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Discrete Zγ and Painlevé Equations

Sergey I. Agafonov and Alexander I. Bobenko

1 Introduction

Circle patterns as discrete analogs of conformal mappings is a fast-developing field of

research on the border of analysis and geometry. Recent progress in their investigation

was initiated by Thurston’s idea (see [18]) about approximating the Riemann mapping

by circle packings. The corresponding convergence was proven by Rodin and Sullivan

in [15]. For hexagonal packings, it was established by He and Schramm in [9] that the

convergence is C∞ . Classical circle packings comprised by disjoint open disks were later

generalized to circle patterns, where the disks may overlap (see, for example, [8]). In

[16], Schramm introduced and investigated circle patterns with the combinatorics of

the square grid and orthogonal neighboring circles. In particular, a maximum principle

for these patterns was established, which allowed global results to be proven.

On the other hand, not very much is known about analogs of standard holo-

morphic functions. Doyle constructed a discrete analogue of the exponential map with

the hexagonal combinatorics in [5] , and the discrete versions of exponential and erf-

function, with underlying combinatorics of the square grid, were found in [16]. The dis-

crete logarithm and z2 have been conjectured by Schramm and Kenyon (see [17]).

In a conformal setting, Schramm’s circle patterns are governed by a difference

equation that turns out to be the stationary Hirota equation (see [16], [3]). This equation

is an example of an integrable difference equation. It first appeared in a different branch

of mathematics—the theory of integrable systems (see [19] for a survey). Moreover, it

is easy to show that the lattice comprised by the centers of the circles of a Schramm’s

pattern and by their intersection points is a special discrete conformal mapping (see
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166 Agafonov and Bobenko

Figure 1 Two discrete conformalmapswith close initial datan = 0, m = 0.

The second lattice describes a discrete version of the holomorphic mapping

z2/3 .

Definition 1 below). The latter were introduced in [2] in the setting of discrete integrable

geometry, originally without any relation to circle patterns.

The present paper is devoted to the discrete analogue of the function f(z) = zγ,

first suggested in [1]. We show that the corresponding Schramm’s circle patterns can be

naturally described by methods developed in the theory of integrable systems. Let us

recall the definition of a discrete conformal map from [2].

Definition 1. f : Z2 → R2 = C is called a discrete conformal map if all its elementary

quadrilaterals are conformal squares; i.e., their cross-ratios are equal to −1:

q(fn,m, fn+1,m , fn+1,m+1 , fn,m+1) :=
(fn,m − fn+1,m)(fn+1,m+1 − fn,m+1)

(fn+1,m − fn+1,m+1 )(fn,m+1 − fn,m)
= −1.

(1)

This definition is motivated by the following properties: (1) It is Möbius invariant, and

(2) a smooth map f : D ⊂ C → C is conformal (holomorphic or antiholomorphic) if and
only if ∀ (x, y) ∈ D,

lim
ε→0 q

(
f(x, y), f(x+ ε, y)f(x+ ε, y+ ε)f(x, y+ ε)

)
= −1.

For some examples of discrete conformal maps and for their applications in differential

geometry of surfaces, see [2] and [10].

A naive method to construct a discrete analogue of the function f(z) = zγ is to

start with fn,0 = nγ, n ≥ 0, f0,m = (im)
γ, m ≥ 0, then compute fn,m for any n,m > 0

using equation (1). But amap that has been determined to be so has a behavior that is far

from that of the usual holomorphic maps. Different elementary quadrilaterals overlap

(see the left lattice in Figure 1).
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Discrete Zγ and Painlevé Equations 167

Definition 2. A discrete conformal map fn,m is called an immersion if the interiors of

adjacent elementary quadrilaterals (fn,m, fn+1,m , fn+1,m+1 , fn,m+1) are disjoint.

To construct an immersed discrete analogue of zγ, which is the right lattice pre-

sented in Figure 1, a more complicated approach is needed. Equation (1) can be supple-

mented with the nonautonomous constraint

γfn,m = 2n
(fn+1,m − fn,m)(fn,m − fn−1,m)

(fn+1,m − fn−1,m)

+ 2m
(fn,m+1 − fn,m)(fn,m − fn,m−1)

(fn,m+1 − fn,m−1)
,

(2)

which plays a crucial role in this paper. This constraint, as well as its compatibility

with (1), is derived from some monodromy problem (see Section 2). Let us assume 0 <

γ < 2 and denote Z2+ = {(n,m) ∈ Z2 : n,m ≥ 0}. Motivated by the asymptotics of the

constraint (2) as n,m → ∞, and by the properties

zγ(R+) = R+, zγ(iR+) = eγπi/2R+

of the holomorphic mapping zγ, we use the following definition (see [1] , [3]) of the dis-

crete zγ.

Definition 3. The discrete conformal map Zγ : Z2+ → C, 0 < γ < 2 is the solution of (1)

and (2) with the initial conditions

Zγ(0, 0) = 0, Zγ(1, 0) = 1, Zγ(0, 1) = eγπi/2 . (3)

Obviously, Zγ(n, 0) ∈ R+ and Zγ(0,m) ∈ eγπi/2(R+) for any n,m ∈ N.

Figure 2 suggests that Zγ is an immersion. The corresponding theorem is the

main result of this paper.

Theorem 1. The discrete map Zγ for 0 < γ < 2 is an immersion.

The proof is based on analysis of geometric and algebraic properties of the cor-

responding lattices. In Section 3, we show that Zγ corresponds to a circle pattern of

Schramm’s type. (The circle pattern corresponding to Z2/3 is presented in Figure 1.)

Next, analyzing the equations for the radii of the circles, we show that in order to prove

that Zγ is an immersion, it is enough to establish a special property of a separatrix

solution of the following ordinary difference equation of Painlevé type:

(n+ 1)
(
x2n − 1

)(xn+1 − ixn

i+ xnxn+1

)
− n

(
x2n + 1

)(xn−1 + ixn

i+ xn−1xn

)
γxn.
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168 Agafonov and Bobenko

Figure 2 Schramm’s circle pattern

corresponding to Z2/3 .

Namely, in Section 4, it is shown that Zγ is an immersion if and only if the unitary

solution xn = eiαn of this equation with x0 = eiγπ/4 lies in the sector 0 < αn < π/2.

Similar problems have been studied in the setting of the isomonodromic deformation

method (see [11], [5]). In particular, connection formulas were derived. These formulas

describe the asymptotics of solutions xn for n → ∞ as a function of x0 (see, in particular,

[7]). These methods seem to be insufficient for our purposes since we need to control

xn for finite n ’s as well. The geometric origin of this equation permits us to prove the

property of the solution xn mentioned above by purely geometric methods. Based on

results established forZγ,we show in Section 5 how to obtain discrete immersed analogs

of z2 and log z as limiting cases of Zγ with γ → 2 and γ → 0, respectively. Finally, discrete

analogs of Zγ for γ > 2 are discussed in Section 6.

2 Discrete Zγ via a monodromy problem

Equation (1) is the compatibility condition of the Lax pair

Ψn+1,m = Un,mΨn,m, Ψn,m+1 = Vn,mΨn,m (4)

found by Nijhoff and Capel in [13]:

Un,m =

(
1 −un,m

λ/un,m 1

)
Vn,m =

(
1 −vn,m

−λ/vn,m 1

)
, (5)
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Discrete Zγ and Painlevé Equations 169

where

un,m = fn+1,m − fn,m, vn,m = fn,m+1 − fn,m.

Whereas equation (1) is invariant with respect to fractional linear transformations

fn,m → (pfn,m + q)/(rfn,m + s), the constraint (2) is not. By applying a fractional linear

transformation and shifts of n and m, (2) is generalized to the following form:

βf2n,m + γfn,m + δ = 2(n− φ)
(fn+1,m − fn,m)(fn,m − fn−1,m)

(fn+1,m − fn−1,m)

+ 2(m−ψ)
(fn,m+1 − fn,m)(fn,m − fn,m−1)

(fn,m+1 − fn,m−1)
,

(6)

where β, γ, δ, φ,ψ are arbitrary constants.

Theorem 2. f : Z2 → C is a solution to the system (1, 6) if and only if there exists a

solution Ψn,m to (4, 5) satisfying the following differential equation in λ:

d

dλ
Ψn,m = An,mΨn,m, An,m = −

Bn,m

1+ λ
+

Cn,m

1− λ
+

Dn,m

λ
, (7)

with λ-independent matrices Bn,m, Cn,m, Dn,m.The matrices Bn,m, Cn,m, Dn,m in (7) are

of the following structure:

Bn,m = −
n− φ

un,m + un−1,m

(
un,m un,mun−1,m

1 un−1,m

)
−

φ

2
I,

Cn,m = −
m−ψ

vn,m + vn,m−1

(
vn,m vn,mvn,m−1

1 vn,m−1

)
−

ψ

2
I,

Dn,m =

(
−(γ/4) − (β/2)fn,m −(β/2)f2n,m − (γ/2)fn,m − (δ/2)

−β/2 (γ/4) + (β/2)fn,m

)
.

The constraint (6) is compatible with (1).

The proof of this theorem is straightforward but involves some computations. It

is presented in Appendix A.

Note that the identity

detΨn,m(λ) = (1+ λ)n(1− λ)m detΨ0,0 (λ)

for determinants implies

trAn,m(λ) =
n

1+ λ
−

m

1− λ
+ a(λ), (8)
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170 Agafonov and Bobenko

where a(λ) is independent of n and m. Thus, up to the term Dn,m/λ, equation (7) is the

simplest one possible.

Further, we deal with the special case in (6) where β = δ = φ = ψ = 0, leading

to the discrete Zγ. The constraint (2) and the corresponding monodromy problem were

obtained in [12] for the case γ = 1, and generalized to the case of arbitrary γ in [3].

3 Circle patterns and Zγ

In this section, we show that Zγ of Definition 3 is a special case of circle patterns with

the combinatorics of the square grid as defined by Schramm in [16].

Lemma 1. A discrete fn,m satisfying (1) and (2) with initial data f0,0 = 0, f1,0 = 1,

f0,1 = eiα has the equidistant property

f2n,0 − f2n−1,0 = f2n+1,0 − f2n,0 , f0,2m − f0,2m−1 = f0,2m+1 − f0,2m

for any n ≥ 1, m ≥ 1.

Proof. For m = 0 or n = 0, the constraint (2) is an ordinary difference equation of the

second order. The lemma is proved by induction. �

Given initial f0,0 , f0,1 , and f1,0 , the constraint (2) allows us to compute fn,0 and

f0,m for all n,m ≥ 1. Now using equation (1), one can successively compute fn,m for

any n,m ∈ N. Observe that if |fn+1,m − fn,m| = |fn,m+1 − fn,m|, then the quadrilateral

(fn,m, fn+1,m , fn+1,m+1 , fn,m+1) is also of the kite form—it is inscribed in a circle and

is symmetric with respect to the diameter of the circle [fn,m, fn+1,m+1 ]. If the angle at

the vertex fn,m is π/2, then the quadrilateral (fn,m, fn+1,m , fn+1,m+1 , fn,m+1) is also of

the kite form. In this case, the quadrilateral is symmetric with respect to its diagonal

[fn,m+1 , fn+1,m ].

Proposition 1. Let fn,m satisfy (1) and (2) in Z2+ with initial data f0,0 = 0, f1,0 = 1,

f0,1 = eiα. Then all the elementary quadrilaterals (fn,m, fn+1,m , fn+1,m+1 , fn,m+1) are of

the kite form. All edges at the vertex fn,m with n+m = 0 (mod2) are of the same length,

|fn+1,m − fn,m| = |fn,m+1 − fn,m| = |fn−1,m − fn,m| = |fn,m−1 − fn,m|.

All angles between the neighboring edges at the vertex fn,m with n+m = 1 (mod2) are

equal to π/2.

Proof. The proof follows from Lemma 1 and from the above observation by induction.

�
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Discrete Zγ and Painlevé Equations 171

fn,m+1 fn+1,m+1

fn−1,m
fn+2,m

fm,n fn+1,m

fn,m−1 fn+1,m−1

Figure 3 Discrete conformal maps of

Schramm type; sublattices and kite-

quadrilaterals, n +m = 0 (mod 2).

Proposition 1 implies that for any n,m such that n +m = 0 (mod2), the points

fn+1,m , fn,m+1 , fn−1,m , fn,m−1 lie on a circle with the center fn,m.

Corollary 1. The circumscribed circles of the quadrilaterals (fn−1,m , fn,m−1 , fn+1,m ,

fn,m+1) with n + m = 0 (mod2) form a circle pattern of Schramm type (see [16]); i.e.,

the circles of neighboring quadrilaterals intersect orthogonally and the circles of half-

neighboring quadrilaterals with common vertex are tangent (see Figure 3).

Proof. Consider the sublattice {n,m : n+m = 0 (mod2)} and denote by V its quadrant

V = {z = N+ iM : N,M ∈ Z, M ≥ |N|},

where

N =
(n−m)

2
, M =

(n+m)

2
.

We use complex labels z = N + iM for this sublattice. Denote by C(z) the circle of the

radius

R(z) = |fn,m − fn+1,m | = |fn,m − fn,m+1 | = |fn,m − fn−1,m | = |fn,m − fn,m−1 |, (9)

with the center at fN+M,M−N = fn,m. From Proposition 1, it follows that any two circles

C(z), C(z ′) with |z − z ′| = 1 intersect orthogonally, and any two circles C(z), C(z ′) with

|z− z ′| =
√
2 are tangent. Thus, the corollary is proved. �

Let {C(z)}, z ∈ V be a circle pattern of Schramm type on the complex plane. Define
fn,m : Z

2
+ → C in the following manner.
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172 Agafonov and Bobenko

(a) If n+m = 0 (mod2), then fn,m is the center of

C

(
n−m

2
+ i

n+m

2

)
.

(b) If n+m = 1 (mod2), then

fn,m : = C

(
n−m− 1

2
+ i

n+m− 1

2

)
∩ C

(
n−m+ 1

2
+ i

n+m+ 1

2

)

= C

(
n−m+ 1

2
+ i

n+m− 1

2

)
∩ C

(
n−m− 1

2
+ i

n+m+ 1

2

)
.

Since all elementary quadrilaterals (fn,m, fn+1,m , fn+1,m+1 , fn,m+1) are of the kite form,

equation (1) is satisfied automatically. In what follows, the function fn,m, defined as

above by (a) and (b), is called a discrete conformal map corresponding to the circle

pattern {C(z)}.

Theorem 3. Let fn,m, satisfying (1) and (2) with initial data f0,0 = 0, f0,1 = 1, f0,1 = eiα,

be an immersion. Then R(z) defined by (9) satisfies the following equations:

R(z)R(z+ 1)(−2M− γ) + R(z+ 1)R(z+ 1+ i)
(
2(N+ 1) − γ

)
+ R(z+ 1+ i)R(z+ i)

(
2(M+ 1) − γ

)
+ R(z+ i)R(z)(−2N− γ) = 0

(10)

for1 z ∈ Vl := V ∪ {−N+ i(N− 1) | N ∈ N}, and

(N+M)
(
R(z)2 − R(z+ 1)R(z− i)

)(
R(z+ i) + R(z+ 1)

)
+ (M−N)

(
R(z)2 − R(z+ i)R(z+ 1)

)(
R(z+ 1) + R(z− i)

)
= 0

(11)

for z ∈ Vint := V\{±N+ iN | N ∈ N}.

Conversely, let R(z) : V → R+ satisfy (10) for z ∈ Vl and (11) for z ∈ Vint. Then
R(z) defines an immersed circle packing with the combinatorics of the square grid. The

corresponding discrete conformal map fn,m is an immersion and satisfies (2).

Proof. Suppose that the discrete net determined by fn,m is immersed; i.e., the open discs

of tangent circles do not intersect. Consider n + m = 1 (mod2) and denote fn+1,m =

fn,m+ r1e
iβ, fn,m+1 = fn,m+ ir2e

iβ, fn−1,m = fn,m− r3e
iβ, fn,m−1 = fn,m− ir4e

iβ, where

ri > 0 are the radii of the corresponding circles. The constraint (2) reads as follows:

γfn,m = eiβ
(
2n

r1r3

r1 + r3
+ 2im

r2r4

r2 + r4

)
. (12)

1Note that although R(−N+i(N−1)) are not defined, equation (10) also makes sense for z=−N+i(N−1).
At these points, it reads as (14).
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Discrete Zγ and Painlevé Equations 173

The kite form of elementary quadrilaterals implies

fn+1,m+1 = fn+1,m − eiβr1
(r1 − ir2)

2

r21 + r22
,

fn+1,m−1 = fn+1,m − eiβr1
(r1 + ir4)

2

r21 + r24
.

Computing fn+2,m from the constraint (12) at the point (n + 1,m) and inserting it into

the identity |fn+2,m − fn+1,m | = r1 , after some transformations, one arrives at

r1r2(n+m+ 1− γ) + r2r3(−n+m+ 1− γ)

+ r3r4(−n−m+ 1− γ) + r4r1(n−m+ 1− γ) = 0.
(13)

This equation coincides with (10).

Now let fn+2,m+1 = fn+1,m+1 + R1e
iβ ′

, fn+1,m+2 = fn+1,m+1 + iR2e
iβ ′

, fn,m+1 =

fn+1,m+1 − R3e
iβ ′

, fn+1,m = fn+1,m+1 − iR4e
iβ ′

. Since all elementary quadrilaterals are

of the kite form, we have

R4 = r1 , R3 = r2 , eiβ
′
= −ieiβ

(r2 + ir1)
2

r21 + r22
.

Substituting these expressions and (12) into the constraint (2) for (n + 1,m + 1) and

using (13), we arrive at

R1 =
(n+ 1)r21(r2 + r4) +mr2(r

2
1 − r2r4)

(n+ 1)r2(r2 + r4) −m(r21 − r2r4)
,

R2 =
(m+ 1)r22(r1 + r3) + nr1(r

2
2 − r1r3)

(m+ 1)r1(r1 + r3) − n(r22 − r1r3)
.

These equations, together with R4 = r1 , R3 = r2 , describe the evolution (n,m)→ (n + 1,

m + 1) of the crosslike figure formed by fn,m, fn±1,m , fn,m±1 with n+m = 1 (mod2).The

equation for R2 coincides with (11).We have considered internal points z ∈ Vint; now we
consider those that are not. Equation (10) at z = N + iN and z = −N + i(N − 1), N ∈ N
reads as

R
(± (N+ 1) + i(N+ 1)

)
=

2N+ γ

2(N+ 1) − γ
R(±N+ iN). (14)

The converse claim of the theorem is based on the following lemma.

Lemma 2. Let R(z) : V → R+ satisfy (10) for z ∈ Vl and (11) for z = iM, M ∈ N. Then

R(z) satisfies the following:
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174 Agafonov and Bobenko

R(N− 1+ iN) R(N+ i(N+ 1))

R(N+ iN)

A O B

Figure 4 Straight line fn,0 .

(a) equation (11) for z ∈ V\{N+ iN | N ∈ N};

(b) equation

(N+M)
(
R(z)2 − R(z+ i)R(z− 1)

)(
R(z− 1) + R(z− i)

)
+ (M−N)

(
R(z)2 − R(z− 1)R(z− i)

)(
R(z+ i) + R(z− 1)

)
= 0

(15)

for z ∈ V\{−N+ iN | N ∈ N};

(c) equation

R(z)2=

(
1

R(z+ 1)
+

1

R(z+ i)
+

1

R(z− 1)
+

1

R(z− i)

)
R(z+1)R(z+i)R(z−1)R(z−i)

R(z+1) + R(z+i)+R(z−1)+R(z−i)

(16)

for z ∈ Vint.

The proof of this lemma is technical and is presented in Appendix B.

LetR(z) satisfy (10,11); then item (c) of Lemma2 implies that at z ∈ Vint, equation
(16) is fulfilled. In [16], it was proven that, given R(z) satisfying (16), the circle pattern

{C(z)} with radii of the circles R(z) is immersed. Thus, the discrete conformal map fn,m

corresponding to {C(z)} is an immersion. Item (b) of Lemma 2 implies that R(z) satisfies

(15) at z = N+ iN, N ∈ N, which reads

R(N− 1+ iN)R
(
N+ i(N+ 1)

)
= R2(N+ iN). (17)

This equation implies that the center O of C(N+ iN) and two intersection points A,B of

C(N + iN) with C(N − 1 + iN) and C(N + i(N + 1)) lie on a straight line (see Figure 4).

Thus all the points fn,0 lie on a straight line. Using equation (10) at z = N+ iN, one gets
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Discrete Zγ and Painlevé Equations 175

by induction that fn,m satisfies (2) at (n, 0) for any n ≥ 0. Similarly, item (a) of Lemma 2,

equation (11) at z = −N + iN, N ∈ N, and equation (10) at z = −N + i(N − 1), N ∈ N
imply that fn,m satisfies (2) at (0,m). Now Theorem 2 implies that fn,m satisfies (2) in

Z2+, and Theorem 3 is proved. �

Remark. Equation (16) is a discrete analogue of the equation∆ log(R) = 0 in the smooth

case. Similarly, equations (11) and (15) can be considered discrete analogs of the equa-

tion xRy − yRx = 0, and equation (10) is a discrete analogue of the equation xRx + yRy =

(γ− 1)R.

From the initial condition (3), we have

R(0) = 1, R(i) = tan
γπ

4
. (18)

Theorem 3 allows us to reformulate the immersion property of the circle lattice com-

pletely in terms of the system (10, 11). Namely, to prove Theorem 1, one should show

that the solution of the system (10, 11) with initial data (18) is positive for all z ∈ V.

Equation (14) implies

R(±N+ iN) =
γ(2+ γ) · · · (2(N− 1) + γ)

(2− γ)(4 − γ) · · · (2N− γ)
. (19)

Proposition 2. Let the solution R(z) of (11) and (10) in V with initial data

R(0) = 1, R(i) = tan
γπ

4

be positive on the imaginary axis; i.e., R(iM) > 0 for anyM ∈ Z+. Then R(z) is positive

everywhere in V.

Proof. Since the system of equations for R(z) defined in Theorem 3 has the symmetry

N → −N, it is sufficient to prove the proposition forN ≥ 0.Equation (10) can be rewritten

as

R(z+ 1+ i) =
R(z)R(z+ 1)(2M+ γ) + R(z)R(z+ i)(2N+ γ)

R(z+ 1)(2N+ 2− γ) + R(z+ i)(2M+ 2− γ)
.

For γ ≤ 2, N ≥ 0, M > 0, and positive R(z), R(z+ 1), R(z+ i), we get R(z+ 1+ i) > 0. Using

R(N+ iN) > 0 for all N ∈ N, one obtains the conclusion by induction. �
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176 Agafonov and Bobenko

4 Zγ and a discrete Painlevé equation

Due to Proposition 2, the discrete Zγ is an immersion if and only if R(iM) > 0 for all

M ∈ N. To prove the positivity of the radii on the imaginary axis, it is more convenient

to use equation (2) for n = m.

Proposition 3. The map f : Z2+ → C satisfying (1) and (2) with initial data f0,0 = 0,

f1,0 = 1, f0,1 = eiα is an immersion if and only if the solution xn of the equation

(n+ 1)
(
x2n − 1

)(xn+1 − ixn

i+ xnxn+1

)
− n

(
x2n + 1

)(xn−1 + ixn

i+ xn−1xn

)
= γxn, (20)

with x0 = eiα/2 , is of the form xn = eiαn , where αn ∈ (0, π/2).

Proof. Let fn,m be an immersion. Define Rn := R(in) > 0, and define αn ∈ (0, π/2)
through fn,n+1 − fn,n = e2iαn (fn+1,n − fn,n). By symmetry, all the points fn,n lie on the

diagonal arg fn,n = α/2.

Taking into account that all elementary quadrilaterals are of the kite form, one

obtains

fn+2,n+1 = eiα/2(gn+1 + Rn+1e
−iαn+1 ), fn+1,n+2 = eiα/2(gn+1 + Rn+1e

iαn+1 ),

fn+1,n = eiα/2(gn+1 − iRn+1e
−iαn), fn,n+1 = eiα/2(gn+1 + iRn+1e

iαn),

and

Rn+1 = Rn tanαn, (21)

where gn+1 = |fn+1,n+1 | (see Figure 5). Now the constraint (2) for (n+ 1, n+ 1) is equiv-

alent to

γgn+1 = 2(n+ 1)Rn+1

(
eiαn + ieiαn+1

i+ ei(αn+αn+1 )

)
.

Similarly,

γgn = 2nRn

(
eiαn−1 + ieiαn

i+ ei(αn−1+αn)

)
.

Putting these expressions into the equality

gn+1 = gn + e−iαn(Rn + iRn+1)

 at T
U

 B
erlin on S

eptem
ber 20, 2010

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Discrete Zγ and Painlevé Equations 177

fn+1

Rn+1fn,n+1

αn+1

fn+1,n+1
fn+2,n+1Rn αn

fn,n
fn+1,n

Figure 5 Diagonal circles.

and using (21), one obtains (20) with xn = eiαn . This proves the necessity part.

Now let us suppose that there is a solution xn = eiαn of (20) with αn ∈ (0, π/2).
This solution determines a sequence of orthogonal circles along the diagonal eiα/2R+,

and thus the points fn,n, fn±1,n , fn,n±1 forn ≥ 1.Nowequation (1) determines fn,m inZ2+.

Sinceαn ∈ (0, π/2), the inner parts of the quadrilaterals (fn,n, fn+1,n , fn+1,n+1 , fn,n+1) on
the diagonal, and of the quadrilaterals (fn,n−1 , fn+1,n−1 , fn+1,n , fn,n) are disjoint. That

means that we have positive solution R(z) of (10, 11) for z = iM, z = 1+ iM, N ∈ N. (See

the proof of Theorem 3.) Given R(iM), equation (10) determines R(z) for all z ∈ V. Due

to Lemma 2, R(z) satisfies (10, 11). From Proposition 2, it follows that R(z) is positive.

Theorem 3 implies that the discrete conformal map gn,m corresponding to the circle

pattern {C(z)} determined by R(z) is an immersion and satisfies (2). Since gn,n = fn,n

and gn±1,n = fn±1,n , equation (1) implies fn,m = gn,m. This proves the theorem. �

Remark. Note that although (20) is a difference equation of the second order, a solution

xn of (20) for n ≥ 0 is determined by its value x0 = eiα/2 . From the equation for n = 0,

one gets

x1 =
x0(x

2
0 + γ− 1)

i
(
(γ− 1)x20 + 1

) . (22)

Remark. Equation (20) is a special case of an equation that has already appeared in the

literature, although in a completely different context. Namely, it is related to the discrete

Painlevé equation

2ζn+1

1− Xn+1Xn
+

2ζn

1− XnXn−1
= µ+ ν+ ζn+1 + ζn
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178 Agafonov and Bobenko

+

(µ− ν)(r2 − 1)Xn + r(1− X2n)

[
1

2
(ζn + ζn+1) + (−1)

n(ζn − ζn+1 − 2m)

]
(r+ Xn)(1+ rXn)

,

which was considered in [14], and is called the generalized d-PII equation. The corre-

sponding transformation2 is

X =
(1+ i)(x− i)√

2(x+ 1)

with ζn = n, r = −
√
2, µ = 0, (ζn − ζn+1 − 2m) = 0, γ = (2ν− ζn + ζn+1).

Equation (20) can be written in the following recurrent form:

xn+1 = ϕ(n, xn−1 , xn) :=

− xn−1
nx−2n + i(γ− 1)x−1n−1x

−1
n + (γ− 1) + i(2n+ 1)x−1n−1xn + (n+ 1)x2n

nx2n − i(γ− 1)xn−1xn + (γ− 1) − i(2n+ 1)xn−1x
−1
n + (n+ 1)x−2n

.

(23)

Obviously, this equation possesses unitary solutions.

Theorem 4. There exists a unitary solution xn of equation (20) with xn ∈ AI\{1, i} ∈ S1 ,

∀n ≥ 0, where

AI :=

{
eiβ | β ∈

[
0,

π

2

]}
.

Proof. Let us study the properties of the function ϕ(n, x, y) restricted to the torus T2 =

S1 × S1 = {(x, y) : x, y ∈ C, |x| = |y| = 1}. �

1 The function ϕ(n, x, y) is continuous on AI ×AI ∀n ≥ 0.

(Continuity on the boundary of AI × AI is understood to be one-sided.) The points of

discontinuity must satisfy

n+ 1+ (γ− 1)y2 − i(2n+ 1)xy− i(γ− 1)xy3 + ny4 = 0.

The last identity never holds for unitary x, y with n ∈ N and 0 < γ < 2. For n = 0, the

right-hand side of (22) is also continuous on AI.

2We are thankful to A. Ramani and B. Grammaticos for this identification of the equations.
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2 For (x, y) ∈ AI×AI,we haveϕ(n, x, y) ∈ AI∪AII∪AIV ,whereAII := {eiβ | β ∈ (π/2, π]}
and AIV := {eiβ | β ∈ [−π/2, 0)}.

To show this, it is convenient to use the substitution

un = tan
αn

2
=

xn − 1

i(xn + 1)
.

In the u-coordinates, (23) takes the form

un+1 = F(n,un−1 , un) :=
(un + 1)

(
un−1P1(n,un) + P2(n,un)

)
(un − 1)

(
un−1P3(n,un) + P4(n,un)

) ,
where

P1(n, v) = (2n+ γ)v3 − (2n+ 4 + γ)v2 + (2n+ 4 + γ)v− (2n+ γ),

P2(n, v) = −(2n+ γ)v3 + (6n+ 4 − γ)v2 + (6n+ 4 − γ)v− (2n+ γ),

P3(n, v) = (2n+ γ)v3 + (6n+ 4 − γ)v2 − (6n+ 4 − γ)v− (2n+ γ),

P4(n, v) = −(2n+ γ)v3 − (2n+ 4 + γ)v2 − (2n+ 4 + γ)v− (2n+ γ).

Identity (22) reads as

u1 =
(u0 + 1)(γu20 − 4u0 + γ)

(u0 − 1)(γu20 + 4u0 + γ)
. (24)

We have to prove that for (u, v) ∈ [0, 1] × [0, 1], the values F(n,u, v) lie in the interval

[−1,+∞]. The function F(n,u, v) is smooth on (0, 1) × (0, 1) and has no critical points,
in (0, 1) × (0, 1). Indeed, for critical points, we have ∂F(n,u, v)/∂u = 0, which yields

P1(n, v)P4(n, v) − P2(n, v)P3(n, v) = 0 and, after some calculations, v = 0, 1,−1. On the

other hand,one can easily check that the values of F(n,u, v) on the boundary of [0, 1]×[0, 1]
lie in the interval [−1,+∞].

For n = 0, using (24) and exactly the same considerations as for F(n, 0, v), one

shows that −1 ≤ u1 ≤ +∞ for u0 ∈ [0, 1].
Now let us introduce

SII(k) :=
{
x0 ∈ AI | xk ∈ AII, xl ∈ AI ∀ l 0 < l < k

}
,

SIV(k) :=
{
x0 ∈ AI | xk ∈ AIV , xl ∈ AI ∀ l 0 < l < k

}
,

where xn is the solution of (20). From property 1, it follows that SII(k) and SIV(k) are

open sets in the induced topology of AI. Denote

SII = ∪SII(k), SIV = ∪SIV(k),
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180 Agafonov and Bobenko

which are open, too. These sets are nonempty since SII(1) and SIV(1) are nonempty.

Finally, introduce

SI :=
{
x0 ∈ AI : xn ∈ AI ∀n ∈ N}

.

It is obvious that SI, SII, and SIV are mutually disjoint. Property 2 implies

SI ∪ SII ∪ SIV = AI.

This is impossible for SI = ∅. Indeed, the connected setAI cannot be covered by two open
disjoint subsets SII and SIV . So there exists x0 such that the solution xn ∈ AI ∀ n. From

ϕ(n, x, 1) ≡ −i, ϕ(n, x, i) ≡ −1, (25)

it follows that (for this solution) xn �= 1, xn �= i. This proves the theorem.

To complete the proof of Theorem 1, it is necessary to show eiγπ/4 ∈ SI. This

problem can be treated in terms of the method of isomonodromic deformations (see,

for example, [7] for a treatment of a similar problem). One could probably compute the

asymptotics of solutions xn for n → ∞ as functions of x0 and show that the solution

with x0 �= eiγπ/4 cannot lie in SI.The geometric origin of equation (20) allows us to prove

the result using just elementary geometric arguments.

Proposition 4. The set SI consists of only one element, namely, SI{eiγπ/4 }.

Proof. We have shown that SI is not empty. Take a solution xn ∈ SI and consider the

corresponding circle pattern (see Theorem 4 and Theorem 3). Equations (10) and (15)

for N = M make it possible to find R(N + iN) and R(N + i(N + 1)) in a closed form. We

now show that substituting the asymptotics of R(z) at these points into equation (11)

forM = N+ 1, for immersed fn,m, one necessarily gets R(i) = tan(γπ/4).

Indeed, formula (19) yields the following representation in terms of the Γ-

function:

R(N+ iN) = c(γ)

Γ

(
N+

γ

2

)

Γ

(
N+ 1−

γ

2

) ,

where

c(γ) =

γΓ

(
1−

γ

2

)

2Γ

(
1+

γ

2

) . (26)
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From the Stirling formula (see [6]),

Γ(s) =

√
2π

s

(
s

e

)s(
1+

1

12s
+O

(
1

s2

))
, (27)

one obtains

R(N+ iN) = c(γ)Nγ−1
(
1+O

(
1

N

))
, N → ∞. (28)

Now let R(i) = a tan(γπ/4),where a is a positive constant. Equation (15) forM = N, N ≥
0 reads

R(N− 1+ iN)R
(
N+ i(N+ 1)

)
= R2(N+ iN).

This is equivalent to the fact that the centers of all the circles C(N+ iN) lie on a straight

line. This equation yields

R
(
N+ i(N+ 1)

)

=

(
a tan

γπ

4

)(−1)N ((2(N− 1) + γ
)(

2(N− 3) + γ
)(

2(N− 5) + γ
) · · ·

(2N− γ)
(
2(N− 2) − γ

)(
2(N− 4) − γ

) · · ·
)2

.

Using the product representation for tan x,

tan x =
sin x

cos x
=

x

(
1−

x2

π2

)
· · ·
(
1−

x2

(kπ)2

)
· · ·

(
1−

4x2

π2

)(
1−

4x2

(3π)2

)
· · ·
(
1−

4x2(
(2k− 1)π

)2
)
· · ·

,

one arrives at

R
(
N+ i(N+ 1)

)
= a(−1)

N

c(γ)Nγ−1
(
1+O

(
1

N

))
. (29)

Solving equation (11) with respect to R2(z), we get

R2(z) = G
(
N,M,R(z+ i), R(z+ 1), R(z− i)

)

:=

R(z+ i)R(z+ 1)R(z− i) + R2(z+ 1)

(
M+N

2M
R(z− i) +

M−N

2M
R(z+ i)

)

R(z+ 1) +
M+N

2M
R(z+ i) +

M−N

2M
R(z− i)

.

(30)
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For z ∈ V, R(z+ i) ≥ 0, R(z+ 1) ≥ 0, R(z− i) ≥ 0, the function G is monotonic:

∂G

∂R(z+ i)
≥ 0,

∂G

∂R(z+ 1)
≥ 0,

∂G

∂R(z− i)
≥ 0.

Thus, any positive solution R(z), z ∈ V of (4) must satisfy

R2(z) ≥ G
(
N,M, 0, R(z+ 1), R(z− i)

)
.

Substituting (28) and (29), the asymptotics of R , into this inequality and taking the limit

K → ∞, for N = 2K, we get a2 ≥ 1. Similarly, for N = 2K + 1, one obtains 1/a2 ≥ 1, and

finally a = 1. This completes the proof of the Proposition and the proof of Theorem 1. �

Remark. Taking further terms from the Stirling formula (27), one gets the asymptotics

for Zγ,

Z
γ
n,k =

2c(γ)

γ

(
n+ ik

2

)γ(
1+O

(
1

n2

))
, n → ∞, k = 0, 1, (31)

having a proper smooth limit. Here the constant c(γ) is given by (26).

Due to representation (7), the discrete conformal map Zγ can be studied by the

isomonodromic deformation method. In particular, applying a technique of [7] , one can

probably prove the following conjecture.

Conjecture. The discrete conformal map Zγ has the following asymptotic behavior:

Zγn,m =
2c(γ)

γ

(
n+ im

2

)γ(
1+ o

(
1√

n2 +m2

))
, n2 +m2 → ∞.

For 0 < γ < 2, this would imply the asymptotic embeddedness of Zγ at n,m → ∞
and, combined with Theorem 1, the embeddedness3 of Zγ : Z2+ → C conjectured in [1]
and [3].

5 The discrete maps Z2 and Log. Duality

Definition 3 was given for 0 < γ < 2. For γ < 0 or γ > 2, the radius R(1+ i) = γ/(2−γ) of

the corresponding circle patterns becomes negative and some elementary quadrilaterals

around f0,0 intersect. But for γ = 2, one can renormalize the initial values of f so that

the corresponding map remains an immersion. Let us consider Zγ, with 0 < γ < 2, and

3A discrete conformal map fn,m is called an embedding if inner parts of different elementary quadrilaterals
(fn,m,fn+1,m,fn+1,m+1,fn,m+1 ) do not intersect.
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Figure 6 Discrete Z2 .

make the following renormalization for the corresponding radii: R → ((2− γ)/γ)R. Then

as γ → 2− 0 from below, we have

R(0) =
2− γ

γ
−→ +0, R(1+ i) = 1, R(i) =

2− γ

γ
tan

γπ

4
−→ 2

π
.

Definition 4. Z2 : Z2+ → R2 = C is the solution of (1, 2) with γ = 2 and the initial condi-

tions

Z2(0, 0) = Z2(1, 0) = Z2(0, 1) = 0, Z2(2, 0) = 1,

Z2(0, 2) = −1, Z2(1, 1) = i
2

π
.

In this definition, equations (1) and (2) are understood to be regularized through

multiplication by their denominators. Note that for the radii on the border, one has

R(N+ iN) = N. Equation (16) has the symmetry R → 1/R.

Proposition 5. Let R(z)be a solution of the system (10,11) for some γ.Then R̃(z) = 1/R(z)

is a solution of (10, 11) with γ̃ = 2− γ.

This proposition reflects the fact that for any discrete conformal map f, there is

a dual discrete conformal map f∗ defined by (see [3])

f∗n+1,m − f∗n,m = −
1

fn+1,m − fn,m
, f∗n,m+1 − f∗n,m =

1

fn,m+1 − fn,m
. (32)
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Obviously, this transformation preserves the kite form of elementary quadrilaterals and

therefore is well defined for Schramm’s circle patterns. The smooth limit of the duality

(32) is

(f∗) ′ = −
1

f ′
.

The dual of f(z) = z2 is, up to a constant, f∗(z) = log z.Motivated by this observation, we

define the discrete logarithm as the discrete map dual to Z2 , i.e., the map corresponding

to the circle pattern with radii

RLog(z) =
1

RZ2 (z)
,

where RZ2 are the radii of the circles for Z2 . Here one has RLog(0) = ∞; i.e., the corre-
sponding circle is a straight line. The corresponding constraint (2) can be also derived

as a limit. Indeed, consider the map

g =
2− γ

γ
Zγ −

2− γ

γ
.

This map satisfies (1) and the constraint

γ

(
gn,m +

2− γ

γ

)
= 2n

(gn+1,m − gn,m)(gn,m − gn−1,m)

(gn+1,m − gn−1,m)

+ 2m
(gn,m+1 − gn,m)(gn,m − gn,m−1)

(gn,m+1 − gn,m−1)
.

Keeping in mind the limit procedure used to determine Z2 , it is natural to define the

discrete analogue of log z as the limit of g as γ → +0. The corresponding constraint

becomes

1 = n
(gn+1,m − gn,m)(gn,m − gn−1,m)

(gn+1,m − gn−1,m)
+m

(gn,m+1 − gn,m)(gn,m − gn,m−1)

(gn,m+1 − gn,m−1)
.

(33)

Definition 5. Log is the map Log : Z2+ → R2 = C satisfying (1) and (33) with the initial
conditions

Log(0, 0) =∞, Log(1, 0) = 0, Log(0, 1) = iπ,

Log(2, 0) = 1, Log(0, 2) = 1+ iπ, Log(1, 1) = i
π

2
.
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Figure 7 Discrete Log.

The circle patterns corresponding to the discrete conformal mappings Z2 and

Log were conjectured by O. Schramm and R. Kenyon (see [17]), but it was not proved that

they are immersed.

Proposition 6. Discrete conformal maps Z2 and Log are immersions.

Proof. Consider the discrete conformal map ((2− γ)/γ)Zγ with 0 < γ < 2. The corre-

sponding solution xn of (20) is a continuous function of γ. So there is a limit as γ → 2−0,

of this solution with xn ∈ AI, x0 = i, and x1 = (−1+ iπ/2)/(1+ iπ/2) ∈ AI. The solu-

tion xn of (20) with the property xn ∈ AI satisfies xn �= 1, xn �= i for n > 0 (see (25)).

Now, reasoning as in the proof of Proposition 3, we get that Z2 is an immersion. The

only difference is that R(0) = 0. The circle C(0) lies on the border of V, so Schramm’s

result (see [16]) claiming that the corresponding circle pattern is immersed is true. Log

corresponds to the dual circle pattern, with RLog(z) = 1/RZ2 (z), which implies that Log

is also an immersion. �

6 Discrete maps Zγ with γ �∈ [0, 2]
Starting with Zγ, γ ∈ [0, 2] defined in the previous sections, one can easily define Zγ

for arbitrary γ by applying some simple transformations of discrete conformal maps

and Schramm’s circle patterns. Denote by Sγ the Schramm’s circle pattern associated

to Zγ, γ ∈ (0, 2]. Applying the inversion of the complex plane z �→ τ(z) = 1/z to Sγ,

one obtains a circle pattern τSγ, which is also of Schramm’s type. It is natural to de-

fine the discrete conformal map Z−γ, γ ∈ (0, 2] through the centers and intersection
points of circles of τSγ. On the other hand, constructing the dual Schramm circle pat-

tern (see Proposition 5) for Z−γ, we arrive at a natural definition of Z2+γ . Intertwining
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the inversion and the dualization described above, one constructs circle patterns corre-

sponding to Zγ for any γ. To define immersed Zγ, one should discard some points near

(n,m) = (0, 0) from the definition domain.

To give a precise description of the corresponding discrete conformal maps in

terms of the constraint (2) and initial data for arbitrarily large γ, a more detailed con-

sideration is required. To any Schramm circle pattern S, there corresponds a 1-complex

parameter family of discrete conformal maps described in [3]. Take an arbitrary point

P∞ ∈ C ∪ ∞. Reflect it through all the circles of S. The resulting extended lattice is a

discrete conformal map and is called a central extension of S. As a special case, choos-

ing P∞ =∞, one obtains the centers of the circles, and thus the discrete conformal map

considered in Section 3.

Composing the discrete map Zγ : Z2+ → C with the inversion τ(z) = 1/z of the

complex plane, one obtains the discrete conformal map G(n,m) = τ(Zγ(n,m)) satisfying

the constraint (2) with the parameter γG = −γ.This map is the central extension of τSγ

corresponding to P∞ = 0. Let us define Z−γ as the central extension of τSγ corresponding

to P∞ = ∞ , i.e., the extension described in Section 3. The map Z−γ defined in this way

also satisfies the constraint (2) due to the following lemma.

Lemma 3. Let S be a Schramm’s circle pattern, and let f∞ : Z2+ → C and f0 : Z2+ → C be
its two central extensions corresponding to P∞ = ∞ and P∞ = 0, respectively. Then f∞
satisfies (2) if and only if f0 satisfies (2).

Proof. If f∞ (or f0) satisfies (2), then f∞
n,0 (respectively, f

0
n,0) lie on a straight line, and

so do f∞
0,m (respectively, f

0
0,m). A straightforward computation shows that f

∞
n,0 and f0n,0

satisfy (2) simultaneously, and the same statement holds for f∞
0,m and f00,m . Since (1) is

compatible with (2), f0 (respectively, f∞ ) satisfy (2) for any n,m ≥ 0. �

Let us now describe ZK for K ∈ N as special solutions of (1, 2).

Definition 6. ZK : Z2+ → R2 = C, where K ∈ N, is the solution of (1, 2) with γ = K and

the initial conditions

ZK(n,m) = 0 for n+m ≤ K− 1, (n,m) ∈ Z2+, (34)

ZK(K, 0) = 1, (35)

ZK(K− 1, 1) = i

2K−1Γ2
(
K

2

)
πΓ(K)

. (36)

The initial condition (34) corresponds to the identity
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Figure 8 Discrete Z3 .

dkzK

dzk
(z = 0) = 0, k < K

in the smooth case. For odd K = 2N+ 1, condition (36) reads

Z2N+1 (2N, 1) = i
(2N− 1)!!

(2N)!!
,

and follows from constraint (2). For even K = 2N, any value of ZK(K−1, 1) is compatible

with (2). In this case, formula (36) can be derived from the asymptotics

lim
N→∞

R(N+ iN)

R
(
N+ i(N+ 1)

) = 1

and reads

Z2N(2N− 1, 1) = i
2

π

(2N− 2)!!

(2N− 1)!!
.

We conjecture that so-defined ZK are immersed.

Note that for odd integer K = 2N + 1, discrete Z2N+1 in Definition 6 is slightly

different from the one previously discussed in this section. Indeed, by intertwining the

dualization and the inversion (as described above), one can define two different versions

of Z2N+1 . One is obtained from the circle pattern corresponding to discrete Z(n,m) =

n+ imwith centers in n+ im,n+m = 0 (mod2).The second one comes from Definition 6

and is obtained by the same procedure fromZ(n,m) = n+im, but in this case, the centers

of the circles of the pattern are chosen in n+ im,n+m = 1 (mod2).These two versions
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Figure 9 Detailed view of two versions of discrete Z3 .

of Z3 are presented in Figure 8. The left figure shows Z3 obtained through Definition 6.

Note that this map is immersed, in contrast to the right lattice of Figure 8, which has

overlapping quadrilaterals at the origin (see Figure 9).

Appendix A: Proof of Theorem 2

Compatibility

Direct, but rather long, computation (authors used Mathematica4 computer algebra to

perform it) shows that if the constraint (6) holds for 3 vertices of an elementary quadri-

lateral, it holds for the fourth vertex. A map f : Z2 → C satisfying equation (1) and

the constraint (6) is uniquely determined by its values at four vertices, for example,

fn0,m0, fn0,m0±1 , fn0+1,m0 . Indeed, starting with this data and consequently applying (6)

and (1), one determines fn,m0, fn,m0±1 for all n. Now, applying (6), we get the values

fn,m0±2 , ∀n. Note that, due to the observation above, equation (1) is automatically sat-

isfied for all obtained elementary quadrilaterals. Proceeding further as above, one de-

termines fn,m0±3 , fn,m0±4 , . . . , and thus fn,m, for all n,m.

Necessity

Now let fn,m be a solution to the system (1, 6). Define Ψ0,0 (λ) as a nontrivial solution of

linear equation (7) with A(λ) given by Theorem 2. Equations (4) determine Ψn,m(λ) for

any n,m. By direct computation, one can check that the compatibility conditions of (7)

and (4),

4Mathematica Version 3,Wolfram, Champaign, Ill., 1996.
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Un,m+1Vn,m = Vn+1,mUn,m,

d

dλ
Un,m = An+1,mUn,m −Un,mAn,m,

d

dλ
Vn,m = An,m+1Vn,m − Vn,mAn,m,

(37)

are equivalent to (1, 6).

Sufficiency

Conversely, letΨn,m(λ) satisfy (7) and (4) with some λ-independent matrices Bn,m, Cn,m,

Dn,m. From (8), it follows that trBn,m = −n, trCn,m = −m.Equations (37) are equivalent

to equations for their principal parts at λ = 0, λ = −1, λ = 1, λ =∞:
Dn+1,m

(
1 −un,m

0 1

)
=

(
1 −un,m

0 1

)
Dn,m, (38)

Dn,m+1

(
1 −vn,m

0 1

)
=

(
1 −vn,m

0 1

)
Dn,m, (39)

Bn+1,m

(
1 −un,m

−1/un,m 1

)
=

(
1 −un,m

−1/un,m 1

)
Bn,m, (40)

Bn,m+1

(
1 −vn,m

1/vn,m 1

)
=

(
1 −vn,m

1/vn,m 1

)
Bn,m, (41)

Cn+1,m

(
1 −un,m

1/un,m 1

)
=

(
1 −un,m

1/un,m 1

)
Cn,m, (42)

Cn,m+1

(
1 −vn,m

−1/vn,m 1

)
=

(
1 −vn,m

−1/vn,m 1

)
Cn,m, (43)

(
Dn+1,m − Bn+1,m − Cn+1,m

)(0 0

1 0

)
−

(
0 0

1 0

)(
Dn,m − Bn,m − Cn,m

)
=

(
0 0

1 0

)

(44)

(
Dn,m+1 − Bn,m+1 − Cn,m+1

)(0 0

1 0

)
−

(
0 0

1 0

)
(Dn,m − Bn,m − Cn,m) =

(
0 0

1 0

)

(45)

From (40, 41) and trBn,m = −n, it follows that

Bn,m = −
n− φ

un,m + un−1,m

(
un,m un,mun−1,m

1 un−1,m

)
−

φ

2
I.
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Similarly, (42, 43) and trCn,m = −m imply

Cn,m = −
m−ψ

vn,m + vn,m−1

(
vn,m vn,mvn,m−1

1 vn,m−1

)
−

ψ

2
I.

Here, φ and ψ are constants independent of n,m. The function a(λ) in (8), independent

of n and m, can be normalized to vanish identically; i.e., trDn,m = 0. Substitution of

D =

(
a b

c −a

)

into equations (38) and (39) yields

cn+1,m = cn,m, cn,m+1 = cn,m, (46)

an+1,m = an,m − un,mcn,m, an,m+1 = an,m − vn,mcn,m, (47)

bn+1,m = bn,m + un,m(an,m + an+1,m), bn,m+1 = bn,m+ vn,m(an,m + an,m+1).

(48)

Thus, c is a constant independent of n,m. Equations (47) can be easily integrated:

an,m = −cfn,m + θ,

where θ is independent of n,m (recall that un,m = fn+1,m − fn,m, vn,m = fn,m+1 − fn,m).

Substituting this expression into (48) and integrating, we get

bn,m = −cf
2
n,m + 2θfn,m + µ,

for some constant µ. Now (44) and (45) imply

bn,m = −
n− φ

un,m + un−1,m
un,mun−1,m −

m−ψ

vn,m + vn,m−1
vn,mvn,m−1 ,

which is equivalent to the constraint (6) after identifying c = β/2, θ = −(γ/4), µ = −(δ/2).

Appendix B

The proof of Lemma 2 uses the following technical lemma.

Lemma 4. For positive R, the following hold.

(1) Equations (11) and (10) at z and equation (10) at z− i imply (15) at z+ 1.
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(2) Equation (15) at N+ iN and equation (10) at N+ iN and at N− 1+ iN imply

(N+M)
(
R(z)2 − R(z+ 1)R(z− i)

)(
R(z− i) + R(z− 1)

)
+ (N−M)

(
R(z)2 − R(z− i)R(z− 1)

)(
R(z+ 1) + R(z− i)

)
= 0,

(49)

at z = N+ iM, forM = N+ 1.

(3) Equations (15) and (49) at z = N+ iM,N �= ±M, imply (16) at z.

(4) Equations (15) and (16) at z = N+ iM,N �= ±M, imply

(N+M)
(
R(z)2 − R(z+ i)R(z− 1)

)(
R(z+ 1) + R(z+ i)

)
+ (N−M)

(
R(z)2 − R(z+ 1)R(z+ i)

)(
R(z+ i) + R(z− 1)

)
= 0,

(50)

and (11) at z.

(5) Equations (50) and (10) at z and equation (10) at z− 1 imply (49) at z+ i.

Proof. The proof is a direct computation. Let us check, for example, (3). Equations (15)

and (49) read

ξ
(
R(z)2 − R(z+ i)R(z− 1)

)
+ η
(
R(z+ i) + R(z− 1)

)
= 0,

ξ
(
R(z)2 − R(z+ 1)R(z− i)

)
− η
(
R(z+ 1) + R(z− i)

)
= 0,

where ξ = (N+M)(R(z− 1) + R(z− i)), η = (M−N)(R(z)2 − R(z− 1)R(z− i)). Since ξ �= 0,

we get

(
R(z)2 − R(z+ i)R(z− 1)

)(
R(z+ 1) + R(z− i)

)
+
(
R(z)2 − R(z+ 1)R(z− i)

)(
R(z+ i) + R(z− 1)

)
= 0,

which is equivalent to (16). �

Proof of Lemma 2. By symmetry reasons, it is enough to prove the lemma for N ≥ 0.

Let us prove it by induction on N.

For N = 0, identity (10) yields R(−1 + iM) = R(1 + iM). Equation (11) at z = iM

implies (15). Now equations (11) and (15) at z = iM imply (16). �
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Induction step N → N+ 1

Claim (1) of Lemma4 implies (15) at z = N+1+iM.Claims (2), (3), and (4) yield equations

(16) and (11) at z = N + 1 + i(N + 2). Now, using (5), (3), and (4) of Lemma 4, one gets,

by induction on L, equations (16) and (11) at z = N+ 1+ i(N+ L+ 1) for any L ∈ N.
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