatible in the sense (13), (14) and sat-
isfying the tetrahedron condition, the following relation holds:

f3,x2f2,x1f1,x3 = −f3,x1f2,x3f1,x2 (15)

identically in x, x1, x2, x3.
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Proof. Denote x123 = z(x, x1, x2, x3), and also denote for short the functions with shift-
ed arguments (14) by capitals: F1 = f1(x1, x12, x31), etc. Then differentiating (14) with
respect to x2, x3 and x yields the following system which is linear with respect to the
derivatives of F1:

f3,x2F1,x12 = zx2 ,

f2,x3F1,x31 = zx3 ,

f3,xF1,x12 + f2,xF1,x31 = zx,

and two analogous systems for F2, F3 obtained by the cyclic shift of indices. The above
system is overdetermined, and, excluding the derivatives of F1, we come to the first
equation of the following system (the other two come from the similar considerations
with F2, F3):

f2,x3f3,xzx2 +f3,x2f2,xzx3 = f3,x2f2,x3zx,

f1,x3f3,xzx1 +f3,x1f1,xzx3 = f1,x3f3,x1zx,

f1,x2f2,xzx1 +f2,x1f1,xzx2 = f2,x1f1,x2zx.

Now, the tetrahedron condition zx = 0 implies that the r.h.s. vanishes, and therefore the
determinant has to vanish as well; this is equivalent to (15). ��

The second possibility, which we do not consider here, would be that zx �= 0 and
Eq. (15) does not hold. In this case the above system can be solved to give zxi = &izx ,
i = 1, 2, 3, where &i are expressed through fj,x , fj,xk . The compatibility of the latter
three equations can be expressed as a system of differential equations for&i , and there-
fore for fj , which are much more complicated than (15). It certainly deserves a further
investigation, see discussion in Sect. 8.

The necessary condition (15) will provide us with a finite list of candidates for the
three-dimensional consistency. First of all, we rewrite the relation (15) in terms of the
polynomial Q using both the linearity and the symmetry assumptions.

Proposition 3. Relation (15) is equivalent to

g(x, x1;α1, α2)g(x, x2;α2, α3)g(x, x3;α3, α1)

= −g(x, x1;α1, α3)g(x, x2;α2, α1)g(x, x3;α3, α2), (16)

where g(x, u;α, β) is a biquadratic polynomial in x, u defined by either of the formulas

g(x, u;α, β) = QQyv −QyQv, (17)

g(x, v;β, α) = QQyu −QyQu, (18)

where Q = Q(x, u, v, y;α, β). The polynomial g is symmetric:

g(x, u;α, β) = g(u, x;α, β). (19)

Proof. The equivalence of the definitions (17), (18) follows from the first symmetry
property in (4) (α ↔ β, u ↔ v), while the second one (x ↔ u, y ↔ v) implies (19).

To prove (16), let Q = p(x, u, v)y + q(x, u, v), so that y = f (x, u, v) = −q/p.
Then fv/fu = (qvp− qpv)/(qup− qpu), and substituting p = Qy , q = Q− yQy , we
obtain

fv

fu
= QQyv −QyQv

QQyu −QyQu

,
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which yields:

fk,xj

fk,xi
= g(αi, αj ; x, xi)
g(αj , αi; x, xj ) , (i, j, k) = c.p.(1, 2, 3).

Now (16) follows from (15). ��
The biquadratic polynomials (17) and (18) are associated to the edges of the basic

square. One can consider also the polynomial

G(x, y;α, β) = QQuv −QuQv, (20)

associated to the diagonal. They have the following important property.

Lemma 4. The discriminants of the polynomials g = g(x, u;α, β), ḡ = g(x, v;β, α),
andG = G(x, y;α, β), considered as quadratic polynomials inu, v, and y, respectively,
coincide:

g2
u − 2gguu = ḡ2

v − 2ḡḡvv = G2
y − 2GGyy. (21)

Proof. This follows solely from the fact that the function Q is linear in each argument.
Indeed, calculate

g2
u − 2gguu = ((QQyv −QyQv)u)

2 − 2(QQyv −QyQv)(QQyv −QyQv)uu,

taking into account that Quu = 0. The result reads:

g2
u − 2gguu = Q2Q2

uvy +Q2
uQ

2
vy +Q2

vQ
2
uy +Q2

yQ
2
uv + 4QQuvQuyQvy

−2QQuvy(QuQvy +QvQuy +QyQuv)− 4QuQvQyQuvy

−2QuQvQuyQvy − 2QuQyQuvQvy − 2QvQyQuvQuy.

It remains to notice that this expression is symmetric with respect to all indices. ��
In the formula (16) the variables are highly separated, and it can be effectively an-

alyzed further on. In the next statement we demonstrate that this functional equation
relating values of g with different arguments implies some properties for a single poly-
nomial g.

Proposition 5. The polynomial g(x, u;α, β) can be represented as

g(x, u;α, β) = k(α, β)h(x, u;α), (22)

where the factor k is antisymmetric,

k(β, α) = −k(α, β), (23)

and the coefficients of the polynomial h(x, u;α) depend on parameter α in such a way
that its discriminant

r(x) = h2
u − 2hhuu (24)

does not depend on α.
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Proof. Relation (16) implies that the fraction g(x, x1;α1, α2)/g(x, x1;α1, α3) does not
depend on x1, and due to the symmetry (19) it does not depend on x as well. Therefore

g(x, x1;α1, α2)

g(x, x1;α1, α3)
= κ(α1, α2)

κ(α1, α3)
,

where, because of (16), the function κ satisfies the equation

κ(α1, α2)κ(α2, α3)κ(α3, α1) = −κ(α2, α1)κ(α3, α2)κ(α1, α3).

This equation is equivalent to

κ(β, α) = −φ(α)
φ(β)

κ(α, β),

that is, the function k(α, β) = φ(α)κ(α, β) is antisymmetric. We have:

g(x, u;α, β)
κ(α, β)

= g(x, u;α, γ )
κ(α, γ )

⇒ g(x, u;α, β)
k(α, β)

= g(x, u;α, γ )
k(α, γ )

,

which implies (22). To prove the last statement of the proposition, we notice that,
according to (22), (23),

k(α, β)h(x, u;α) = g(x, u;α, β), −k(α, β)h(x, v;β) = g(x, v;β, α).
Due to the identity (21), we find:

h2
u − 2hhuu = h̄2

v − 2h̄h̄vv, h = h(x, u;α), h̄ = h(x, v;β),
and therefore r does not depend on α. ��

Thus, the three-dimensional consistency with the tetrahedron property implies the
following remarkable property of the function Q which will be called property (R):

(R) the determinant g = QQvy − QvQy is factorizable as in (22), (23), and the dis-
criminant r = h2

u − 2hhuu of the corresponding quadratic polynomial h does not
depend on parameters at all.

It remains to classify all functions Q with this property. This will be done in the next
section. A finite list of functions Q with the property (R) consists, therefore, of can-
didates for the three-dimensional consistency. The final check is straightforward, and
shows that the property (R) is not only necessary but also almost sufficient for the three-
dimensional consistency with the tetrahedron property (the list of functions with the
property (R) consists of a dozen items; only in two of them one finds functions violating
the consistency).

As a preliminary step, we consider more closely the coefficients of the polynomial
Q. The symmetry property (4) easily implies that two cases are possible, with σ = 1
and σ = −1, respectively:

Q = a0xuvy + a1(xuv + uvy + vyx + yxu)

+ a2(xy + uv)+ ā2(xu+ vy)+ ã2(xv + uy)

+ a3(x + u+ v + y)+ a4, (25)

Q = a1(xuv + uvy − vyx − yxu)

+ a2(xy − uv)+ a3(x − u− v + y), (26)
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where

ai(β, α) = εai(α, β), ã2(α, β) = εā2(β, α), ε = ±1. (27)

It is easy to prove that the case (26) is actually empty. Indeed, a light calculation
shows that in this case

g(x, u;α, β) = g(x, u;β, α) = −P(x;α, β)P (u;α, β),
where P(α, β; x) = a1x

2 − a2x − a3, so that the relation (16) becomes

P(x1;α1, α2)P (x2;α2, α3)P (x3;α3, α1)=−P(x1;α3, α1)P (x2;α1, α2)P (x3;α2, α3).

Equating to zero the coefficients at (x1x2x3)
2, x1x2x3, and the free term yields a1 =

a2 = a3 = 0 – a contradiction.
Turning to the case (25), we denote the coefficients of the polynomials h, r as follows:

h(x, u;α) = b0x
2u2 + b1xu(x + u)+ b2(x

2 + u2)+ b̂2xu+ b3(x + u)+ b4, (28)

r(x) = c0x
4 + c1x

3 + c2x
2 + c3x + c4, (29)

where bi = bi(α). So, we consequently descended from the polynomialQ (4 variables,
7 coefficients depending on 2 parameters) to the polynomial h (2 variables, 6 coeffi-
cients depending on 1 parameter; also take into account the factor k), and then to the
polynomial r (1 variable, 5 coefficients, no parameters).

It remains to go the way back, i.e. to reconstruct k, h andQ from a given polynomial
r (which does not depend on the parameter α). This will be done in the next section.

4. Classification: Synthesis

First of all, we factor out the action of the simultaneous Möbius transformations of the
variables x. The action x �→ (ax + b)/(cx + d) transforms the polynomials h, r as
follows:

h(x, u;α) �→ (cx + d)2(cu+ d)2h

(
ax + b

cx + d
,
au+ b

cu+ d
;α

)
,

r(x) �→ (cx + d)4r

(
ax + b

cx + d

)
.

Using such transformations one can bring the polynomial r into one of the following
canonical forms, depending on the distribution of its roots:

• r(x) = 0;
• r(x) = 1 (r has one quadruple zero);
• r(x) = x (r has one simple zero and one triple zero);
• r(x) = x2 (r has two double zeroes);
• r(x) = x2 − 1 (r has two simple zeroes and one double zero);
• r(x) = 4x3 − g2x − g3, / = g3

2 − 27g2
3 �= 0 (r has four simple zeroes).

Next, we find for these canonical polynomials r all possible polynomials h.
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Proposition 6. For a given polynomial r(x) of the fourth degree, in one of the canon-
ical forms above, the symmetric biquadratic polynomials h(x, u) having r(x) as their
discriminants, r(x) = h2

u − 2hhuu, are exhausted by the following list:

r = 0 : h = 1

α
(x − u)2; (q0)

h = (γ0xu+ γ1(x + u)+ γ2)
2; (h1)

r = 1 : h = 1

2α
(x − u)2 − α

2
; (q1)

h = γ0(x + u)2 + γ1(x + u)+ γ2,

γ 2
1 − 4γ0γ2 = 1; (h2)

r = x : h = 1

4α
(x − u)2 − α

2
(x + u)+ α3

4
; (q2)

r = x2 : h = γ0x
2u2 + γ1xu+ γ2, γ 2

1 − 4γ0γ2 = 1; (h3)

r = x2 − δ2 : h = α

1 − α2 (x
2 + u2)− 1 + α2

1 − α2 xu+ δ2 1 − α2

4α
; (q3)

r = 4x3 − g2x − g3 : h = 1√
r(α)

[(
xu+ α(x + u)+ g2/4

)2

− (x + u+ α)(4αxu− g3)
]
. (q4)

Proof. We have to solve the system of the form

b2
1 − 4b0b2 = c0,

2b1(b̂2 − 2b2)− 4b0b3 = c1,

b̂2
2 − 4b2

2 − 2b1b3 − 4b0b4 = c2,

2b3(b̂2 − 2b2)− 4b1b4 = c3,

b2
3 − 4b2b4 = c4,

where bk are the coefficients of h(x, u) and ck are the coefficients of r(x) (see (28),
(29)). This is done by a straightforward analysis. For example, consider in detail the
case r = 4x3 − g2x − g3. We have: c0 = 0, c1 = 4, hence b0 �= 0. Set b0 = ρ−1,
b1 = −2αρ−1, then b2 = α2ρ−1. Next, use the second and the third equations to elim-
inate b3 and b4, then the last two equations give an expression for b̂2 and the constraint
ρ2 = r(α). ��
Remarks . 1) Notice that for all six canonical forms of r we have a one-parameter family
of h’s, denoted in the list of Proposition 6 by (q0)–(q4) (the one-parameter family for
r = x2 is not explicitly written down since it coincides with (q3) at δ = 0). It will
turn out that the polynomials Q reconstructed from these h’s belong to the list Q (so
that h in (qk) corresponds to Q in (Qk); h from (q0) corresponds to (Q1)δ=0). For the
polynomials r = 0, 1, x2 we have additional two- or three-parameter families of h’s
denoted in the list of Proposition 6 by (h1)–(h3). They will lead to the correspondent
Q’s in (H1)–(H3), as well as to (A1), (A2).

2) The expression
√
r(α) in Eq. (q4) clearly shows that the elliptic curve µ2 = r(λ)

comes into play at this point. One can uniformize
√
r(α) = ℘′(A), α = ℘(A), whereA

is a point of the elliptic curve, and℘ is theWeierstrass elliptic function.Actually, the poly-
nomial h(x, u;α) is well–known in the theory of elliptic functions and represents the ad-
dition theorem for the ℘–function. Namely, the equality h(℘ (X), ℘ (U);℘(A)) = 0 is
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equivalent toA = ±X±U modulo the lattice of periods of the function℘. To summarize:
symmetric biquadratic polynomials h(x, u)with the discriminant h2

u−2hhuu = r(x) are
parametrized (in the non-degenerate case) by a point of the elliptic curveµ2 = r(λ). This
is the origin of the elliptic curve in the parametrization of Eq. (q4). As a consequence,
the spectral parameter in the discrete zero curvature representation of the latter equation
also lives on the elliptic curve. This may be considered also as the ultimate reason for
the spectral parameter of the Krichever–Novikov equation to live on an elliptic curve
([20], see also Sect. 7).

It remains to reconstruct polynomials Q for all h’s from Proposition 6.

Proof of Theorem 1. For the polynomial (25) we have:

g(x, u;α, β) = (ā2a0 − a2
1)x

2u2 + (a1(ā2 − ã2)+ a0a3 − a1a2)xu(x + u)

+ (a1a3 − a2ã2)(x
2 + u2)+ (ā2

2 − ã2
2 + a0a4 − a2

2)xu

+ (a3(ā2 − ã2)+ a1a4 − a2a3)(x + u)+ ā2a4 − a2
3,

and an analogous expression for g(x, u;β, α) is obtained by the replacement ā2 ↔ ã2.
Using (22) and denoting bi = bi(α), b′

i = bi(β), k = k(α, β), we come to the following
system for the unknown quantities ak:

ā2a0 − a2
1 = kb0,

a1(ā2 − ã2)+ a0a3 − a1a2 = kb1,

a1a3 − a2ã2 = kb2

ā2
2 − ã2

2 + a0a4 − a2
2 = kb̂2,

a3(ā2 − ã2)+ a1a4 − a2a3 = kb3,

ā2a4 − a2
3 = kb4,

ã2a0 − a2
1 = −kb′

0,

a1(ã2 − ā2)+ a0a3 − a1a2 = −kb′
1,

a1a3 − a2ā2 = −kb′
2,

ã2
2 − ā2

2 + a0a4 − a2
2 = −kb̂′

2,

a3(ã2 − ā2)+ a1a4 − a2a3 = −kb′
3,

ã2a4 − a2
3 = −kb′

4.

Of course, the quantity k is also still unknown here. Since we are looking for the function
Q up to arbitrary factor, it is convenient to denote

a = ā2 − ã2, Ai = ai

a
, Â2 = ā2

a
− 1

2
= ã2

a
+ 1

2
, K = k

a2 (30)

(it is easy to see that a �≡ 0 since otherwise h ≡ 0). These functions are skew-symmetric:

Ai(β, α) = −Ai(α, β), Â2(β, α) = −Â2(α, β), K(β, α) = −K(α, β),
and the above system can be rewritten, after some elementary transformations, as fol-
lows:

K[(b̂2 + b̂′
2)(b0 + b′

0)− (b1 + b′
1)

2] = 2(b0 − b′
0),

K[(b0 + b′
0)(b3 + b′

3)− (b1 + b′
1)(b2 + b′

2)] = b1 − b′
1,

K[(b1 + b′
1)(b3 + b′

3)− (b2 + b′
2)(b̂2 + b̂′

2)] = 2(b2 − b′
2),

K[(b0 + b′
0)(b4 + b′

4)− (b2 + b′
2)

2] = 1

2
(b̂2 − b̂′

2),

K[(b1 + b′
1)(b4 + b′

4)− (b2 + b′
2)(b3 + b′

3)] = b3 − b′
3,

K[(b̂2 + b̂′
2)(b4 + b′

4)− (b3 + b′
3)

2] = 2(b4 − b′
4),

A0 = K(b0 + b′
0), 2A1 = K(b1 + b′

1), A2 = K(b2 + b′
2),

4Â2 = K(b̂2 + b̂′
2), 2A3 = K(b3 + b′

3), A4 = K(b4 + b′
4).
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The first six lines here form a system of functional equations for bi and K (call it the
(K, b)–system), while the last two lines split away, and should be considered just as def-
initions of Ai . So, to any solution of the (K, b)–system there corresponds a function Q
whose coefficients are given by the last two lines of the system above, and the formulas

Ā2 = Â2 + 1/2, Ã2 = Â2 − 1/2,

which follow from (30). By construction, this function has the property (R) and is, there-
fore, a candidate for the three-dimensional consistency with the tetrahedron property.

Consider first the cases (q0), (q1), (q2), (q3), (q4), i.e. when we have a one-parameter
family of polynomials h. A straightforward, although tedious, check proves that in these
cases all six equations of the (K, b)–system lead to one and the same functionK , provid-
ed the functions bi = bi(α) are defined as in (q0)–(q4). Calculating the corresponding
coefficientsAi , we come to the functionsQ given in Theorem 1 by the formulas (Q1)δ=0,
(Q1)δ=1, (Q2), (Q3), and (Q4), respectively. A further straightforward check convinces
us that all these functions indeed pass the three-dimensional consistency test with the
tetrahedron propery.

It remains to consider the cases (h1), (h2), (h3). A thorough analysis of the (K, b)–
system shows that in these cases we have the following solutions.

In the case (h1):

• either h does not depend on parameters at all, and then it has to be of the form
h = (

(ε0x+ ε1)(ε0u+ ε1)
)2, andK is arbitrary; performing a suitable Möbius trans-

formation, we can achieve that h ≡ 1; the outcome of this subcase is the following
function Q which is a candidate for the three-dimensional consistency:

Q = (x − y)(u− v)+ k(α, β), (Ĥ1)

where k is an arbitrary skew-symmetric function, k(α, β) = −k(β, α);
• or h = (1/α)(ε0xu + ε1(x + u) + ε2)

2 with arbitrary constants εi . In this case we
can use Möbius transformations to achieve h = (1/α)(x + u)2, and the correspon-
dent function Q coincides with (A1)δ=0 from Theorem 1. This function passes the
three-dimensional consistency test with the tetrahedron property.

In the case (h2):

• either h = x + u + α, and the correspondent function Q coincides with (H2) from
Theorem 1;

• or h = (1/2α)(x + u)2 − (α/2), and the correspondent function (Q) is given in
(A1)δ=1 of Theorem 1.

Both functions are three-dimensionally consistent with the tetrahedron property.
Finally, in the case (h3):

• either h does not depend on parameters at all, then it has to be equal to h = xu, and
K is arbitrary; we have in this subcase the following functionQ which is a candidate
for the three-dimensional consistency:

Q = 1 + k

2
(xu+ vy)− 1 − k

2
(xv + uy), (Ĥ30)

where k is an arbitrary skew-symmetric function, k(α, β) = −k(β, α);
• or h = xu+ α (possibly, upon application of the inversion x �→ 1/x, u �→ 1/u); the

correspondent function Q is (H3)δ=1 of Theorem 1;
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• or, finally, h = α

1 − α2 (x
2u2 +1)− 1 + α2

1 − α2 xu; the correspondent functionQ is given

in (A2) of Theorem 1.

In the two last subcases the three-dimensional consistency condition is fulfilled with the
tetrahedron property.

To finish the proof of Theorem 1, we have to consider the functions Q given by the
formulas (Ĥ1) and (Ĥ30). They depend on an arbitrary skew–symmetric function k, and
have the property (R) for any choice of the latter. As it turns out, these are the only
situations when the property (R) does not automatically imply the three-dimensional
consistency.

A direct calculation shows that the function (Ĥ1) gives a map which is three-dimen-
sionally consistent, with

x123 = k(α1, α2)x1x2 + k(α2, α3)x2x3 + k(α3, α1)x3x1

k(α3, α2)x1 + k(α1, α3)x2 + k(α2, α1)x3
, (31)

if and only if

k(α1, α2)+ k(α2, α3)+ k(α3, α1) = 0. (32)

To solve this functional equation, differentiate it with respect to α1 and α2:

kα1α2(α1, α2) = 0,

which together with the skew–symmetry of k yields k(α1, α2) = f (α2)−f (α1). A point
transformation of the parameter f (α) �→ α allows us to take simply k(α, β) = β − α.
Thus, we arrive at the case (H1) of Theorem 1.

Finally, consider the formula (Ĥ30). Denote, for brevity,

4(α, β) = 1 + k(α, β)

1 − k(α, β)
, so that 4(β, α) = 1/4(α, β).

We will write also 4ij for 4(αi, αj ). A straightforward inspection shows that the function
(Ĥ30) gives a three-dimensionally consistent map with

x123 = (421 − 412)x1x2 + (432 − 423)x2x3 + (413 − 431)x3x1

(423 − 432)x1 + (431 − 413)x2 + (412 − 421)x3
, (33)

if and only if

4(α1, α2)4(α2, α3)4(α3, α1) = 1. (34)

Just as above, up to a point transformation of the parameter, the solution of this func-
tional equation is given by 4(α, β) = α/β, which leads to the equation (H3)δ=0 of
Theorem 1.

The proof of Theorem 1 is now complete. ��
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5. Three-Leg Forms

Theorem 1 classifies the three-dimensionally consistent equations under the tetrahedron
condition. In Sect. 1 we have seen that the latter condition is necessary for the existence
of a three-leg form

ψ(x, u;α)− ψ(x, v;β) = φ(x, y;α, β) (35)

of Eq. (1). Recall that the formula (35) implies the validity of equations on stars (11),
or equations of the discrete Toda type, for the fields x at the vertices of the “black”
sublattice; the same holds for the “white” sublattice. We prove now that a three–leg form
indeed exists for all equations listed in Theorem 1. After that, in Sect. 6 we demon-
strate some further applications of the three–leg forms, establishing the variational and
symplectic structures for Eqs. (1) and (11).

The theorem below provides three-leg forms for all equations of the lists Q and H
(the results for the list A follow from these ones). As it turns out, in almost all cases it is
more convenient to write the three-leg equation (35) in the multiplicative form

5(x, u;α)/5(x, v;β) = &(x, y;α, β). (36)

For the list Q the functions5 and& corresponding to the “short” and to the “long” legs,
respectively, essentially coincide. One has in these cases:

5(x, u;α) = F(X,U ;A), &(x, y;α, β) = F(X, Y ;A− B), (37)

where some suitable point transformations of the field variables and of the parameters
are introduced: x = f (X), u = f (U), y = f (Y ), and α = ρ(A), β = ρ(B).

Theorem 7. The three–leg forms exist for all equations from Theorem 1. For the lists Q,
H they are listed below.
(Q1)δ=0: An additive three–leg form with φ(x, y;α, β) = ψ(x, y;α − β),

ψ(x, u;α) = α

x − u
. (38)

(Q1)δ=1: A multiplicative three-leg form with &(x, y;α, β) = 5(x, y;α − β),

5(x, u;α) = x − u+ α

x − u− α
. (39)

(Q2): A multiplicative three-leg form with &(x, y;α, β) = 5(x, y;α − β),

5(x, u;α) = (X + U + α)(X − U + α)

(X + U − α)(X − U − α)
, (40)

where x = X2, u = U2.
(Q3)δ=0: A multiplicative three-leg form with &(x, y;α, β) = 5(x, y;α/β),

5(x, u;α) = αx − u

x − αu
. (41)

Under the point transformations x = exp(2X), α = exp(2A), etc., there holds (37) with

5(x, u;α) = F(X,U ;A) = sinh(X − U + A)

sinh(X − U − A)
. (42)
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(Q3)δ=1: A multiplicative three-leg form with (37),

5(x, u;α) = F(X,U ;A) = sinh(X + U + A) sinh(X − U + A)

sinh(X + U − A) sinh(X − U − A)
, (43)

where x = cosh(2X), α = exp(2A), etc.
(Q4): A multiplicative three-leg form with (37),

5(x, u;α) = F(X,U ;A) = σ(X + U + A)σ(X − U + A)

σ(X + U − A)σ(X − U − A)
, (44)

where x = ℘(X), α = ℘(A), etc.
(H1): An additive three-leg form

ψ(x, u;α) = x + u, φ(x, y;α, β) = α − β

x − y
. (45)

(H2): A multiplicative three–leg form

5(x, u;α) = x + u+ α, &(x, y;α, β) = x − y + α − β

x − y − α + β
. (46)

(H3): A multiplicative three–leg form

5(x, u;α) = xu+ δα = exp(2X + 2U)+ δα, (47)

&(x, y;α, β) = βx − αy

αx − βy
= sinh(X − U − A+ B)

sinh(X − U + A− B)
, (48)

where x = exp(2X), α = exp(2A), etc.

Proof. We start with the list H, for which the situation is somewhat simpler. Finding
the three-leg forms of Eqs. (H1) and (H3)δ=0 is almost immediate: these equations are
equivalent to

u− v = α − β

x − y
and

u

v
= βx − αy

αx − βy
, (49)

respectively. For other equations of the list H one uses the following simple formula
which will also be quoted on several occasions later on.

Lemma 8. The relation Q(x, u, v, y;α, β) = 0 yields

h(x, u;α)
h(x, v;β) = −Qv

Qu

. (50)

Proof.

−h(x, u;α)
h(x, v;β) = g(x, u;α, β)

g(x, v;β, α) = QQyv −QyQv

QQyu −QyQu

= Qv

Qu

∣∣∣∣
Q=0

. ��
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This lemma immediately yields the three-leg forms for the cases when Quv = 0:
then the right–hand side of (50) does not depend on u, v and can therefore be taken as
&(x, y;α, β), while5(x, u;α) := h(x, u;α). This covers the cases (H2) and (H3). Ob-
serve also that under the conditionQuv = 0 we haveG(x, y;α, β) = QQuv−QuQv =
−QuQv . Thus, in these cases the function 5 associated to the “short” legs is nothing
but the polynomial h, while the function & associated to the “long” legs, is just a ratio
of two linear factors of the quadratic polynomial G.

The situation with the list Q is a bit more tricky. The inspection of formulas (q1),
(q2), (q3), (q4) shows that in these cases h(x, u;α) is a quadratic polynomial in u,
and, similarly, the polynomial G(x, y;α, β) is a quadratic polynomial in y. We try a
linear–fractional ansatz for 5, &:

5(x, u;α) = p+(x, u;α)
p−(x, u;α), &(x, y;α, β) = s+(x, y;α, β)

s−(x, y;α, β) , (51)

where the functions p±(x, u, α) are linear in u, and the functions s±(x, y;α, β) are
linear in y, and

p+(x, u;α)p−(x, u;α) = h(x, u;α),
s+(x, y;α, β)s−(x, y;α, β) = G(x, y;α, β).

According to (21), the coefficients of polynomialsp±(·, u; ·) and s±(·, y; ·,·) are rational
functions of x and

√
r(x). This justifies “uniformizing” changes of variables, namely

x = X2 in the case (Q2), when r(x) = x,
x = cosh(2X) in the case (Q3) with δ = 1, when r(x) = x2 − 1,
x = ℘(X) in the case (Q4), when r(x) = 4x3 − g2x − g3.

The ansatz (51) turns out to work. For the cases (Q1)–(Q3) identify the functions p±
from (51) with the numerators and denominators of the expressions listed in (39)–(43)
(for the case (Q3)δ=0 take the fraction (41), i.e. the expression through x, u). In the
case (Q4) the functions p± linear in u are obtained by dividing the numerators and
denominators of the fractions in (44) by σ 2(X)σ 2(U). Make similar identifications for
the functions s± from (51). So, under the point transformations used in the formulation
of Theorem 7 we have:

p± (x, u;α) = P(X,U ; ±A), s±(x, y;α, β) = P(X,U ; ±A∓ B),

where

(Q1)δ=1 : P(x, u;α) = x − u+ α,

(Q2) : P(X,U ;α) = (X + U + α)(X − U + α),

(Q3)δ=0 : P(X,U ;A) = sinh(X − U + A),

(Q3)δ=1 : P(X,U ;A) = sinh(X + U + A) sinh(X − U + A),

(Q4) : P(X,U ;A) = σ(X + U + A)σ(X − U + A)

σ 2(X)σ 2(U)
.

A straightforward computation shows that

p+(x, u;α)p−(x, v;β)s−(x, y;α, β)− p−(x, u;α)p+(x, v;β)s+(x, y;α, β)
= ρ(x;α, β)Q(x, u, v, y;α, β), (52)
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with some factor ρ depending only on x. (Obviously, the left–hand side of the latter
equation is linear in u, v, y.) Concretely, we find: ρ = 2 in the case (Q1)δ=1; ρ = 4X
in the case (Q2); ρ = x in the case (Q3)δ=0; ρ = 2αβ sinh(2X) in the case (Q3)δ=1;
finally,

ρ = σ 4(A)σ 4(B)
σ (B − A)

σ(B + A)
· σ(2X)
σ 4(X)

in the case (Q4). So, in all these casesQ = 0 is equivalent to vanishing of the left–hand
side of (52), which, in turn, is equivalent to the multiplicative three–leg formula (36)
with the ansatz (51). Finally, we comment on the origin of the additive three–leg form
of (Q1)δ=0. Rescaling in (39) the parameters as α �→ δα, we come to the three–leg form
of Eq. (Q1) with a general δ �= 0. Sending δ → 0, we find: 5 = 1 + 2δψ + O(δ2),
& = 1 + 2δφ + O(δ2), with the functions ψ , φ from (38), and thus we arrive at the
additive formula for the case δ = 0. ��

Remark. The notion of the three–leg equation was formulated in [8]. The three–leg
forms for Eqs. (Q1), (Q3)δ=0, (H1), (H3)δ=0 were also found there. The results for
(Q2), (Q3)δ=1, (Q4), (H2), (H3)δ=1 are given here for the first time.

6. Lagrangian Structures

Recall that the three–leg form of Eq. (1) imply that the discrete Toda type equation (11)
holds on the black and on the white sublattices. (Of course, for multiplicative equations
(36) we set ψ(x, u;α) = log5(x, u;α), φ(x, y;α, β) = log&(x, y;α, β).) We show
now that all these Toda systems may be given a variational (Lagrangian) interpretation.
Notice that only the functions φ(x, y;α, β) related to the “long” legs enter the Toda
equations, and that the Toda systems for the cases (H1)–(H3) are the same as in the
cases (Q1), (Q3)δ=0.

Consider the point changes of variables x = f (X) listed in Theorem 7; in the cases
(Q1), (H1), (H2), when no such substitution is listed, set just x = X. For the sake of
notational simplicity, we write in the present section ψ(x, u;α) for ψ(f (X), f (U);α),
etc.

Lemma 9. For all equations from Theorem 1 there exist symmetric functionsL(X,U ;α)
= L(U,X;α) and :(X, Y ;α, β) = :(Y,X;α, β) such that

ψ(x, u;α) = ψ(f (X), f (U);α) = ∂

∂X
L(X,U ;α), (53)

φ(x, y;α, β) = φ(f (X), f (Y );α, β) = ∂

∂X
:(X, Y ;α, β). (54)

Proof. It is sufficient to notice that the functions (∂/∂U)ψ(x, u;α) are symmetric with
respect to the permutation X ↔ U , and similarly for φ. ��

This observation has the following immediate corollary.

Proposition 10. Let � be the “black” subgraph, and letE(�) be the set of its (non-ori-
ented) edges. Let the pairs of labels (α, β) be assigned to the edges fromE(�) according
to Fig. 5, so that, e.g., the pair (α1, α2) corresponds to the edge (x, x12). Then for all
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Fig. 6. Two elementary quadrilaterals of the square lattice

equations from Theorem 1 the discrete Toda type equations (11) are the Euler–Lagrange
equations for the action functional

S =
∑

(X,Y )∈E(�)

:(X, Y ;α, β). (55)

This result could be anticipated, since it is quite natural to expect from a system
consisting of equations on stars to have a variational origin. Our next result is, on the
contrary, somewhat unexpected, since it gives a sort of a variational interpretation for
the original system consisting of the equations on quadrilaterals (1). This is possible not
on arbitrary quad–graphs but only on special regular lattices. We restrict ourselves here
to the case of the standard square lattice. For the cases (H1), (H3)δ=0 (the discrete KdV
equation and the Hirota equation) our results coincide with those found in [10], for all
other equations from Theorem 1 they seem to be new.

For the sake of convenience orient the square lattice as in Fig. 6. Denote by E1 (E2)
the subset of edges running from south–east to north–west (resp. from south–west to
north–east). Add to the edges of the original quad–graph the set E3 of the horizontal
diagonals of all elementary quadrilaterals. Let the labels α be assigned to the edges from
E1, and let the labels β be assigned to the edges from E2. It is natural to assign to the
diagonals from E3 the pairs (α, β) from the sides of the correspondent quadrilateral.

Proposition 11. Solutions of all equations from Theorem 1 are critical for the following
action functional:

S =
∑

(X,U)∈E1

L(X,U ;α)−
∑

(X,V )∈E2

L(X, V ;β)−
∑

(X,Y )∈E3

:(X, Y ;α, β). (56)

Proof. For any vertex x, the correspondent Euler–Lagrange equation relates the vertices
of two elementary quadrilaterals, as in Fig. 6. Due to Lemma 9, this equation reads:

ψ(x, u1;α1)− ψ(x, v1;β1)− φ(x, y1;α1, β1)+
ψ(x, u2;α2)− ψ(x, v2;β2)− φ(x, y2;α2, β2) = 0.

This holds, since (35) is fulfilled on both elementary quadrilaterals. ��
The variational interpretation allows one to find invariant symplectic structures for

reasonably posed Cauchy problems for Eqs. (1). As is well–known, one way to set the
Cauchy problem is to prescribe the values x on the zigzag line like in Fig. 7 and to impose
periodicity in the horizontal direction (so that one is dealing with the square lattice on
a cylinder) [10, 13]. Then Eq. (1) defines the evolution in the vertical direction, i.e. the
map {xi}i∈Z/2NZ �→ {̃xi}i∈Z/2NZ.
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x̃2 x̃2N

Fig. 7. The Cauchy problem on a zigzag

Proposition 12. Let the edges (xi, xi+1) carry the labels αi , and let the edges (̃xi , x̃i+1)

carry the labels α̃i , so that α̃2k = α2k−2, and α̃2k−1 = α2k+1. Denote

s(X,U ;α) = ∂

∂U
ψ(x, u;α) = ∂2

∂X∂U
L(X,U ;α), (57)

so that s(X,U ;α) = s(U,X;α). Then the following relation holds for the map {xi} �→
{̃xi}: ∑

i∈Z/2NZ

s(Xi,Xi+1;αi)dXi ∧ dXi+1 =
∑

i∈Z/2NZ

s(X̃i, X̃i+1; α̃i )dX̃i ∧ dX̃i+1 .

(58)

Proof. We use the argument methodologically close to [23]. Consider the action func-
tional S defined by the same formula as (56) but with the summations restricted to the
edges depicted in Fig. 7, and restricted to such fields X which satisfy Eq. (1) on each
elementary quadrilateral. Consider the differential

dS =
∑

all vertices x

∂S

∂X
dX.

Due to Proposition 11, the expression ∂S/∂X vanishes for all vertices where six edges
meet, i.e. for all vertices except x2k+1 and x̃2k . So, we find:

dS =
∑

k∈Z/NZ

∂L(X2k, X2k+1;α2k)

∂X2k+1
dX2k+1 − ∂L(X2k+1, X2k+2;α2k+1)

∂X2k+1
dX2k+1

−∂L(X̃2k−1, X̃2k; α̃2k−1)

∂X̃2k
dX̃2k + ∂L(X̃2k, X̃2k+1; α̃2k)

∂X̃2k
dX̃2k.

Differentiating this 1–form and taking into account d2
S = 0 yields (58). ��

Remarks . 1) Notice that only the functions ψ related to the “short” legs are present in
formula (58).

2) One is tempted to interpret formula (58) as symplecticity of the map {Xi} �→ {X̃i}.
However, the 2–form (58) is degenerate. One finds a genuine symplectic form, if one
considers a quasi-periodic initial value problem instead of a periodic one, and extends
the phase space by the correspondent monodromies (cf. [13, 21] for the case (H3)δ=0
(the Hirota equation)). Actually, the formula (58) means the invariance of a degenerate
2–form only when α̃i = αi . This is easy to achieve by setting all αi = α, or, more
generally, all α2k = α and all α2k+1 = β.
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x = xk u = uk

y = uk+1v = xk+1

α

α

β β

Fig. 8. To the construction of Bäcklund transformations

We close this section with a local form of Proposition 12, also based on the three–leg
form of Eqs. (1). The particular case of the Hirota equation was given in [21].

Proposition 13. Associate the two–form ω(e) = s(X,U ;α)dX ∧ dU to every (orient-
ed) edge e = (x, u) of the quad–graph. Then Eq. (1) with the three–leg form (35) implies
that the sum of ω’s along the boundary of any elementary quadrilateral, and therefore
along any cycle homotopic to zero, vanishes.

Proof. Differentiating (35) and wedging the result with dX, we have:

∂

∂U
ψ(x, u;α)dX ∧ dU + ∂

∂V
ψ(x, v;β)dV ∧ dX = ∂

∂Y
φ(x, y;α)dX ∧ dY.

On the other hand, starting with the three–leg equation centered at y (or, in other words,
flipping x ↔ y, u ↔ v), we arrive at

∂

∂V
ψ(y, v;α)dY ∧ dV + ∂

∂U
ψ(y, u;β)dU ∧ dY = ∂

∂X
φ(y, x;α)dY ∧ dX.

Adding these two equations, and taking into account Lemma 9 and the notation (57), we
come to the statement of the proposition. ��

The statement of Proposition 12 is a particular case of Proposition 13, since the
boundary of the domain in Fig. 7 (a cylindrical strip) is homotopic to zero.

7. Relation to Bäcklund Transformations

In this section we interpret the integrable quad-graph equations of Theorem 1 as non-
linear superposition principles (NSP) of Bäcklund transformations for the KdV–type
equations.

First of all, we show how Bäcklund transformations themselves can be derived from
our equations. Towards this aim, consider Eq. (1) on one vertical strip of the standard
square lattice:

S = {0, 1} × Z.

The fields on S0 = {0} × Z will be denoted by xk , while the fields on S1 = {1} × Z will
be denoted by uk . So, a single square of the strip S looks as in Fig. 8. Suppose now that
xk = x(kε), k ∈ Z, where x(ξ) is a smooth function, and similarly for uk . In particular,
this means that one has to set in Eq. (1) v = x+ εxξ +O(ε2) and y = u+ εuξ +O(ε2).
If, in addition, the parameter β is chosen properly, then Eq. (1) approximates in the limit
ε → 0 some differential equation which relates the functions x(ξ) and u(ξ). For the
equations of the list Q the result is the most straightforward.
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Proposition 14. Set in Eq. (Q1) β = ε2/2, in Eq. (Q2) β = ε2/4, in Eq. (Q3) β =
1 − ε2/2, and in Eq. (Q4) β = ℘(ε2). Then in the limit ε → 0 just described these
equations tend to

xξuξ = h(x, u;α), (59)

with the correspondent polynomials h listed in the formulas (q1), (q2), (q3), (q4) of
Proposition 6.

Proof. The statement is almost obvious in the cases (Q1), (Q2). To see that it holds for
Eq. (Q3), the latter can be first rewritten as

β(α2 − 1)(x − v)(u− y) = α(β2 − 1)(xv + uy)+ (1 − β)(α2 + β)(xy + uv)

+(δ2/4αβ)(α2 − β2)(α2 − 1)(β2 − 1).

If β = 1 − ε2/2, then the above equation approximates

(α2 − 1)xξuξ = −α(x2 + u2)+ (α2 + 1)xu− (δ2/4α)(α2 − 1)2.

Finally, in the most intricate case (Q4) one starts by rewriting the equation as

ā2 − a2

2a0
(x − v)(u− y) = xuvy + a1

a0
(xuv + uvy + vyx + yxu)

+ ā2 + a2

2a0
(x + v)(u+ y)

+ ã2

a0
(xv + uy)+ a3

a0
(x + u+ v + y)+ a4

a0
.

From expressions for the coefficients ai given in Theorem 1, it is easy to see that if
β = ℘(ε2) ∼ ε−4, so that b = ℘′(ε2) ∼ −2ε−6, then the left–hand side of the above
equation tends to axξuξ , while the right–hand side tends to

x2u2 − 2αxu(x + u)−
(

2α2 − g2

2

)
xu+ α2(x2 + u2)

+
(
g3 + g2

2
α
)
(x + u)+

(g2
2

16
+ g3α

)
= ah(x, u;α).

This proves the proposition. ��
Equation (59), read as a Riccati equation for u with the coefficients dependent on x,

describes a transformation x �→ u, which turns out [2] to be a Bäcklund transformation
for the Krichever–Novikov equation [20]:

xt = xξξξ − 3

2xξ
(x2
ξξ − r(x)), (60)

with the polynomial r(x) being the discriminant of h(x, u;α). In other words, if x is a
solution of (60), and u is related to x by (59), then u is also a solution of (60). It should
be noticed that, in turn, the partial differential equation (60) may be derived from (59),
either through a sort of continuous limit, or as a higher symmetry. In any way, it would
be fair to say that the whole theory of the Eq. (60) and its Bäcklund transformations (59)
is contained in the correspondent quad-graph equation (1) from the list Q. To complete
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the picture, we demonstrate that all Eqs. (1) listed in Theorem 1, in turn, can be inter-
preted as nonlinear superposition principles for the Bäcklund transformations. To this
end consider the system of four differential equations of the type (59) corresponding to
four sides of the quadrilateral on Fig. 1:

xξuξ = h(x, u;α), uξyξ = h(u, y;β), (61)

xξvξ = h(x, v;β), vξ yξ = h(v, y;α). (62)

We will consider it for functions h corresponding to all cases listed in Theorem 1, ex-
cept for those two when h actually does not depend on parameters, namely (H1) with
h(x, u) = 1, and (H3)δ=0 with h(x, u) = xu. In all other cases the system (61), (62)
makes perfect sense and its consistency is quite nontrivial.

Proposition 15. The equation Q(x, u, v, y;α, β) = 0 is a sufficient condition for the
consistency of the system of differential equations (61), (62). Moreover, it is compatible
with this system, i.e.

Qξ |Q=0 = 0. (63)

Proof. The consistency condition of the differential equations (61), (62) reads:

Q := h(x, u;α)h(v, y;α)− h(x, v;β)h(u, y;β) = 0. (64)

The left–hand side Q of this equation is a polynomial of degree 1 in each variable
for the equations of the list H, and of degree 2 in each variable for the equations of
the list Q. In the former case it is directly seen that Eq. (64) exactly coincides with
Q(x, u, v, y;α, β) = 0. In the latter case it can be shown that the polynomialQ divides
the left–hand side of (64). More precisely, it is verified that, up to a constant factor,
Q = QP , where in the cases (Q1), (Q2) one has P = Q|β→−β , in the case (Q3) one
has P = Q|β→1/β , and in the case (Q4) one has P = Q|(β,b)→(β,−b). This proves the
first statement of the proposition. The second one reads

(Qxxξ +Quuξ +Qvvξ +Qyyξ )|Q=0 = 0.

We will prove that actually both termsQxxξ+Qyyξ andQuuξ+Qvvξ vanish separately.
For example,

(Quuξ +Qvvξ )|Q=0 = 1

xξ

(
Quh(x, u;α)+Qvh(x, v;β)

)∣∣
Q=0 = 0.

The last step follows from Lemma 8. ��
In the two cases when the system (61), (62) becomes trivial, there still exist Bäcklund

transformations of a different kind, such that the equation Q = 0 serves as their NSP.
Namely, in the cases (H1), (H3)δ=0 the following equations come to replace (59):

xξ + uξ = (x − u)2 + α, (65)

xξ

x
+ uξ

u
= α

2

(x
u

+ u

x

)
, (66)

respectively. The second of these equations is probably better known in the coordinates
x = exp(X), u = exp(U):

Xξ + Uξ = α cosh(X − U). (67)
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Fig. 9. An elementary quadrilateral; both
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Fig. 10. Three–dimensional consistency; fields assigned to
edges

Equation (65) defines a Bäcklund transformation for the potential KdV equation

xt = xξξξ − 6x2
ξ . (68)

Similarly, Eq. (67) defines a Bäcklund transformation for the potential MKdV equation

Xt = Xξξξ − 2X3
ξ , (69)

or, alternatively, for the sinh–Gordon equation which belongs to the same hierarchy.

8. Conclusions and Perspectives

Three–dimensional consistency as integrability criterium; Yang–Baxter maps. One of
the traditional but rather ad hoc definitions of the integrability of two–dimensional sys-
tems is based on the notion of the zero–curvature representation. For a system on a
quad–graph consisting of Eqs. (1) with fields associated to the vertices of the elemen-
tary quadrilateral on Fig. 1, the zero curvature representation is usually encoded in the
formula like

L(y, u, β; λ)L(u, x, α; λ) = L(y, v, α; λ)L(v, x, β; λ),
where λ is the spectral parameter, so that the matrices L take values in some loop group.
In [8] and independently in [26] it was demonstrated how to derive the zero curvature
representation from the three–dimensional consistency. It should be mentioned, how-
ever, that to assign fields to the vertices is not the only possibility. Another large class
of two–dimensional systems on quad–graphs build those with the fields assigned to the
edges, see Fig. 9. In this situation it is natural to assume that each elementary quadri-
lateral carries a map R : X 2 �→ X 2, where X is the space where the fields a, b take
values, so that (a2, b1) = R(a, b;α, β). The question on the three–dimensional consis-
tency of such maps is also legitimate and, moreover, began to be studied recently. The
corresponding property can be encoded in the formula

R23 ◦ R13 ◦ R12 = R12 ◦ R13 ◦ R23, (70)

where each Rij : X 3 �→ X 3 acts as the map R on the factors i, j of the cartesian prod-
uct X 3 and acts identically on the third factor. This equation should be understood as
follows. The fields a, b are supposed to be attached to the edges parallel to the 1st and



Classification of Integrable Equations on Quad-Graphs 539

the 2nd coordinate axes, respectively. Additionally, consider the fields c attached to the
edges parallel to the 3rd coordinate axis. Then the left–hand side of (70) corresponds to
the chain of maps along the three rear faces of the cube on Fig. 10:

(a, b) �→ (a2, b1), (a2, c) �→ (a23, c1), (b1, c1) �→ (b13, c12),

while its right–hand side corresponds to the chain of the maps along the three front faces
of the cube:

(b, c) �→ (b3, c2), (a, c2) �→ (a3, c12), (a3, b3) �→ (a23, b13).

So, Eq. (70) assures that two ways of obtaining (a23, b13, c12) from the initial data
(a, b, c) lead to the same results. The maps with this property were introduced by Drin-
feld [12] under the name of “set–theoretical solutions of the Yang–Baxter equation”, an
alternative name is “Yang–Baxter maps” used by Veselov in the recent study [35], see
also references therein. Under some circumstances, systems with the fields on vertices
can be regarded as systems with the fields on edges or vice versa (this is the case, e.g.,
for the systems (Q1), (Q3)δ=0, (H1), (H3)δ=0 of our list, for which the variablesX enter
only in combinations like a = X − U for edges (x, u)), but in general the two classes
of systems should be considered as different. The notion of the zero curvature represen-
tation makes perfect sense for Yang–Baxter maps: such a map can be called integrable,
if it is equivalent to

L(b, β; λ)L(a, α; λ) = L(a2, α; λ)L(b1, β; λ).
The problem of integrability of Yang–Baxter maps in the sense of existence of a ze-
ro–curvature representation is under current investigation [33]. Also the problem of
classification of Yang–Baxter maps, like the one achieved in the present paper, is of
great importance and interest.

A different direction for the development of the ideas of the present paper constitute
quantum systems, or, more generally, systems with non–commutative variables. To re-
main in the frame of the present paper, these are systems (1), where the fields (x, u, v, y)
take values in an arbitrary associative (not necessary commutative) algebra with a unit. It
turns out that the notion of the three–dimensional consistency can be formulated also for
such non–commutative systems. Also the derivation of the zero curvature representation
can be extended to the non–commutative framework [9].

It should be mentioned that in the area of the three–dimensional consistency of clas-
sical systems there also remains a number of interesting open problems. For instance,
one of the assumptions under which the classification was carried out in the present
paper, was less natural, namely the tetrahedron condition. As we pointed out in Sect. 3,
there exist three–dimensionally consistent equations without the tetrahedron property,
however all examples we are aware of are trivial (linear or linearizable):

Q(x, u, v, y) = x + y − u− v = 0 or Q(x, u, v, y) = xy − uv = 0,

or those obtained from these two by the action of a Möbius transformation on all variables.
These examples do not contain parameters, and thus the three–dimensional consistency
does not give a zero curvature representation with a spectral parameter for them (their
integrability is anyway obvious). It would be interesting to find out whether there exist
nontrivial examples violating the tetrahedron property.

There is also a vast field of multi–field integrable equations on quad–graphs. Existing
examples indicate that their study is very promising.
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Four–dimensional consistency of three–dimensional systems. Very promising is also the
application of the consistency approach to the three–dimensional integrability. The role
of an ad hoc definition of integrability, played in two dimensions by the zero curvature
representation, now goes to the so called local Yang–Baxter equation, introduced by
Maillet and Nijhoff [22]. The role of the transition matrices from the zero curvature rep-
resentation is played in this novel structure by certain tensors attached to the elementary
two–dimensional plaquettes of the three–dimensional lattice. There exist a number of
results on finding this sort of structure for some three–dimensional integrable systems
[19, 16, 17]. It would be desirable to relate this ad hoc notion of integrability to some
constructive one. In the spirit of the present paper, this constructive notion should be the
four–dimensional consistency.

In the three–dimensional context there are a priori many kinds of systems, accord-
ing to where the fields are defined: on the vertices, on the edges, or on the elementary
squares of the cubic lattice. Consider first the situation when the fields are sitting on the
elementary squares. Attach the fields a, b, c to the two–dimensional faces parallel to
the coordinate planes 12, 23, 13, respectively, so that a, b, c are sitting on the bottom,
the left and the front faces of a cube Fig. 3, and a3, b1, c2 on the top, the right and the
back faces. The system under consideration is a map S : X 3 �→ X 3 attached to the cube,
so that S(a, b, c) = (a3, b1, c2). The condition of the four–dimensional consistency of
such a map can be encoded in the formula

S134 ◦ S234 ◦ S124 ◦ S123 = S123 ◦ S124 ◦ S234 ◦ S134. (71)

This equation should be understood as follows. Additionally to the fields a, b, c, consider
the fields d, e, f , attached to the two–dimensional faces parallel to the coordinate planes
24, 14, 34 of the four–dimensional hypercubic lattice. Each map of the type Sijk in (71)
is a map on X 6(a, b, c, d, e, f ) acting as S on the factors of the cartesian product X 6

corresponding to the variables sitting on the faces parallel to the planes ij , jk, ik, and
acting trivially on the other three factors. Thus the left–hand side of (71) corresponds to
the chain of maps

(a, b, c) �→ (a3, b1, c2), (a3, d, e) �→ (a34, d1, e2),

(b1, d1, f ) �→ (b14, d13, f2), (c2, e2, f2) �→ (c24, e23, f21),

while the right–hand side of (71) corresponds to the chain of maps

(c, e, f ) �→ (c4, e3, f1), (b, d, f1) �→ (b4, d3, f12),

(a, d3, e3) �→ (a4, d13, e23), (a4, b4, c4) �→ (a34, b14, c24).

Equation (71) expresses then the fact that two different ways of obtaining the data
(a34, b14, c24, d13, e23, f12) from the initial data (a, b, c, d, e, f ) lead to identical re-
sults. This equation is known in the literature as the functional tetrahedron equation [19,
17]. (Note that the standard notation used in the literature on the tetrahedron equation is
different: the indices 1 ≤ α, β, γ ≤ 6 of Sαβγ numerate the two–dimensional coordinate
planes.) The paper [17] contains also a list of solutions of this equation with X = C,
possessing local Yang–Baxter representations with a certain ansatz for the participating
tensors. One of the most remarkable examples is the star–triangle map:

a3 = − a

ab − bc − ca
, b1 = − b

ab − bc − ca
, c2 = − c

ab − bc − ca
. (72)
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x x1

x2

x3
x12

x13

x23 x123

x4 x14

x24

x34

x124

x134

x234 x1234

Fig. 11. Hypercube

(Usually this equation is written in a more symmetric form which is obtained by chang-
ing c �→ −c, with all plus signs in all denominators; however in that form the map does
not satisfy Eq. (71).) See also [16] for an alternative localYang–Baxter representation for
this system. In [31, 32] an important solution of the functional tetrahedron equation with
X = C

2 was introduced and studied in detail. There seems to be no method available for
deriving the local Yang–Baxter representation for a given map satisfying the functional
tetrahedron equation.

Further, consider three–dimensional systems with the fields sitting on the vertices.
In this case each elementary cube carries just one equation

Q(x, x1, x2, x3, x12, x23, x13, x123) = 0, (73)

relating the fields in all its vertices. Such an equation should be solvable for any of its
arguments in terms of the other seven ones. The four–dimensional consistency of such
equations is defined as follows:

– Starting with the initial data x, xi (1 ≤ i ≤ 4), xij (1 ≤ i < j ≤ 4), Eq. (73) allows
us to uniquely determine all fields xijk (1 ≤ i < j < k ≤ 4). Then we have four
different possibilities to find x1234, corresponding to four three–dimensional cubic
faces adjacent to the vertex x1234 of the four–dimensional hypercube, see Fig. 8. All
four values actually coincide.

So, one can consistently impose Eqs. (73) on all three–dimensional cubes of the lattice
Z

4. It is tempting to accept the four–dimensional consistency of equations of type (73)
as the constructive definition of their integrability. It will be very important to solve
the correspondent classification problem. We expect that this definition will allow one
to derive the local Yang–Baxter representation, as a replacement for the zero curvature
representation characteristic for the two–dimensional integrability.

We give here some examples. Consider the equation

(x1 − x3)(x2 − x123)

(x3 − x2)(x123 − x1)
= (x − x13)(x12 − x23)

(x13 − x12)(x23 − x)
. (74)

This equation appeared for the first time in [29, 18], along with a geometric interpreta-
tion. It is not difficult to see that Eq. (74) admits a symmetry groupD8 of the cube. This
equation can be uniquely solved for a field at an arbitrary vertex of a three–dimensional
cube, provided the fields at the other seven vertices are known. The fundamental fact
not mentioned in [18] is:

• Eq. (74) is four–dimensionally consistent in the above sense.
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This is closely related (in fact, almost synonymous) to the functional tetrahedron equa-
tion for the star–triangle map (72), since the plaquette variables (a, b, c) of the latter
can be “factorized” into combinations of vertex variables x of Eq. (74). More precisely,
given a solution of (74) and setting

a = x12 − x

x1 − x2
, b = x23 − x

x2 − x3
, c = x13 − x

x1 − x3

we arrive at a solution of (72).
A different “factorization” of the plaquette variables into the vertex ones leads to

another remarkable three–dimensional system known as the discrete BKP equation [25,
18]. For any solution x : Z

4 �→ C of (74), define a function τ : Z
4 �→ C by the equations

τiτj

ττij
= xij − x

xi − xj
, i < j. (75)

Equation (74) assures that this can be done in an essentially unique way (up to initial
data on coordinate axes whose influence is a trivial scaling of the solution). The function
τ satisfies on any three–dimensional cube the discrete BKP equation:

ττijk − τiτjk + τj τik − τkτij = 0, i < j < k. (76)

The following holds:

• Equation (76) is four–dimensionally consistent. Moreover, for the value τ1234 one
finds a remarkable equation:

ττ1234 − τ12τ34 + τ13τ24 − τ23τ34 = 0, (77)

which essentially reproduces the discrete BKP equation. So, τ1234 does not actually
depend on the values τi , 1 ≤ i ≤ 4. This can be considered as an analog of the
tetrahedron property of Sect. 2.

Notice that usually the discrete BKP equation (76) is written in a slightly different and
more symmetric form, with all plus signs on the left–hand side. On every three–dimen-
sional subspace these two forms are easily transformed into one another. However, this
cannot be done on the whole of Z

4. Equation (76) with all plus signs on the left–hand
side does not possess the property of the four–dimensional consistency.

Further, we mention systems of the geometrical origin (discrete analogs of conjugate
and orthogonal coordinate systems) [11, 6], which also have the property of four–dimen-
sional consistency. We plan to address various aspects of four–dimensional consistency
in our future publications.
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